Skip to main content
Top
Published in: Brain Topography 1/2013

Open Access 01-01-2013 | Original Paper

Navigation of a Telepresence Robot via Covert Visuospatial Attention and Real-Time fMRI

Authors: Patrik Andersson, Josien P. W. Pluim, Max A. Viergever, Nick F. Ramsey

Published in: Brain Topography | Issue 1/2013

Login to get access

Abstract

Brain–computer interfaces (BCIs) allow people with severe neurological impairment and without ability to control their muscles to regain some control over their environment. The BCI user performs a mental task to regulate brain activity, which is measured and translated into commands controlling some external device. We here show that healthy participants are capable of navigating a robot by covertly shifting their visuospatial attention. Covert Visuospatial Attention (COVISA) constitutes a very intuitive brain function for spatial navigation and does not depend on presented stimuli or on eye movements. Our robot is equipped with motors and a camera that sends visual feedback to the user who can navigate it from a remote location. We used an ultrahigh field MRI scanner (7 Tesla) to obtain fMRI signals that were decoded in real time using a support vector machine. Four healthy subjects with virtually no training succeeded in navigating the robot to at least three of four target locations. Our results thus show that with COVISA BCI, realtime robot navigation can be achieved. Since the magnitude of the fMRI signal has been shown to correlate well with the magnitude of spectral power changes in the gamma frequency band in signals measured by intracranial electrodes, the COVISA concept may in future translate to intracranial application in severely paralyzed people.
Appendix
Available only for authorised users
Literature
go back to reference Allison BZ, McFarland DJ, Schalk G, Zheng SD, Jackson MM, Wolpaw JR (2008) Towards an independent brain–computer interface using steady state visual evoked potentials. Clin Neurophysiol 119(2):399–408PubMedCrossRef Allison BZ, McFarland DJ, Schalk G, Zheng SD, Jackson MM, Wolpaw JR (2008) Towards an independent brain–computer interface using steady state visual evoked potentials. Clin Neurophysiol 119(2):399–408PubMedCrossRef
go back to reference Andersson P, Pluim JPW, Siero JCW, Klein S, Viergever MA, Ramsey NF (2011) Real-time decoding of brain responses to visuospatial attention using 7T fMRI. PLoS ONE 6(11):e27638PubMedCrossRef Andersson P, Pluim JPW, Siero JCW, Klein S, Viergever MA, Ramsey NF (2011) Real-time decoding of brain responses to visuospatial attention using 7T fMRI. PLoS ONE 6(11):e27638PubMedCrossRef
go back to reference Andersson P, Ramsey NF, Raemaekers M, Viergever MA, Pluim JPW (2012) Real-time decoding of direction of covert visuospatial attention. J Neur Eng 9(4):045004CrossRef Andersson P, Ramsey NF, Raemaekers M, Viergever MA, Pluim JPW (2012) Real-time decoding of direction of covert visuospatial attention. J Neur Eng 9(4):045004CrossRef
go back to reference Bagarinao E, Matsuo K, Nakai T, Sato S (2003) Estimation of general linear model coefficients for real-time application. Neuroimage 19(2):422–429PubMedCrossRef Bagarinao E, Matsuo K, Nakai T, Sato S (2003) Estimation of general linear model coefficients for real-time application. Neuroimage 19(2):422–429PubMedCrossRef
go back to reference Bianchi L, Sami S, Hillebrand A, Fawcett IP, Quitadamo LR, Seri S (2010) Which physiological components are more suitable for visual ERP based brain–computer interface? A preliminary MEG/EEG study. Brain Topogr 23(2):180–5PubMedCrossRef Bianchi L, Sami S, Hillebrand A, Fawcett IP, Quitadamo LR, Seri S (2010) Which physiological components are more suitable for visual ERP based brain–computer interface? A preliminary MEG/EEG study. Brain Topogr 23(2):180–5PubMedCrossRef
