Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Research

Neural versus pneumatic control of pressure support in patients with chronic obstructive pulmonary diseases at different levels of positive end expiratory pressure: a physiological study

Authors: Ling Liu, Feiping Xia, Yi Yang, Federico Longhini, Paolo Navalesi, Jennifer Beck, Christer Sinderby, Haibo Qiu

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Introduction

Intrinsic positive end-expiratory pressure (PEEPi) is a “threshold” load that must be overcome to trigger conventional pneumatically-controlled pressure support (PSP) in chronic obstructive pulmonary disease (COPD). Application of extrinsic PEEP (PEEPe) reduces trigger delays and mechanical inspiratory efforts. Using the diaphragm electrical activity (EAdi), neurally controlled pressure support (PSN) could hypothetically eliminate asynchrony and reduce mechanical inspiratory effort, hence substituting the need for PEEPe. The primary objective of this study was to show that PSN can reduce the need for PEEPe to improve patient-ventilator interaction and to reduce both the “pre-trigger” and “total inspiratory” neural and mechanical efforts in COPD patients with PEEPi. A secondary objective was to evaluate the impact of applying PSN on breathing pattern.

Methods

Twelve intubated and mechanically ventilated COPD patients with PEEPi ≥ 5 cm H2O underwent comparisons of PSP and PSN at different levels of PEEPe (at 0 %, 40 %, 80 %, and 120 % of static PEEPi, for 12 minutes at each level on average), at matching peak airway pressure. We measured flow, airway pressure, esophageal pressure, and EAdi, and analyzed neural and mechanical efforts for triggering and total inspiration. Patient-ventilator interaction was analyzed with the NeuroSync index.

Results

Mean airway pressure and PEEPe were comparable for PSP and PSN at same target levels. During PSP, the NeuroSync index was 29 % at zero PEEPe and improved to 21 % at optimal PEEPe (P < 0.05). During PSN, the NeuroSync index was lower (<7 %, P < 0.05) regardless of PEEPe. Both pre-trigger (P < 0.05) and total inspiratory mechanical efforts (P < 0.05) were consistently higher during PSP compared to PSN at same PEEPe. The change in total mechanical efforts between PSP at PEEPe0% and PSN at PEEPe0% was not different from the change between PSP at PEEPe0% and PSP at PEEPe80%.

Conclusion

PSN abolishes the need for PEEPe in COPD patients, improves patient-ventilator interaction, and reduces the inspiratory mechanical effort to breathe.

