Skip to main content
Top
Published in: Systematic Reviews 1/2024

Open Access 01-12-2024 | Methodology

Natural language processing (NLP) to facilitate abstract review in medical research: the application of BioBERT to exploring the 20-year use of NLP in medical research

Authors: Safoora Masoumi, Hossein Amirkhani, Najmeh Sadeghian, Saeid Shahraz

Published in: Systematic Reviews | Issue 1/2024

Login to get access

Abstract

Background

Abstract review is a time and labor-consuming step in the systematic and scoping literature review in medicine. Text mining methods, typically natural language processing (NLP), may efficiently replace manual abstract screening. This study applies NLP to a deliberately selected literature review problem, the trend of using NLP in medical research, to demonstrate the performance of this automated abstract review model.

Methods

Scanning PubMed, Embase, PsycINFO, and CINAHL databases, we identified 22,294 with a final selection of 12,817 English abstracts published between 2000 and 2021. We invented a manual classification of medical fields, three variables, i.e., the context of use (COU), text source (TS), and primary research field (PRF). A training dataset was developed after reviewing 485 abstracts. We used a language model called Bidirectional Encoder Representations from Transformers to classify the abstracts. To evaluate the performance of the trained models, we report a micro f1-score and accuracy.

Results

The trained models’ micro f1-score for classifying abstracts, into three variables were 77.35% for COU, 76.24% for TS, and 85.64% for PRF.
The average annual growth rate (AAGR) of the publications was 20.99% between 2000 and 2020 (72.01 articles (95% CI: 56.80–78.30) yearly increase), with 81.76% of the abstracts published between 2010 and 2020. Studies on neoplasms constituted 27.66% of the entire corpus with an AAGR of 42.41%, followed by studies on mental conditions (AAGR = 39.28%). While electronic health or medical records comprised the highest proportion of text sources (57.12%), omics databases had the highest growth among all text sources with an AAGR of 65.08%. The most common NLP application was clinical decision support (25.45%).