go back to reference Brefczynski JA, DeYoe EA (1999) A physiological correlate of the ‘spotlight’ of visual attention. Nat Neurosci 2(4):370–374PubMedCrossRef Brefczynski JA, DeYoe EA (1999) A physiological correlate of the ‘spotlight’ of visual attention. Nat Neurosci 2(4):370–374PubMedCrossRef
go back to reference Brefczynski-Lewis JA, Datta R, Lewis JW, DeYoe EA (2009) The topography of visuospatial attention as revealed by a novel visual field mapping technique. J Cogn Neurosci 21(7):1447–1460PubMedCrossRef Brefczynski-Lewis JA, Datta R, Lewis JW, DeYoe EA (2009) The topography of visuospatial attention as revealed by a novel visual field mapping technique. J Cogn Neurosci 21(7):1447–1460PubMedCrossRef
go back to reference Brunner P, Joshi S, Briskin S, Wolpaw JR, Bischof H, G S (2010) Does the ‘P300’ speller depend on eye gaze? J Neural Eng 7(5):056,013CrossRef Brunner P, Joshi S, Briskin S, Wolpaw JR, Bischof H, G S (2010) Does the ‘P300’ speller depend on eye gaze? J Neural Eng 7(5):056,013CrossRef
go back to reference Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM T Int Syst Tech 2(3):1–27CrossRef Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM T Int Syst Tech 2(3):1–27CrossRef
go back to reference Datta R, DeYoe EA (2009) I know where you are secretly attending! The topography of human visual attention revealed with fMRI. Vis Res 49(10):1037–1044PubMedCrossRef Datta R, DeYoe EA (2009) I know where you are secretly attending! The topography of human visual attention revealed with fMRI. Vis Res 49(10):1037–1044PubMedCrossRef
go back to reference De Martino F, Valente G, Staeren N, Ashburner J, Goebel R, Formisano E (2008) Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. Neuroimage 43(1):44–58PubMedCrossRef De Martino F, Valente G, Staeren N, Ashburner J, Goebel R, Formisano E (2008) Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. Neuroimage 43(1):44–58PubMedCrossRef
go back to reference Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA (2003) Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J Vis 3(10) Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA (2003) Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J Vis 3(10)
go back to reference Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523PubMedCrossRef Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523PubMedCrossRef
go back to reference Gunduz A, Brunner P, Daitch A, Leuthardt EC, Ritaccio AL, Pesaran B, Schalk G (2011) Neural correlates of visual spatial attention in electrocorticographic (ECoG) signals in humans. Front Hum Neurosci 5(89) Gunduz A, Brunner P, Daitch A, Leuthardt EC, Ritaccio AL, Pesaran B, Schalk G (2011) Neural correlates of visual spatial attention in electrocorticographic (ECoG) signals in humans. Front Hum Neurosci 5(89)
go back to reference Heinemann L, Kleinschmidt A, Müller NG (2009) Exploring BOLD changes during spatial attention in non-stimulated visual cortex. PLoS ONE 4(5):e5560PubMedCrossRef Heinemann L, Kleinschmidt A, Müller NG (2009) Exploring BOLD changes during spatial attention in non-stimulated visual cortex. PLoS ONE 4(5):e5560PubMedCrossRef
go back to reference Hermes D, Miller KJ, Vansteensel MJ, Aarnoutse EJ, Leijten FSS, Ramsey NF (2012) Neurophysiologic correlates of fMRI in human motor cortex. Hum Brain Map 33(7):1689–1699CrossRef Hermes D, Miller KJ, Vansteensel MJ, Aarnoutse EJ, Leijten FSS, Ramsey NF (2012) Neurophysiologic correlates of fMRI in human motor cortex. Hum Brain Map 33(7):1689–1699CrossRef
go back to reference Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22(4):751–761PubMedCrossRef Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22(4):751–761PubMedCrossRef
go back to reference Kelly SP, Lalor E, Reilly RB, Foxe JJ (2005) Independent brain computer interface control using visual spatial attention-dependent modulations of parieto-occipital alpha. In: 2nd International IEEE EMBS conference on neural engineering, pp 667–670 Kelly SP, Lalor E, Reilly RB, Foxe JJ (2005) Independent brain computer interface control using visual spatial attention-dependent modulations of parieto-occipital alpha. In: 2nd International IEEE EMBS conference on neural engineering, pp 667–670
go back to reference Klein S, Staring M, Pluim JPW (2007) Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. IEEE Trans Image Process 16(12):2879–2890PubMedCrossRef Klein S, Staring M, Pluim JPW (2007) Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. IEEE Trans Image Process 16(12):2879–2890PubMedCrossRef
go back to reference Lachaux JP, Fonlupt P, Kahane P, Minotti L, Hoffmann D, Bertrand O, Baciu M (2007) Relationship between task-related gamma oscillations and BOLD signal: New insights from combined fMRI and intracranial EEG. Hum Brain Mapp 28(12):1368–1375PubMedCrossRef Lachaux JP, Fonlupt P, Kahane P, Minotti L, Hoffmann D, Bertrand O, Baciu M (2007) Relationship between task-related gamma oscillations and BOLD signal: New insights from combined fMRI and intracranial EEG. Hum Brain Mapp 28(12):1368–1375PubMedCrossRef
go back to reference LaConte S, Strother S, Cherkassky V, Anderson J, Hu X (2005) Support vector machines for temporal classification of block design fMRI data. Neuroimage 26(2):317–329PubMedCrossRef LaConte S, Strother S, Cherkassky V, Anderson J, Hu X (2005) Support vector machines for temporal classification of block design fMRI data. Neuroimage 26(2):317–329PubMedCrossRef
go back to reference LaConte SM, Peltier SJ, Hu XP (2007) Real-time fMRI using brain-state classification. Hum Brain Mapp 28(10):1033–1044PubMedCrossRef LaConte SM, Peltier SJ, Hu XP (2007) Real-time fMRI using brain-state classification. Hum Brain Mapp 28(10):1033–1044PubMedCrossRef
go back to reference Leuthardt EC, Schalk G, Roland J, Rouse A, Moran DW (2009) Evolution of brain–computer interfaces: going beyond classic motor physiology. Neurosurg Focus 27(1):E4PubMedCrossRef Leuthardt EC, Schalk G, Roland J, Rouse A, Moran DW (2009) Evolution of brain–computer interfaces: going beyond classic motor physiology. Neurosurg Focus 27(1):E4PubMedCrossRef
go back to reference Matthews F, Pearlmutter BA, Ward TE, Soraghan CASC, Markham CAMC (2008) Hemodynamics for brain–computer interfaces. IEEE Signal Process Mag 25(1):87–94CrossRef Matthews F, Pearlmutter BA, Ward TE, Soraghan CASC, Markham CAMC (2008) Hemodynamics for brain–computer interfaces. IEEE Signal Process Mag 25(1):87–94CrossRef
go back to reference Moench T, Hollmann M, Grzeschik R, Mueller C, Luetzkendorf R, Baecke S, Luchtmann M, Wagegg D, Bernarding J (2008) Real-time classification of activated brain areas for fMRI-based human–brain-interfaces. SPIE 6916:69,161R–10 Moench T, Hollmann M, Grzeschik R, Mueller C, Luetzkendorf R, Baecke S, Luchtmann M, Wagegg D, Bernarding J (2008) Real-time classification of activated brain areas for fMRI-based human–brain-interfaces. SPIE 6916:69,161R–10
go back to reference Munneke J, Heslenfeld DJ, Theeuwes J (2008) Directing attention to a location in space results in retinotopic activation in primary visual cortex. Brain Res Brain Res Rev 1222:184–191PubMedCrossRef Munneke J, Heslenfeld DJ, Theeuwes J (2008) Directing attention to a location in space results in retinotopic activation in primary visual cortex. Brain Res Brain Res Rev 1222:184–191PubMedCrossRef
go back to reference Perry RJ, Zeki S (2000) The neurology of saccades and covert shifts in spatial attention. Brain Behav Evol 123(11):2273–2288PubMedCrossRef Perry RJ, Zeki S (2000) The neurology of saccades and covert shifts in spatial attention. Brain Behav Evol 123(11):2273–2288PubMedCrossRef
go back to reference Shishkin SL, Ganin IP, Basyul IA, Zhigalov AY, Kaplan AY (2009) N1 wave in the P300 BCI is not sensitive to the physical characteristics of stimuli. J Integr Neurosci 8(4):471–85PubMedCrossRef Shishkin SL, Ganin IP, Basyul IA, Zhigalov AY, Kaplan AY (2009) N1 wave in the P300 BCI is not sensitive to the physical characteristics of stimuli. J Integr Neurosci 8(4):471–85PubMedCrossRef
go back to reference Siero JCW, Petridou N, Hoogduin H, Luijten PR, Ramsey NF (2011) Cortical depth-dependent temporal dynamics of the BOLD response in the human brain. J Cereb Blood Flow Metab 31(10):1999–2008PubMedCrossRef Siero JCW, Petridou N, Hoogduin H, Luijten PR, Ramsey NF (2011) Cortical depth-dependent temporal dynamics of the BOLD response in the human brain. J Cereb Blood Flow Metab 31(10):1999–2008PubMedCrossRef
go back to reference Siman-Tov T, Mendelsohn A, Schonberg T, Avidan G, Podlipsky I, Pessoa L, Gadoth N, Ungerleider LG, Hendler T (2007) Bihemispheric leftward bias in a visuospatial attention-related network. J Neurosci 27(42):11,271–11,278CrossRef Siman-Tov T, Mendelsohn A, Schonberg T, Avidan G, Podlipsky I, Pessoa L, Gadoth N, Ungerleider LG, Hendler T (2007) Bihemispheric leftward bias in a visuospatial attention-related network. J Neurosci 27(42):11,271–11,278CrossRef
go back to reference Sitaram R, Caria A, Veit R, Gaber T, Rota G, Kuebler A, Birbaumer N (2007) fMRI brain–computer interface: a tool for neuroscientific research and treatment. Comp Intell Neurosci 2007:25487 Sitaram R, Caria A, Veit R, Gaber T, Rota G, Kuebler A, Birbaumer N (2007) fMRI brain–computer interface: a tool for neuroscientific research and treatment. Comp Intell Neurosci 2007:25487
go back to reference Sitaram R, Weiskopf N, Caria A, Veit R, Erb M, Birbaumer N (2008) fMRI brain–computer interfaces. IEEE Signal Proc Mag 25(1):95–106CrossRef Sitaram R, Weiskopf N, Caria A, Veit R, Erb M, Birbaumer N (2008) fMRI brain–computer interfaces. IEEE Signal Proc Mag 25(1):95–106CrossRef
go back to reference Sitaram R, Lee S, Ruiz S, Rana M, Veit R, Birbaumer N (2011) Real-time support vector classification and feedback of multiple emotional brain states. Neuroimage 56(2):753–65PubMedCrossRef Sitaram R, Lee S, Ruiz S, Rana M, Veit R, Birbaumer N (2011) Real-time support vector classification and feedback of multiple emotional brain states. Neuroimage 56(2):753–65PubMedCrossRef
go back to reference Sorger B, Reithler J, Dahmen B, Goebel R (2012) A real-time fMRI-based spelling device immediately enabling robust motor-independent communication. Curr Biol 22(14):1333–1338PubMedCrossRef Sorger B, Reithler J, Dahmen B, Goebel R (2012) A real-time fMRI-based spelling device immediately enabling robust motor-independent communication. Curr Biol 22(14):1333–1338PubMedCrossRef
go back to reference Tarvainen MP, Ranta-aho PO, Karjalainen PA (2002) An advanced detrending method with application to HRV analysis. IEEE Trans Biomed Eng 49(2):172–175PubMedCrossRef Tarvainen MP, Ranta-aho PO, Karjalainen PA (2002) An advanced detrending method with application to HRV analysis. IEEE Trans Biomed Eng 49(2):172–175PubMedCrossRef
go back to reference Treder MS, Blankertz B (2010) (C)overt attention and visual speller design in an ERP-based brain–computer interface. Behav Brain Funct 6(1):28PubMedCrossRef Treder MS, Blankertz B (2010) (C)overt attention and visual speller design in an ERP-based brain–computer interface. Behav Brain Funct 6(1):28PubMedCrossRef
go back to reference Treder MS, Schmidt NM, Blankertz B (2011b) Gaze-independent brain–computer interfaces based on covert attention and feature attention. J Neural Eng 8(6) Treder MS, Schmidt NM, Blankertz B (2011b) Gaze-independent brain–computer interfaces based on covert attention and feature attention. J Neural Eng 8(6)
go back to reference Treder M, Bahramisharif A, Schmidt N, van Gerven M, Blankertz B (2011a) Brain–computer interfacing using modulations of alpha activity induced by covert shifts of attention. J NeuroEng Rehabil 8(1):24PubMedCrossRef Treder M, Bahramisharif A, Schmidt N, van Gerven M, Blankertz B (2011a) Brain–computer interfacing using modulations of alpha activity induced by covert shifts of attention. J NeuroEng Rehabil 8(1):24PubMedCrossRef
go back to reference Vansteensel MJ, Hermes D, Aarnoutse EJ, Bleichner MG, Schalk G, van Rijen PC, Leijten FSS, Ramsey NF (2010) Brain–computer interfacing based on cognitive control. Ann Neurol 67(6):809–816PubMed Vansteensel MJ, Hermes D, Aarnoutse EJ, Bleichner MG, Schalk G, van Rijen PC, Leijten FSS, Ramsey NF (2010) Brain–computer interfacing based on cognitive control. Ann Neurol 67(6):809–816PubMed
go back to reference van Gerven M, Jensen O (2009) Attention modulations of posterior alpha as a control signal for two-dimensional brain–computer interfaces. J Neurosci Methods 179(1):78–84PubMedCrossRef van Gerven M, Jensen O (2009) Attention modulations of posterior alpha as a control signal for two-dimensional brain–computer interfaces. J Neurosci Methods 179(1):78–84PubMedCrossRef
go back to reference van Gerven M, Bahramisharif A, Heskes T, Jensen O (2009) Selecting features for BCI control based on a covert spatial attention paradigm. Neural Netw 22(9):1271–1277PubMedCrossRef van Gerven M, Bahramisharif A, Heskes T, Jensen O (2009) Selecting features for BCI control based on a covert spatial attention paradigm. Neural Netw 22(9):1271–1277PubMedCrossRef
go back to reference Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791PubMedCrossRef Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791PubMedCrossRef
go back to reference Yamamoto H, Fukunaga M, Takahashi S, Mano H, Tanaka C, Umeda M, Ejima Y (2012) Inconsistency and uncertainty of the human visual area loci following surface-based registration: probability and entropy maps. Hum Brain Map 33(1):121–129CrossRef Yamamoto H, Fukunaga M, Takahashi S, Mano H, Tanaka C, Umeda M, Ejima Y (2012) Inconsistency and uncertainty of the human visual area loci following surface-based registration: probability and entropy maps. Hum Brain Map 33(1):121–129CrossRef
go back to reference Yoo SS, Fairneny T, Chen NK, Choo SE, Panych LP, Park H, Lee SY, Jolesz FA (2004) Brain–computer interface using fMRI: spatial navigation by thoughts. Neuroreport 15(10):1591–1595PubMedCrossRef Yoo SS, Fairneny T, Chen NK, Choo SE, Panych LP, Park H, Lee SY, Jolesz FA (2004) Brain–computer interface using fMRI: spatial navigation by thoughts. Neuroreport 15(10):1591–1595PubMedCrossRef
Metadata
Title
Navigation of a Telepresence Robot via Covert Visuospatial Attention and Real-Time fMRI
Authors
Patrik Andersson
Josien P. W. Pluim
Max A. Viergever
Nick F. Ramsey
Publication date
01-01-2013
Publisher
Springer US
Published in
Brain Topography / Issue 1/2013
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-012-0252-z

Other articles of this Issue 1/2013

Brain Topography 1/2013 Go to the issue