Trial registration

Clinicaltrials.gov NCT02114567. Registered 04 November 2013.
Literature
1.
go back to reference Marini JJ. Dynamic hyperinflation and auto-positive end-expiratory pressure: lessons learned over 30 years. Am J Respir Crit Care Med. 2011;184:756–62.CrossRefPubMed Marini JJ. Dynamic hyperinflation and auto-positive end-expiratory pressure: lessons learned over 30 years. Am J Respir Crit Care Med. 2011;184:756–62.CrossRefPubMed
2.
go back to reference Laghi F, Goyal A. Auto-PEEP in respiratory failure. Minerva Anestesiol. 2012;78:201–21.PubMed Laghi F, Goyal A. Auto-PEEP in respiratory failure. Minerva Anestesiol. 2012;78:201–21.PubMed
3.
go back to reference Smith TC, Marini JJ. Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol (1985). 1988;65:1488–99.CrossRef Smith TC, Marini JJ. Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol (1985). 1988;65:1488–99.CrossRef
4.
go back to reference Petrof BJ, Legaré M, Goldberg P, Milic-Emili J, Gottfried SB. Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1990;141:281–9.CrossRefPubMed Petrof BJ, Legaré M, Goldberg P, Milic-Emili J, Gottfried SB. Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1990;141:281–9.CrossRefPubMed
5.
go back to reference MacIntyre NR, Cheng KC, McConnell R. Applied PEEP during pressure support reduces the inspiratory threshold load of intrinsic PEEP. Chest. 1997;111:188–93.CrossRefPubMed MacIntyre NR, Cheng KC, McConnell R. Applied PEEP during pressure support reduces the inspiratory threshold load of intrinsic PEEP. Chest. 1997;111:188–93.CrossRefPubMed
6.
go back to reference Chiumello D, Polli F, Tallarini F, Chierichetti M, Motta G, Azzari S, et al. Effect of different cycling-off criteria and positive end-expiratory pressure during pressure support ventilation in patients with chronic obstructive pulmonary disease. Crit Care Med. 2007;35:2547–52.CrossRefPubMed Chiumello D, Polli F, Tallarini F, Chierichetti M, Motta G, Azzari S, et al. Effect of different cycling-off criteria and positive end-expiratory pressure during pressure support ventilation in patients with chronic obstructive pulmonary disease. Crit Care Med. 2007;35:2547–52.CrossRefPubMed
7.
go back to reference Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172:1283–9.CrossRefPubMed Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172:1283–9.CrossRefPubMed
8.
go back to reference Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34:2010–8.CrossRefPubMed Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34:2010–8.CrossRefPubMed
9.
go back to reference Spahija J, de Marchie M, Albert M, Bellemare P, Delisle S, Beck J, et al. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010;38:518–26.CrossRefPubMed Spahija J, de Marchie M, Albert M, Bellemare P, Delisle S, Beck J, et al. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010;38:518–26.CrossRefPubMed
10.
go back to reference Bellani G, Coppadoro A, Patroniti N, et al. Clinical assessment of auto-positive End-expiratory pressure by diaphragmatic electrical activity during pressure support and neurally adjusted ventilatory assist. Anesthesiology. 2014;121:563–71.CrossRefPubMed Bellani G, Coppadoro A, Patroniti N, et al. Clinical assessment of auto-positive End-expiratory pressure by diaphragmatic electrical activity during pressure support and neurally adjusted ventilatory assist. Anesthesiology. 2014;121:563–71.CrossRefPubMed
11.
go back to reference Sinderby C, Liu S, Colombo D, Camarotta G, Slutsky AS, Navalesi P, et al. An automated and standardized neural index to quantify patient-ventilator interaction. Crit Care. 2013;17:R239.CrossRefPubMedCentralPubMed Sinderby C, Liu S, Colombo D, Camarotta G, Slutsky AS, Navalesi P, et al. An automated and standardized neural index to quantify patient-ventilator interaction. Crit Care. 2013;17:R239.CrossRefPubMedCentralPubMed
12.
go back to reference Appendini L, Patessio A, Zanaboni S, et al. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149:1069–76.CrossRefPubMed Appendini L, Patessio A, Zanaboni S, et al. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149:1069–76.CrossRefPubMed
13.
go back to reference Rossi A, Brandolese R, Milic-Emili J, et al. The role of PEEP in patients with chronic obstructive pulmonary disease during assisted ventilation. Eur Respir J. 1990;3:818–22.PubMed Rossi A, Brandolese R, Milic-Emili J, et al. The role of PEEP in patients with chronic obstructive pulmonary disease during assisted ventilation. Eur Respir J. 1990;3:818–22.PubMed
14.
go back to reference Nava S, Bruschi C, Rubini F, Palo A, Iotti G, Braschi A. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med. 1995;21:871–9.CrossRefPubMed Nava S, Bruschi C, Rubini F, Palo A, Iotti G, Braschi A. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med. 1995;21:871–9.CrossRefPubMed
15.
go back to reference Sydow M, Golisch W, Buscher H, Zinserling J, Crozier TA, Burchardi H. Effect of low-level PEEP on inspiratory work of breathing in intubated patients, both with healthy lungs and with COPD. Intensive Care Med. 1995;21:887–95.CrossRefPubMed Sydow M, Golisch W, Buscher H, Zinserling J, Crozier TA, Burchardi H. Effect of low-level PEEP on inspiratory work of breathing in intubated patients, both with healthy lungs and with COPD. Intensive Care Med. 1995;21:887–95.CrossRefPubMed
16.
go back to reference Guerin C, Milic-Emili J, Fournier G. Effect of PEEP on work of breathing in mechanically ventilated COPD patients. Intensive Care Med. 2000;26:1207–14.CrossRefPubMed Guerin C, Milic-Emili J, Fournier G. Effect of PEEP on work of breathing in mechanically ventilated COPD patients. Intensive Care Med. 2000;26:1207–14.CrossRefPubMed
17.
go back to reference Yamada Y, Du HL. Analysis of the mechanisms of expiratory asynchrony in pressure support ventilation: a mathematical approach. J Appl Physiol. 2000;88:2143–50.CrossRefPubMed Yamada Y, Du HL. Analysis of the mechanisms of expiratory asynchrony in pressure support ventilation: a mathematical approach. J Appl Physiol. 2000;88:2143–50.CrossRefPubMed
18.