Conclusions

BioBERT showed an acceptable performance in the abstract review. If future research shows the high performance of this language model, it can reliably replace manual abstract reviews.
Appendix
Available only for authorised users
Literature
1.
go back to reference Johri P, Khatri S, Taani A, Sabharwal M, Suvanov S, Kumar A, editors. Natural language processing: history, evolution, application, and future work. 3rd International Conference on Computing Informatics and Networks; 2021. p.365–75. Johri P, Khatri S, Taani A, Sabharwal M, Suvanov S, Kumar A, editors. Natural language processing: history, evolution, application, and future work. 3rd International Conference on Computing Informatics and Networks; 2021. p.365–75.
2.
go back to reference Zhou M, Duan N, Liu S, Shum H. Progress in neural NLP: modeling, learning, and reasoning. Engineering. 2020;6(3):275–90.CrossRef Zhou M, Duan N, Liu S, Shum H. Progress in neural NLP: modeling, learning, and reasoning. Engineering. 2020;6(3):275–90.CrossRef
3.
go back to reference Jones KS. Natural language processing: a historical review. In: Zampolli A, Calzolari N, Palmer M, editors. Current Issues in Computational Linguistics: In Honour of Don Walker. Dordrecht: Springer; 1994. p. 3–16. Jones KS. Natural language processing: a historical review. In: Zampolli A, Calzolari N, Palmer M, editors. Current Issues in Computational Linguistics: In Honour of Don Walker. Dordrecht: Springer; 1994. p. 3–16.
4.
go back to reference Locke S, Bashall A, Al-Adely S, Moore J, Wilson A, Kitchen G. Natural language processing in medicine: a review. Trends Anaesthesia Crit Care. 2021;38:4–9.CrossRef Locke S, Bashall A, Al-Adely S, Moore J, Wilson A, Kitchen G. Natural language processing in medicine: a review. Trends Anaesthesia Crit Care. 2021;38:4–9.CrossRef
5.
go back to reference Manaris B. Natural language processing: a human-computer interaction perspective. Adv Comput. 1998;47:1–66.CrossRef Manaris B. Natural language processing: a human-computer interaction perspective. Adv Comput. 1998;47:1–66.CrossRef
6.
go back to reference Marshall IJ, Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Syst Rev. 2019;8(1):163.CrossRefPubMedPubMedCentral Marshall IJ, Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Syst Rev. 2019;8(1):163.CrossRefPubMedPubMedCentral
7.
8.
go back to reference Devlin J, Chang M-W, Lee K, Toutanova K, editors. BERT: Pre-training of deep bidirectional transformers for language understanding. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers); 2019. p. 4171–86. Devlin J, Chang M-W, Lee K, Toutanova K, editors. BERT: Pre-training of deep bidirectional transformers for language understanding. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers); 2019. p. 4171–86.
9.
go back to reference Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2020;36(4):1234–40.CrossRefPubMed Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2020;36(4):1234–40.CrossRefPubMed
10.
11.
go back to reference Elangovan A, Li Y, Pires DEV, Davis MJ, Verspoor K. Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT. BMC Bioinformatics. 2022;23(1):4.CrossRefPubMedPubMedCentral Elangovan A, Li Y, Pires DEV, Davis MJ, Verspoor K. Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT. BMC Bioinformatics. 2022;23(1):4.CrossRefPubMedPubMedCentral
12.
go back to reference Ji Z, Wei Q, Xu H. BERT-based ranking for biomedical entity normalization. AMIA Jt Summits Transl Sci Proc. 2020;2020:269–77.PubMedPubMedCentral Ji Z, Wei Q, Xu H. BERT-based ranking for biomedical entity normalization. AMIA Jt Summits Transl Sci Proc. 2020;2020:269–77.PubMedPubMedCentral
13.
go back to reference Zhu Y, Li L, Lu H, Zhou A, Qin X. Extracting drug-drug interactions from texts with BioBERT and multiple entity-aware attentions. J Biomed Inform. 2020;106:103451.CrossRefPubMed Zhu Y, Li L, Lu H, Zhou A, Qin X. Extracting drug-drug interactions from texts with BioBERT and multiple entity-aware attentions. J Biomed Inform. 2020;106:103451.CrossRefPubMed
14.
go back to reference Chen X, Xie H, Wang FL, Liu Z, Xu J, Hao T. A bibliometric analysis of natural language processing in medical research. BMC Med Inform Decis Mak. 2018;18(1):1–14.CrossRef Chen X, Xie H, Wang FL, Liu Z, Xu J, Hao T. A bibliometric analysis of natural language processing in medical research. BMC Med Inform Decis Mak. 2018;18(1):1–14.CrossRef
15.
go back to reference Wang J, Deng H, Liu B, Hu A, Liang J, Fan L, et al. Systematic evaluation of research progress on natural language processing in medicine over the past 20 years: bibliometric study on PubMed. J Med Internet Res. 2020;22(1):e16816.CrossRefPubMedPubMedCentral Wang J, Deng H, Liu B, Hu A, Liang J, Fan L, et al. Systematic evaluation of research progress on natural language processing in medicine over the past 20 years: bibliometric study on PubMed. J Med Internet Res. 2020;22(1):e16816.CrossRefPubMedPubMedCentral
16.
go back to reference Wolf T, Chaumond J, Debut L, Sanh V, Delangue C, Moi A, et al., editors. Transformers: state-of-the-art natural language processing. Conference on Empirical Methods in Natural Language Processing: System Demonstrations; 2020. p. 38–45 Wolf T, Chaumond J, Debut L, Sanh V, Delangue C, Moi A, et al., editors. Transformers: state-of-the-art natural language processing. Conference on Empirical Methods in Natural Language Processing: System Demonstrations; 2020. p. 38–45
17.
go back to reference Chen X, Xie H, Cheng G, Poon LK, Leng M, Wang FL. Trends and features of the applications of natural language processing techniques for clinical trials text analysis. Appl Sci. 2020;10(6):2157.CrossRef Chen X, Xie H, Cheng G, Poon LK, Leng M, Wang FL. Trends and features of the applications of natural language processing techniques for clinical trials text analysis. Appl Sci. 2020;10(6):2157.CrossRef
Metadata
Title
Natural language processing (NLP) to facilitate abstract review in medical research: the application of BioBERT to exploring the 20-year use of NLP in medical research
Authors
Safoora Masoumi
Hossein Amirkhani
Najmeh Sadeghian
Saeid Shahraz
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2024
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-024-02470-y

Other articles of this Issue 1/2024

Systematic Reviews 1/2024 Go to the issue