Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Nephroblastoma | Research

METTL14 gene polymorphisms decrease Wilms tumor susceptibility in Chinese children

Authors: Zhenjian Zhuo, Rui-Xi Hua, Huizhu Zhang, Huiran Lin, Wen Fu, Jinhong Zhu, Jiwen Cheng, Jiao Zhang, Suhong Li, Haixia Zhou, Huimin Xia, Guochang Liu, Wei Jia, Jing He

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Wilms tumor is a highly heritable malignancy. Aberrant METTL14, a critical component of N6-methyladenosine (m6A) methyltransferase, is involved in carcinogenesis. The association between genetic variants in the METTL14 gene and Wilms tumor susceptibility remains to be fully elucidated. We aimed to assess whether variants within this gene are implicated in Wilms tumor susceptibility.

Methods

A total of 403 patients and 1198 controls were analyzed. METTL14 genotypes were assessed by TaqMan genotyping assay.

Result

Among the five SNPs analyzed, rs1064034 T > A and rs298982 G > A exhibited a significant association with decreased susceptibility to Wilms tumor. Moreover, the joint analysis revealed that the combination of five protective genotypes exerted significantly more protective effects against Wilms tumor than 0–4 protective genotypes with an OR of 0.69. The stratified analysis further identified the protective effect of rs1064034 T > A, rs298982 G > A, and combined five protective genotypes in specific subgroups. The above significant associations were further validated by haplotype analysis and false-positive report probability analysis. Preliminary mechanism exploration indicated that rs1064034 T > A and rs298982 G > A are correlated with the expression and splicing event of their surrounding genes.