go back to reference Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, et al. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39:2452–7.CrossRefPubMed Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, et al. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39:2452–7.CrossRefPubMed
19.
go back to reference Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.CrossRefPubMed Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.CrossRefPubMed
20.
go back to reference Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.CrossRefPubMed Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.CrossRefPubMed
21.
go back to reference Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest. 1997;112:1592–9.CrossRefPubMed Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest. 1997;112:1592–9.CrossRefPubMed
22.
go back to reference Beck J, Sinderby C, Lindström L, Grassino A. Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol. 1998;85:1123–34.CrossRefPubMed Beck J, Sinderby C, Lindström L, Grassino A. Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol. 1998;85:1123–34.CrossRefPubMed
23.
go back to reference Guerin C, Fournier G, Milic-Emili J. Effects of PEEP on inspiratory resistance in mechanically ventilated COPD patients. Eur Respir J. 2001;18:491–8.CrossRefPubMed Guerin C, Fournier G, Milic-Emili J. Effects of PEEP on inspiratory resistance in mechanically ventilated COPD patients. Eur Respir J. 2001;18:491–8.CrossRefPubMed
24.
go back to reference Caramez MP, Borges JB, Tucci MR, Okamoto VN, Carvalho CR, Kacmarek RM, et al. Paradoxical responses to positive end-expiratory pressure in patients with airway obstruction during controlled ventilation. Crit Care Med. 2005;33:1519–28.CrossRefPubMedCentralPubMed Caramez MP, Borges JB, Tucci MR, Okamoto VN, Carvalho CR, Kacmarek RM, et al. Paradoxical responses to positive end-expiratory pressure in patients with airway obstruction during controlled ventilation. Crit Care Med. 2005;33:1519–28.CrossRefPubMedCentralPubMed
25.
go back to reference Brander L, Leong-Poi H, Beck J, Brunet F, Hutchison SJ, Slutsky AS, et al. Titration and implementation of neurally adjusted ventilatory assist in critically ill patients. Chest. 2009;135:695–703.CrossRefPubMed Brander L, Leong-Poi H, Beck J, Brunet F, Hutchison SJ, Slutsky AS, et al. Titration and implementation of neurally adjusted ventilatory assist in critically ill patients. Chest. 2009;135:695–703.CrossRefPubMed
26.
go back to reference Patroniti N, Bellani G, Saccavino E, Zanella A, Grasselli G, Isgrò S, et al. Respiratory pattern during neurally adjusted ventilatory assist in acute respiratory failure patients. Intensive Care Med. 2012;38:230–9.CrossRefPubMed Patroniti N, Bellani G, Saccavino E, Zanella A, Grasselli G, Isgrò S, et al. Respiratory pattern during neurally adjusted ventilatory assist in acute respiratory failure patients. Intensive Care Med. 2012;38:230–9.CrossRefPubMed
27.
go back to reference Grasselli G, Beck J, Mirabella L, Pesenti A, Slutsky AS, Sinderby C. Assessment of patient-ventilator breath contribution during neurally adjusted ventilatory assist. Intensive Care Med. 2012;38:1224–32.CrossRefPubMed Grasselli G, Beck J, Mirabella L, Pesenti A, Slutsky AS, Sinderby C. Assessment of patient-ventilator breath contribution during neurally adjusted ventilatory assist. Intensive Care Med. 2012;38:1224–32.CrossRefPubMed
28.
go back to reference Zakynthinos SG, Vassilakopoulos T, Zakynthinos E, Mavrommatis A, Roussos C. Contribution of expiratory muscle pressure to dynamic intrinsic positive end-expiratory pressure: validation using the Campbell diagram. Am J Respir Crit Care Med. 2000;162:1633–40.CrossRefPubMed Zakynthinos SG, Vassilakopoulos T, Zakynthinos E, Mavrommatis A, Roussos C. Contribution of expiratory muscle pressure to dynamic intrinsic positive end-expiratory pressure: validation using the Campbell diagram. Am J Respir Crit Care Med. 2000;162:1633–40.CrossRefPubMed
29.
go back to reference Lessard MR, Lofaso F, Brochard L. Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med. 1995;151:562–9.CrossRefPubMed Lessard MR, Lofaso F, Brochard L. Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med. 1995;151:562–9.CrossRefPubMed
30.
go back to reference Yan S, Kayser B, Tobiasz M, Sliwinski P. Comparison of static and dynamic intrinsic positive end-expiratory pressure using the Campbell diagram. Am J Respir Crit Care Med. 1996;154:938–44.CrossRefPubMed Yan S, Kayser B, Tobiasz M, Sliwinski P. Comparison of static and dynamic intrinsic positive end-expiratory pressure using the Campbell diagram. Am J Respir Crit Care Med. 1996;154:938–44.CrossRefPubMed
31.
go back to reference Ranieri VM, Mascia L, Petruzzelli V, Bruno F, Brienza A, Giuliani R. Inspiratory effort and measurement of dynamic intrinsic PEEP in COPD patients: effects of ventilator triggering systems. Intensive Care Med. 1995;21:896–903.CrossRefPubMed Ranieri VM, Mascia L, Petruzzelli V, Bruno F, Brienza A, Giuliani R. Inspiratory effort and measurement of dynamic intrinsic PEEP in COPD patients: effects of ventilator triggering systems. Intensive Care Med. 1995;21:896–903.CrossRefPubMed
32.
go back to reference Maltais F, Reissmann H, Navalesi P, Hernandez P, Gursahaney A, Ranieri VM, et al. Comparison of static and dynamic measurements of intrinsic PEEP in mechanically ventilated patients. Am J Respir Crit Care Med. 1994;150:1318–24.CrossRefPubMed Maltais F, Reissmann H, Navalesi P, Hernandez P, Gursahaney A, Ranieri VM, et al. Comparison of static and dynamic measurements of intrinsic PEEP in mechanically ventilated patients. Am J Respir Crit Care Med. 1994;150:1318–24.CrossRefPubMed
Metadata
Title
Neural versus pneumatic control of pressure support in patients with chronic obstructive pulmonary diseases at different levels of positive end expiratory pressure: a physiological study
Authors
Ling Liu
Feiping Xia
Yi Yang
Federico Longhini
Paolo Navalesi
Jennifer Beck
Christer Sinderby
Haibo Qiu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-0971-0

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue