Skip to main content
Top
Published in: Neurological Sciences 7/2021

01-07-2021 | Review Article

Nanoparticles approaches in neurodegenerative diseases diagnosis and treatment

Authors: Zahra Asefy, Sirus Hoseinnejhad, Zaker Ceferov

Published in: Neurological Sciences | Issue 7/2021

Login to get access

Abstract

The World Health Organization (WHO) has declared that neurodegenerative diseases will be the biggest health issues of the twenty-first century. Among these, Alzheimer’s and Parkinson’s diseases can be considered as the most acute incurable neurological diseases. Researchers are studying and developing a new treatment approach that uses nanotechnology to diagnosis and treatment neurodegenerative diseases. This treatment strategy will be used to regress neurodegenerative diseases such as Alzheimer’s disease. Alzheimer’s disease (AD) is one of the most common forms of reduced brain function, which causes many devastating complications. Current neurodegenerative diseases treatment protocols only help to treat symptoms nevertheless with nanotechnology approaches, can regress nerve cells apoptosis, reduce inflammation, and improve brain drug delivery. In this paper, new nanotechnology methods such as nanobodies, nano-antibodies, and lipid nanoparticles have been investigated. Correspondingly blood-brain barrier drug delivery improvement methods have been suggested.
Literature
1.
go back to reference Noble W, Burns MP (2010) Challenges in neurodegeneration research. Front Psychiatr 1:7CrossRef Noble W, Burns MP (2010) Challenges in neurodegeneration research. Front Psychiatr 1:7CrossRef
2.
go back to reference Spuch C, Saida O, Navarro C (2012) Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Patents Drug Deliv Formul 6(1):2–18CrossRef Spuch C, Saida O, Navarro C (2012) Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Patents Drug Deliv Formul 6(1):2–18CrossRef
3.
go back to reference Abbasi-Oshaghi E, Mirzaei F, Mirzaei A (2018) Effects of ZnO nanoparticles on intestinal function and structure in normal/high fat diet-fed rats and Caco-2 cells. Nanomedicine. 13(21):2791–2816PubMedCrossRef Abbasi-Oshaghi E, Mirzaei F, Mirzaei A (2018) Effects of ZnO nanoparticles on intestinal function and structure in normal/high fat diet-fed rats and Caco-2 cells. Nanomedicine. 13(21):2791–2816PubMedCrossRef
4.
go back to reference Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Rahbar Saadat Y, Zununi Vahed S, Samiei M, Ardalan M, Rameshrad M, Ahmadian E, Cucchiarini M (2020) The use of nanomaterials in tissue engineering for cartilage regeneration; current approaches and future perspectives. Int J Mol Sci 21(2):536PubMedCentralCrossRef Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Rahbar Saadat Y, Zununi Vahed S, Samiei M, Ardalan M, Rameshrad M, Ahmadian E, Cucchiarini M (2020) The use of nanomaterials in tissue engineering for cartilage regeneration; current approaches and future perspectives. Int J Mol Sci 21(2):536PubMedCentralCrossRef
5.
go back to reference Schmid G (2011) Nanoparticles: from theory to application. John Wiley & Sons Schmid G (2011) Nanoparticles: from theory to application. John Wiley & Sons
6.
go back to reference Caracciolo G, Vali H, Moore A, Mahmoudi M (2019) Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today 27:6–10CrossRef Caracciolo G, Vali H, Moore A, Mahmoudi M (2019) Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today 27:6–10CrossRef
7.
go back to reference Tierney T, Bodnár K, Rasmuson Å, Hudson S (2017) Carrier particle design for stabilization and isolation of drug nanoparticles. Int J Pharm 518(1-2):111–118PubMedCrossRef Tierney T, Bodnár K, Rasmuson Å, Hudson S (2017) Carrier particle design for stabilization and isolation of drug nanoparticles. Int J Pharm 518(1-2):111–118PubMedCrossRef
8.
go back to reference Amirrasouli H, Asefy Z, Taghikhani M (2011) Study of serum cystatin C as a reliable marker for metabolic syndrome. J Diab Metab Disord 10:6 Amirrasouli H, Asefy Z, Taghikhani M (2011) Study of serum cystatin C as a reliable marker for metabolic syndrome. J Diab Metab Disord 10:6
9.
10.
go back to reference Asefy Z, Mirinejad M, Amirrasooli H, Tagikhani M (2014) Assessing validity of serum cystatin C for predicting metabolic syndrome. Pak J Biol Sci 17(4):582–585PubMedCrossRef Asefy Z, Mirinejad M, Amirrasooli H, Tagikhani M (2014) Assessing validity of serum cystatin C for predicting metabolic syndrome. Pak J Biol Sci 17(4):582–585PubMedCrossRef
11.
12.
go back to reference Villapol S (2018) Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol 38(1):121–132PubMedCrossRef Villapol S (2018) Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol 38(1):121–132PubMedCrossRef
13.
go back to reference Clark AK, Gentry C, Bradbury EJ, McMahon SB, Malcangio M (2007) Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain 11(2):223–230PubMedCrossRef Clark AK, Gentry C, Bradbury EJ, McMahon SB, Malcangio M (2007) Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain 11(2):223–230PubMedCrossRef
14.
go back to reference Parisi V. (ed) (2003) Correlation between morphological and functional retinal impairment in patients affected by ocular hypertension, glaucoma, demyelinating optic neuritis and Alzheimer’s disease. Seminars in ophthalmology. Taylor & Francis Parisi V. (ed) (2003) Correlation between morphological and functional retinal impairment in patients affected by ocular hypertension, glaucoma, demyelinating optic neuritis and Alzheimer’s disease. Seminars in ophthalmology. Taylor & Francis
15.
go back to reference Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, di Giovanni G, Wischik C, Hof P (2016) Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 6(1):6PubMedPubMedCentralCrossRef Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, di Giovanni G, Wischik C, Hof P (2016) Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 6(1):6PubMedPubMedCentralCrossRef
16.
go back to reference Enache TA, Oliveira-Brett AM (2017) Alzheimer’s disease amyloid beta peptides in vitro electrochemical oxidation. Bioelectrochemistry. 114:13–23PubMedCrossRef Enache TA, Oliveira-Brett AM (2017) Alzheimer’s disease amyloid beta peptides in vitro electrochemical oxidation. Bioelectrochemistry. 114:13–23PubMedCrossRef
18.
go back to reference Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM et al (2010) Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res 88(16):3530–3539PubMedPubMedCentralCrossRef Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM et al (2010) Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res 88(16):3530–3539PubMedPubMedCentralCrossRef
19.
go back to reference Denieffe S, Kelly RJ, McDonald C, Lyons A, Lynch MA (2013) Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain Behav Immun 34:86–97PubMedCrossRef Denieffe S, Kelly RJ, McDonald C, Lyons A, Lynch MA (2013) Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain Behav Immun 34:86–97PubMedCrossRef
20.
go back to reference Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194PubMedCrossRef Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194PubMedCrossRef
21.
go back to reference Matias D, Dubois LG, Pontes B, Rosário L, Ferrer VP, Balça-Silva J, Fonseca ACC, Macharia LW, Romão L, e Spohr TCLS, Chimelli L, Filho PN, Lopes MC, Abreu JG, Lima FRS, Moura-Neto V (2019) GBM-derived Wnt3a induces M2-like phenotype in microglial cells through Wnt/β-catenin signaling. Mol Neurobiol 56(2):1517–1530PubMedCrossRef Matias D, Dubois LG, Pontes B, Rosário L, Ferrer VP, Balça-Silva J, Fonseca ACC, Macharia LW, Romão L, e Spohr TCLS, Chimelli L, Filho PN, Lopes MC, Abreu JG, Lima FRS, Moura-Neto V (2019) GBM-derived Wnt3a induces M2-like phenotype in microglial cells through Wnt/β-catenin signaling. Mol Neurobiol 56(2):1517–1530PubMedCrossRef
22.
go back to reference Song M, Liu T, Shi C, Zhang X, Chen X (2016) Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10(1):633–647PubMedCrossRef Song M, Liu T, Shi C, Zhang X, Chen X (2016) Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10(1):633–647PubMedCrossRef
23.
go back to reference Sushnitha M, Evangelopoulos M, Tasciotti E, Taraballi F (2020) Cell membrane-based biomimetic nanoparticles and the immune system: immunomodulatory interactions to therapeutic applications. Front Bioeng Biotechnol 8 Sushnitha M, Evangelopoulos M, Tasciotti E, Taraballi F (2020) Cell membrane-based biomimetic nanoparticles and the immune system: immunomodulatory interactions to therapeutic applications. Front Bioeng Biotechnol 8
24.
go back to reference Alkhalifa H, Alshebber E, Taurin S (2021) Regenerative nanomedicine applications for neurodegenerative diseases of central nervous system. Theory and Applications of Nonparenteral Nanomedicines: Elsevier, pp 259-87 Alkhalifa H, Alshebber E, Taurin S (2021) Regenerative nanomedicine applications for neurodegenerative diseases of central nervous system. Theory and Applications of Nonparenteral Nanomedicines: Elsevier, pp 259-87
25.
go back to reference Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, Corbo C, Tasciotti E (2017) Bio-inspired engineering of cell-and virus-like nanoparticles for drug delivery. Biomaterials. 147:155–168PubMedCrossRef Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, Corbo C, Tasciotti E (2017) Bio-inspired engineering of cell-and virus-like nanoparticles for drug delivery. Biomaterials. 147:155–168PubMedCrossRef
26.
go back to reference Cui W, Fu W, Lin Y, Zhang T (2021) Application of nanomaterials in neurodegenerative diseases. Curr Stem Cell Res Ther 16(1):83–94PubMed Cui W, Fu W, Lin Y, Zhang T (2021) Application of nanomaterials in neurodegenerative diseases. Curr Stem Cell Res Ther 16(1):83–94PubMed
27.
go back to reference Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83PubMedCrossRef Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83PubMedCrossRef
28.
go back to reference Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101PubMedCrossRef Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101PubMedCrossRef
29.
go back to reference Sheikpranbabu S, Kalishwaralal K, Venkataraman D, Eom SH, Park J, Gurunathan S (2009) Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnol 7(1):8CrossRef Sheikpranbabu S, Kalishwaralal K, Venkataraman D, Eom SH, Park J, Gurunathan S (2009) Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnol 7(1):8CrossRef
30.
go back to reference Govindappa M, Hemashekhar B, Arthikala M-K, Rai VR, Ramachandra Y (2018) Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys 9:400–408CrossRef Govindappa M, Hemashekhar B, Arthikala M-K, Rai VR, Ramachandra Y (2018) Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys 9:400–408CrossRef
31.
go back to reference AshaRani P (2009) Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290PubMedCrossRef AshaRani P (2009) Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290PubMedCrossRef
32.
go back to reference Patel CB, Jyoti A. Promises of nanomaterials as antimicrobial agents: a review Patel CB, Jyoti A. Promises of nanomaterials as antimicrobial agents: a review
33.
go back to reference Wilkinson L, White R, Chipman J (2011) Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care 20(11):543–549PubMedCrossRef Wilkinson L, White R, Chipman J (2011) Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care 20(11):543–549PubMedCrossRef
34.
go back to reference Mandoli C, Pagliari F, Pagliari S, Forte G, Di Nardo P, Licoccia S et al (2010) Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv Funct Mater 20(10):1617–1624CrossRef Mandoli C, Pagliari F, Pagliari S, Forte G, Di Nardo P, Licoccia S et al (2010) Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv Funct Mater 20(10):1617–1624CrossRef
35.
go back to reference Adams CF, Pickard MR, Chari DM (2013) Magnetic nanoparticle mediated transfection of neural stem cell suspension cultures is enhanced by applied oscillating magnetic fields. Nanomedicine 9(6):737–741PubMedCrossRef Adams CF, Pickard MR, Chari DM (2013) Magnetic nanoparticle mediated transfection of neural stem cell suspension cultures is enhanced by applied oscillating magnetic fields. Nanomedicine 9(6):737–741PubMedCrossRef
36.
go back to reference Revets H, De Baetselier P, Muyldermans S (2005) Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther 5(1):111–124PubMedCrossRef Revets H, De Baetselier P, Muyldermans S (2005) Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther 5(1):111–124PubMedCrossRef
37.
38.
go back to reference Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C, Muyldermans S (2013) Nanobodies and their potential applications. Nanomedicine. 8(6):1013–1026PubMedCrossRef Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C, Muyldermans S (2013) Nanobodies and their potential applications. Nanomedicine. 8(6):1013–1026PubMedCrossRef
39.
go back to reference Jovčevska I, Muyldermans S (2020) The therapeutic potential of nanobodies. BioDrugs. 34(1):11–26PubMedCrossRef Jovčevska I, Muyldermans S (2020) The therapeutic potential of nanobodies. BioDrugs. 34(1):11–26PubMedCrossRef
41.
go back to reference Muyldermans S (2020) Applications of nanobodies. Ann Rev Anim Biosci 9 Muyldermans S (2020) Applications of nanobodies. Ann Rev Anim Biosci 9
42.
go back to reference Vincke C, Muyldermans S (2012) Introduction to heavy chain antibodies and derived Nanobodies. Single Domain Antibodies: Springer, p. 15-26 Vincke C, Muyldermans S (2012) Introduction to heavy chain antibodies and derived Nanobodies. Single Domain Antibodies: Springer, p. 15-26
44.
go back to reference Deffar K, Shi H, Li L, Wang X, Zhu X (2009) Nanobodies-the new concept in antibody engineering. Afr J Biotechnol 8(12) Deffar K, Shi H, Li L, Wang X, Zhu X (2009) Nanobodies-the new concept in antibody engineering. Afr J Biotechnol 8(12)
45.
go back to reference De Meyer T, Muyldermans S, Depicker A (2014) Nanobody-based products as research and diagnostic tools. Trends Biotechnol 32(5):263–270PubMedCrossRef De Meyer T, Muyldermans S, Depicker A (2014) Nanobody-based products as research and diagnostic tools. Trends Biotechnol 32(5):263–270PubMedCrossRef
46.
go back to reference Vaneycken I, D’huyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N et al (2011) Immuno-imaging using nanobodies. Curr Opin Biotechnol 22(6):877–881PubMedCrossRef Vaneycken I, D’huyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N et al (2011) Immuno-imaging using nanobodies. Curr Opin Biotechnol 22(6):877–881PubMedCrossRef
47.
go back to reference Steeland S, Vandenbroucke RE, Libert C (2016) Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 21(7):1076–1113PubMedCrossRef Steeland S, Vandenbroucke RE, Libert C (2016) Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 21(7):1076–1113PubMedCrossRef
48.
49.
go back to reference Gao L, Liu G, Ma J, Wang X, Zhou L, Li X (2012) Drug nanocrystals: in vivo performances. J Control Release 160(3):418–430PubMedCrossRef Gao L, Liu G, Ma J, Wang X, Zhou L, Li X (2012) Drug nanocrystals: in vivo performances. J Control Release 160(3):418–430PubMedCrossRef
50.
go back to reference Naasani I (2005) Nanocrystals. Google Patents Naasani I (2005) Nanocrystals. Google Patents
52.
go back to reference Cho K, Wang X, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316PubMedCrossRef Cho K, Wang X, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316PubMedCrossRef
53.
go back to reference Scott R Armstrong JH. Alzheimers Dis Res Grant Advis Board Scott R Armstrong JH. Alzheimers Dis Res Grant Advis Board
54.
go back to reference Tehrani MD, Kim MO, Yoon J (2014) A novel electromagnetic actuation system for magnetic nanoparticle guidance in blood vessels. IEEE Trans Magn 50(7):1–12CrossRef Tehrani MD, Kim MO, Yoon J (2014) A novel electromagnetic actuation system for magnetic nanoparticle guidance in blood vessels. IEEE Trans Magn 50(7):1–12CrossRef
55.
go back to reference Vio V, Jose Marchant M, Araya E, Kogan MJ (2017) Metal nanoparticles for the treatment and diagnosis of neurodegenerative brain diseases. Curr Pharm Des 23(13):1916–1926PubMedCrossRef Vio V, Jose Marchant M, Araya E, Kogan MJ (2017) Metal nanoparticles for the treatment and diagnosis of neurodegenerative brain diseases. Curr Pharm Des 23(13):1916–1926PubMedCrossRef
56.
go back to reference Kassaee SM, Taghi Goodarzi M, Abbasi OE (2018) Antioxidant, antiglycation and anti-hyperlipidemic effects of Trigonella foenum and Cinnamon in type 2 diabetic rats. Jundishapur J Nat Pharm Prod 13(1) Kassaee SM, Taghi Goodarzi M, Abbasi OE (2018) Antioxidant, antiglycation and anti-hyperlipidemic effects of Trigonella foenum and Cinnamon in type 2 diabetic rats. Jundishapur J Nat Pharm Prod 13(1)
57.
go back to reference Yadav N, Khatak S, Sara US (2013) Solid lipid nanoparticles-a review. Int J Appl Pharm 5(2):8–18 Yadav N, Khatak S, Sara US (2013) Solid lipid nanoparticles-a review. Int J Appl Pharm 5(2):8–18
58.
go back to reference Shah R, Eldridge D, Palombo E, Harding I (2015) Lipid nanoparticles: production, characterization and stability. Springer Shah R, Eldridge D, Palombo E, Harding I (2015) Lipid nanoparticles: production, characterization and stability. Springer
59.
go back to reference Weber S, Zimmer A, Pardeike J (2014) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 86(1):7–22PubMedCrossRef Weber S, Zimmer A, Pardeike J (2014) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 86(1):7–22PubMedCrossRef
60.
go back to reference Naja G, Bouvrette P, Hrapovic S, Luong JH (2007) Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst. 132(7):679–686PubMedCrossRef Naja G, Bouvrette P, Hrapovic S, Luong JH (2007) Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst. 132(7):679–686PubMedCrossRef
61.
go back to reference Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B (2016) Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Bio-sens Res 9:17–22CrossRef Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B (2016) Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Bio-sens Res 9:17–22CrossRef
63.
go back to reference Sarkar A, Fatima I, Mohammad Sajid Jamal Q, Sayeed U, Khan KA, Akhtar S et al (2017) Nanoparticles as a carrier system for drug delivery across blood brain barrier. Curr Drug Metab 18(2):129–137PubMedCrossRef Sarkar A, Fatima I, Mohammad Sajid Jamal Q, Sayeed U, Khan KA, Akhtar S et al (2017) Nanoparticles as a carrier system for drug delivery across blood brain barrier. Curr Drug Metab 18(2):129–137PubMedCrossRef
64.
go back to reference Malhotra M, Prakash S (2011) Targeted drug delivery across blood-brain-barrier using cell penetrating peptides tagged nanoparticles. Curr Nanosci 7(1):81–93CrossRef Malhotra M, Prakash S (2011) Targeted drug delivery across blood-brain-barrier using cell penetrating peptides tagged nanoparticles. Curr Nanosci 7(1):81–93CrossRef
65.
go back to reference Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazú V, Borm P, Estrada G, Ntziachristos V, Razansky D (2010) Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibr Toxicol 7(1):3CrossRef Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazú V, Borm P, Estrada G, Ntziachristos V, Razansky D (2010) Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibr Toxicol 7(1):3CrossRef
66.
go back to reference Fan Y, Chen M, Zhang J, Maincent P, Xia X, Wu W (2018) Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit Rev Ther Drug Carrier Syst 35(5) Fan Y, Chen M, Zhang J, Maincent P, Xia X, Wu W (2018) Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit Rev Ther Drug Carrier Syst 35(5)
67.
go back to reference Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V et al (2016) Evolving drug delivery strategies to overcome the blood brain barrier. Curr Pharm Des 22(9):1177–1193PubMedPubMedCentralCrossRef Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V et al (2016) Evolving drug delivery strategies to overcome the blood brain barrier. Curr Pharm Des 22(9):1177–1193PubMedPubMedCentralCrossRef
68.
69.
go back to reference Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F et al (2017) Toxicology of silica nanoparticles: an update. Arch Toxicol 91(9):2967–3010PubMedPubMedCentralCrossRef Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F et al (2017) Toxicology of silica nanoparticles: an update. Arch Toxicol 91(9):2967–3010PubMedPubMedCentralCrossRef
70.
go back to reference Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ et al (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 32(36):9810–9817PubMedCrossRef Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ et al (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 32(36):9810–9817PubMedCrossRef
71.
go back to reference Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627PubMedCrossRef Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627PubMedCrossRef
72.
go back to reference Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, Hasanzadeh M (2018) The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother 103:1018–1027PubMedCrossRef Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, Hasanzadeh M (2018) The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother 103:1018–1027PubMedCrossRef
Metadata
Title
Nanoparticles approaches in neurodegenerative diseases diagnosis and treatment
Authors
Zahra Asefy
Sirus Hoseinnejhad
Zaker Ceferov
Publication date
01-07-2021
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 7/2021
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-021-05234-x

Other articles of this Issue 7/2021

Neurological Sciences 7/2021 Go to the issue