Conclusions

Collectively, our results suggest that METTL14 gene SNPs may be genetic modifiers for the development of Wilms tumor.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aldrink JH, Heaton TE, Dasgupta R, Lautz TB, Malek MM, Abdessalam SF, et al. Update on Wilms tumor. J Pediatr Surg. 2019;54:390–7.PubMedCrossRef Aldrink JH, Heaton TE, Dasgupta R, Lautz TB, Malek MM, Abdessalam SF, et al. Update on Wilms tumor. J Pediatr Surg. 2019;54:390–7.PubMedCrossRef
2.
go back to reference Phelps HM, Kaviany S, Borinstein SC, Lovvorn HN 3rd. Biological Drivers of Wilms Tumor Prognosis and Treatment. Children (Basel). 2018;5:145. Phelps HM, Kaviany S, Borinstein SC, Lovvorn HN 3rd. Biological Drivers of Wilms Tumor Prognosis and Treatment. Children (Basel). 2018;5:145.
3.
go back to reference Breslow N, Olshan A, Beckwith JB, Green DM. Epidemiology of Wilms tumor. Med Pediatr Oncol. 1993;21:172–81.PubMedCrossRef Breslow N, Olshan A, Beckwith JB, Green DM. Epidemiology of Wilms tumor. Med Pediatr Oncol. 1993;21:172–81.PubMedCrossRef
4.
go back to reference Bao PP, Li K, Wu CX, Huang ZZ, Wang CF, Xiang YM, et al. Recent incidences and trends of childhood malignant solid tumors in Shanghai, 2002-2010. Zhonghua Er Ke Za Zhi. 2013;51:288–94.PubMed Bao PP, Li K, Wu CX, Huang ZZ, Wang CF, Xiang YM, et al. Recent incidences and trends of childhood malignant solid tumors in Shanghai, 2002-2010. Zhonghua Er Ke Za Zhi. 2013;51:288–94.PubMed
6.
go back to reference Dome JS, Graf N, Geller JI, Fernandez CV, Mullen EA, Spreafico F, et al. Advances in Wilms tumor treatment and biology: Progress through international collaboration. J Clin Oncol. 2015;33:2999–3007.PubMedPubMedCentralCrossRef Dome JS, Graf N, Geller JI, Fernandez CV, Mullen EA, Spreafico F, et al. Advances in Wilms tumor treatment and biology: Progress through international collaboration. J Clin Oncol. 2015;33:2999–3007.PubMedPubMedCentralCrossRef
7.
go back to reference Spiegl HR, Murphy AJ, Yanishevski D, Brennan RC, Li C, Lu Z, et al. Complications following nephron-sparing surgery for Wilms tumor. J Pediatr Surg. 2020;55:126–9.PubMedCrossRef Spiegl HR, Murphy AJ, Yanishevski D, Brennan RC, Li C, Lu Z, et al. Complications following nephron-sparing surgery for Wilms tumor. J Pediatr Surg. 2020;55:126–9.PubMedCrossRef
8.
go back to reference Saltzman AF, Carrasco A Jr, Amini A, Cost NG. Patterns of care and survival comparison of adult and pediatric Wilms tumor in the United States: a study of the National Cancer Database. Urology. 2020;135:50–6.PubMedCrossRef Saltzman AF, Carrasco A Jr, Amini A, Cost NG. Patterns of care and survival comparison of adult and pediatric Wilms tumor in the United States: a study of the National Cancer Database. Urology. 2020;135:50–6.PubMedCrossRef
9.
go back to reference Sonn G, Shortliffe LM. Management of Wilms tumor: current standard of care. Nat Clin Pract Urol. 2008;5:551–60.PubMedCrossRef Sonn G, Shortliffe LM. Management of Wilms tumor: current standard of care. Nat Clin Pract Urol. 2008;5:551–60.PubMedCrossRef
10.
go back to reference Wong KF, Reulen RC, Winter DL, Guha J, Fidler MM, Kelly J, et al. Risk of adverse health and social outcomes up to 50 years after Wilms tumor: the British childhood Cancer survivor study. J Clin Oncol. 2016;34:1772–9.PubMedCrossRef Wong KF, Reulen RC, Winter DL, Guha J, Fidler MM, Kelly J, et al. Risk of adverse health and social outcomes up to 50 years after Wilms tumor: the British childhood Cancer survivor study. J Clin Oncol. 2016;34:1772–9.PubMedCrossRef
11.
go back to reference Haber DA, Buckler AJ, Glaser T, Call KM, Pelletier J, Sohn RL, et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms’ tumor. Cell. 1990;61:1257–69.PubMedCrossRef Haber DA, Buckler AJ, Glaser T, Call KM, Pelletier J, Sohn RL, et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms’ tumor. Cell. 1990;61:1257–69.PubMedCrossRef
12.
go back to reference Pelletier J, Bruening W, Li FP, Haber DA, Glaser T, Housman DE. WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature. 1991;353:431–4.PubMedCrossRef Pelletier J, Bruening W, Li FP, Haber DA, Glaser T, Housman DE. WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature. 1991;353:431–4.PubMedCrossRef
13.
go back to reference Treger TD, Chowdhury T, Pritchard-Jones K, Behjati S. The genetic changes of Wilms tumour. Nat Rev Nephrol. 2019;15:240–51.PubMedCrossRef Treger TD, Chowdhury T, Pritchard-Jones K, Behjati S. The genetic changes of Wilms tumour. Nat Rev Nephrol. 2019;15:240–51.PubMedCrossRef
14.
go back to reference Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer. 2008;47:461–70.PubMedPubMedCentralCrossRef Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer. 2008;47:461–70.PubMedPubMedCentralCrossRef
15.
go back to reference Turnbull C, Perdeaux ER, Pernet D, Naranjo A, Renwick A, Seal S, et al. A genome-wide association study identifies susceptibility loci for Wilms tumor. Nat Genet. 2012;44:681–4.PubMedPubMedCentralCrossRef Turnbull C, Perdeaux ER, Pernet D, Naranjo A, Renwick A, Seal S, et al. A genome-wide association study identifies susceptibility loci for Wilms tumor. Nat Genet. 2012;44:681–4.PubMedPubMedCentralCrossRef
16.
go back to reference Fu W, Zhuo Z, Hua RX, Fu K, Jia W, Zhu J, et al. Association of KRAS and NRAS gene polymorphisms with Wilms tumor risk: a four-center case-control study. Aging (Albany NY). 2019;11:1551–63.CrossRef Fu W, Zhuo Z, Hua RX, Fu K, Jia W, Zhu J, et al. Association of KRAS and NRAS gene polymorphisms with Wilms tumor risk: a four-center case-control study. Aging (Albany NY). 2019;11:1551–63.CrossRef
17.
go back to reference Liu GC, Zhuo ZJ, Zhu SB, Zhu J, Jia W, Zhao Z, et al. Associations between LMO1 gene polymorphisms and Wilms’ tumor susceptibility. Oncotarget. 2017;8:50665–72.PubMedPubMedCentralCrossRef Liu GC, Zhuo ZJ, Zhu SB, Zhu J, Jia W, Zhao Z, et al. Associations between LMO1 gene polymorphisms and Wilms’ tumor susceptibility. Oncotarget. 2017;8:50665–72.PubMedPubMedCentralCrossRef
18.
go back to reference Liu P, Zhuo Z, Li W, Cheng J, Zhou H, He J, et al. TP53 rs1042522 C>G polymorphism and Wilms tumor susceptibility in Chinese children: a four-center case-control study. Biosci Rep. 2019;39:BSR20181891.PubMedPubMedCentralCrossRef Liu P, Zhuo Z, Li W, Cheng J, Zhou H, He J, et al. TP53 rs1042522 C>G polymorphism and Wilms tumor susceptibility in Chinese children: a four-center case-control study. Biosci Rep. 2019;39:BSR20181891.PubMedPubMedCentralCrossRef
19.
go back to reference Ferrara M, Capozzi L, Russo R. Impact of the MTHFR C677T polymorphism on risk of Wilms tumor: case-control study. J Pediatr Hematol Oncol. 2009;31:256–8.PubMedCrossRef Ferrara M, Capozzi L, Russo R. Impact of the MTHFR C677T polymorphism on risk of Wilms tumor: case-control study. J Pediatr Hematol Oncol. 2009;31:256–8.PubMedCrossRef
21.
go back to reference Liang Y, Zhan G, Chang KJ, Yang YP, Wang L, Lin J, et al. The roles of m6A RNA modifiers in human cancer. J Chin Med Assoc. 2020;83:221–6.PubMedCrossRef Liang Y, Zhan G, Chang KJ, Yang YP, Wang L, Lin J, et al. The roles of m6A RNA modifiers in human cancer. J Chin Med Assoc. 2020;83:221–6.PubMedCrossRef
23.
go back to reference Tao L, Mu X, Chen H, Jin D, Zhang R, Zhao Y, et al. FTO modifies the m6A level of MALAT and promotes bladder cancer progression. Clin Transl Med. 2021;11:e310.PubMedPubMedCentralCrossRef Tao L, Mu X, Chen H, Jin D, Zhang R, Zhao Y, et al. FTO modifies the m6A level of MALAT and promotes bladder cancer progression. Clin Transl Med. 2021;11:e310.PubMedPubMedCentralCrossRef
24.
go back to reference Zhou C, Zhang Z, Zhu X, Qian G, Zhou Y, Sun Y, et al. N6-Methyladenosine modification of the TRIM7 positively regulates tumorigenesis and chemoresistance in osteosarcoma through ubiquitination of BRMS1. EBioMedicine. 2020;59:102955.PubMedPubMedCentralCrossRef Zhou C, Zhang Z, Zhu X, Qian G, Zhou Y, Sun Y, et al. N6-Methyladenosine modification of the TRIM7 positively regulates tumorigenesis and chemoresistance in osteosarcoma through ubiquitination of BRMS1. EBioMedicine. 2020;59:102955.PubMedPubMedCentralCrossRef
25.
go back to reference Huang J, Chen Z, Chen X, Chen J, Cheng Z, Wang Z. The role of RNA N (6)-methyladenosine methyltransferase in cancers. Mol Ther Nucleic Acids. 2021;23:887–96.PubMedPubMedCentralCrossRef Huang J, Chen Z, Chen X, Chen J, Cheng Z, Wang Z. The role of RNA N (6)-methyladenosine methyltransferase in cancers. Mol Ther Nucleic Acids. 2021;23:887–96.PubMedPubMedCentralCrossRef
26.
go back to reference Ma L, Hua RX, Lin H, Zhu J, Fu W, Lin A, et al. The contribution of WTAP gene variants to Wilms tumor susceptibility. Gene. 2020;754:144839.PubMedCrossRef Ma L, Hua RX, Lin H, Zhu J, Fu W, Lin A, et al. The contribution of WTAP gene variants to Wilms tumor susceptibility. Gene. 2020;754:144839.PubMedCrossRef
27.
go back to reference Hua RX, Liu J, Fu W, Zhu J, Zhang J, Cheng J, et al. ALKBH5 gene polymorphisms and Wilms tumor risk in Chinese children: a five-center case-control study. J Clin Lab Anal. 2020;34:e23251.PubMedPubMedCentralCrossRef Hua RX, Liu J, Fu W, Zhu J, Zhang J, Cheng J, et al. ALKBH5 gene polymorphisms and Wilms tumor risk in Chinese children: a five-center case-control study. J Clin Lab Anal. 2020;34:e23251.PubMedPubMedCentralCrossRef
28.
go back to reference Zhuo Z, Lu H, Zhu J, Hua RX, Li Y, Yang Z, et al. METTL14 gene polymorphisms confer neuroblastoma susceptibility: an eight-center case-control study. Mol Ther Nucleic Acids. 2020;22:17–26.PubMedPubMedCentralCrossRef Zhuo Z, Lu H, Zhu J, Hua RX, Li Y, Yang Z, et al. METTL14 gene polymorphisms confer neuroblastoma susceptibility: an eight-center case-control study. Mol Ther Nucleic Acids. 2020;22:17–26.PubMedPubMedCentralCrossRef
29.
go back to reference Zhuo ZJ, Liu W, Zhang J, Zhu J, Zhang R, Tang J, et al. Functional polymorphisms at ERCC1/XPF genes confer neuroblastoma risk in Chinese children. EBioMedicine. 2018;30:113–9.PubMedPubMedCentralCrossRef Zhuo ZJ, Liu W, Zhang J, Zhu J, Zhang R, Tang J, et al. Functional polymorphisms at ERCC1/XPF genes confer neuroblastoma risk in Chinese children. EBioMedicine. 2018;30:113–9.PubMedPubMedCentralCrossRef
30.
go back to reference Zhuo Z, Zhou C, Fang Y, Zhu J, Lu H, Zhou H, et al. Correlation between the genetic variants of base excision repair (BER) pathway genes and neuroblastoma susceptibility in eastern Chinese children. Cancer Commun (Lond). 2020;40:641–6.CrossRef Zhuo Z, Zhou C, Fang Y, Zhu J, Lu H, Zhou H, et al. Correlation between the genetic variants of base excision repair (BER) pathway genes and neuroblastoma susceptibility in eastern Chinese children. Cancer Commun (Lond). 2020;40:641–6.CrossRef
31.
go back to reference Lin DY, Zeng D, Millikan R. Maximum likelihood estimation of haplotype effects and haplotype-environment interactions in association studies. Genet Epidemiol. 2005;29:299–312.PubMedCrossRef Lin DY, Zeng D, Millikan R. Maximum likelihood estimation of haplotype effects and haplotype-environment interactions in association studies. Genet Epidemiol. 2005;29:299–312.PubMedCrossRef
32.
go back to reference Hua RX, Zhuo Z, Ge L, Zhu J, Yuan L, Chen C, et al. LIN28A gene polymorphisms modify neuroblastoma susceptibility: a four-Centre case-control study. J Cell Mol Med. 2020;24:1059–66.PubMedCrossRef Hua RX, Zhuo Z, Ge L, Zhu J, Yuan L, Chen C, et al. LIN28A gene polymorphisms modify neuroblastoma susceptibility: a four-Centre case-control study. J Cell Mol Med. 2020;24:1059–66.PubMedCrossRef
33.
go back to reference He J, Wang MY, Qiu LX, Zhu ML, Shi TY, Zhou XY, et al. Genetic variations of mTORC1 genes and risk of gastric cancer in an eastern Chinese population. Mol Carcinog. 2013;52(Suppl 1):E70–9.PubMedCrossRef He J, Wang MY, Qiu LX, Zhu ML, Shi TY, Zhou XY, et al. Genetic variations of mTORC1 genes and risk of gastric cancer in an eastern Chinese population. Mol Carcinog. 2013;52(Suppl 1):E70–9.PubMedCrossRef
34.
go back to reference Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434–42.PubMedPubMedCentralCrossRef Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434–42.PubMedPubMedCentralCrossRef
36.
go back to reference Chen X, Xu M, Xu X, Zeng K, Liu X, Sun L, et al. METTL14 suppresses CRC progression via regulating N6-Methyladenosine-dependent primary miR-375 processing. Mol Ther. 2019;28:599–612.PubMedPubMedCentralCrossRef Chen X, Xu M, Xu X, Zeng K, Liu X, Sun L, et al. METTL14 suppresses CRC progression via regulating N6-Methyladenosine-dependent primary miR-375 processing. Mol Ther. 2019;28:599–612.PubMedPubMedCentralCrossRef
37.
go back to reference Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N (6) -methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65:529–43.PubMedCrossRef Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N (6) -methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65:529–43.PubMedCrossRef
38.
go back to reference Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes Leukemogenesis via mRNA m (6) a modification. Cell Stem Cell. 2018;22:191–205 e9.PubMedCrossRef Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes Leukemogenesis via mRNA m (6) a modification. Cell Stem Cell. 2018;22:191–205 e9.PubMedCrossRef
39.
go back to reference Lang F, Singh RK, Pei Y, Zhang S, Sun K, Robertson ES. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis. PLoS Pathog. 2019;15:e1007796.PubMedPubMedCentralCrossRef Lang F, Singh RK, Pei Y, Zhang S, Sun K, Robertson ES. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis. PLoS Pathog. 2019;15:e1007796.PubMedPubMedCentralCrossRef
40.
go back to reference Wang M, Liu J, Zhao Y, He R, Xu X, Guo X, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N (6) adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. 2020;19:130.PubMedPubMedCentralCrossRef Wang M, Liu J, Zhao Y, He R, Xu X, Guo X, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N (6) adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. 2020;19:130.PubMedPubMedCentralCrossRef
41.
go back to reference Meng Y, Li S, Gu D, Xu K, Du M, Zhu L, et al. Genetic variants in m6A modification genes are associated with colorectal cancer risk. Carcinogenesis. 2019;41:8–17. Meng Y, Li S, Gu D, Xu K, Du M, Zhu L, et al. Genetic variants in m6A modification genes are associated with colorectal cancer risk. Carcinogenesis. 2019;41:8–17.
42.
go back to reference Akey J, Jin L, Xiong M. Haplotypes vs single marker linkage disequilibrium tests: what do we gain? Eur J Hum Genet. 2001;9:291–300.PubMedCrossRef Akey J, Jin L, Xiong M. Haplotypes vs single marker linkage disequilibrium tests: what do we gain? Eur J Hum Genet. 2001;9:291–300.PubMedCrossRef
44.
go back to reference Dong J, Teng F, Guo W, Yang J, Ding G, Fu Z. lncRNA SNHG8 promotes the tumorigenesis and metastasis by sponging miR-149-5p and predicts tumor recurrence in hepatocellular carcinoma. Cell Physiol Biochem. 2018;51:2262–74.PubMedCrossRef Dong J, Teng F, Guo W, Yang J, Ding G, Fu Z. lncRNA SNHG8 promotes the tumorigenesis and metastasis by sponging miR-149-5p and predicts tumor recurrence in hepatocellular carcinoma. Cell Physiol Biochem. 2018;51:2262–74.PubMedCrossRef
45.
go back to reference Qu X, Li Y, Wang L, Yuan N, Ma M, Chen Y. LncRNA SNHG8 accelerates proliferation and inhibits apoptosis in HPV-induced cervical cancer through recruiting EZH2 to epigenetically silence RECK expression. J Cell Biochem. 2020;121:4120–9.PubMedCrossRef Qu X, Li Y, Wang L, Yuan N, Ma M, Chen Y. LncRNA SNHG8 accelerates proliferation and inhibits apoptosis in HPV-induced cervical cancer through recruiting EZH2 to epigenetically silence RECK expression. J Cell Biochem. 2020;121:4120–9.PubMedCrossRef
46.
go back to reference Song H, Song J, Lu L, Li S. SNHG8 is upregulated in esophageal squamous cell carcinoma and directly sponges microRNA-411 to increase oncogenicity by upregulating KPNA2. Onco Targets Ther. 2019;12:6991–7004.PubMedPubMedCentralCrossRef Song H, Song J, Lu L, Li S. SNHG8 is upregulated in esophageal squamous cell carcinoma and directly sponges microRNA-411 to increase oncogenicity by upregulating KPNA2. Onco Targets Ther. 2019;12:6991–7004.PubMedPubMedCentralCrossRef
47.
go back to reference Song Y, Zou L, Li J, Shen ZP, Cai YL, Wu XD. LncRNA SNHG8 promotes the development and chemo-resistance of pancreatic adenocarcinoma. Eur Rev Med Pharmacol Sci. 2018;22:8161–8.PubMed Song Y, Zou L, Li J, Shen ZP, Cai YL, Wu XD. LncRNA SNHG8 promotes the development and chemo-resistance of pancreatic adenocarcinoma. Eur Rev Med Pharmacol Sci. 2018;22:8161–8.PubMed
48.
go back to reference Zhen Y, Ye Y, Wang H, Xia Z, Wang B, Yi W, et al. Knockdown of SNHG8 repressed the growth, migration, and invasion of colorectal cancer cells by directly sponging with miR-663. Biomed Pharmacother. 2019;116:109000.PubMedCrossRef Zhen Y, Ye Y, Wang H, Xia Z, Wang B, Yi W, et al. Knockdown of SNHG8 repressed the growth, migration, and invasion of colorectal cancer cells by directly sponging with miR-663. Biomed Pharmacother. 2019;116:109000.PubMedCrossRef
Metadata
Title
METTL14 gene polymorphisms decrease Wilms tumor susceptibility in Chinese children
Authors
Zhenjian Zhuo
Rui-Xi Hua
Huizhu Zhang
Huiran Lin
Wen Fu
Jinhong Zhu
Jiwen Cheng
Jiao Zhang
Suhong Li
Haixia Zhou
Huimin Xia
Guochang Liu
Wei Jia
Jing He
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Nephroblastoma
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-09019-5

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine