Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes

Authors: Hsi-Lung Hsieh, Chih-Chung Lin, Ruey-Horng Shih, Li-Der Hsiao, Chuen-Mao Yang

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Lipoteichoic acid (LTA) is a component of gram-positive bacterial cell walls and may be elevated in the cerebrospinal fluid of patients suffering from meningitis. Among matrix metalloproteinases (MMPs), MMP-9 has been observed in patients with brain inflammatory diseases and may contribute to the pathology of brain diseases. Moreover, several studies have suggested that increased oxidative stress is implicated in the pathogenesis of brain inflammation and injury. However, the molecular mechanisms underlying LTA-induced redox signal and MMP-9 expression in brain astrocytes remain unclear.

Objective

Herein we explored whether LTA-induced MMP-9 expression was mediated through redox signals in rat brain astrocytes (RBA-1 cells).

Methods

Upregulation of MMP-9 by LTA was evaluated by zymographic and RT-PCR analyses. Next, the MMP-9 regulatory pathways were investigated by pretreatment with pharmacological inhibitors or transfection with small interfering RNAs (siRNAs), Western blotting, and chromatin immunoprecipitation (ChIP)-PCR and promoter activity reporter assays. Moreover, we determined the cell functional changes by migration assay.

Results

These results showed that LTA induced MMP-9 expression via a PKC(α)-dependent pathway. We further demonstrated that PKCα stimulated p47phox/NADPH oxidase 2 (Nox2)-dependent reactive oxygen species (ROS) generation and then activated the ATF2/AP-1 signals. The activated-ATF2 bound to the AP-1-binding site of MMP-9 promoter, and thereby turned on MMP-9 gene transcription. Additionally, the co-activator p300 also contributed to these responses. Functionally, LTA-induced MMP-9 expression enhanced astrocytic migration.

Conclusion

These results demonstrated that in RBA-1 cells, activation of ATF2/AP-1 by the PKC(α)-mediated Nox(2)/ROS signals is essential for upregulation of MMP-9 and cell migration enhanced by LTA.
Literature
1.
go back to reference Aoki T, Sumii T, Mori T, Wang X, Lo EH: Blood–brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke 2002, 33:2711–2717.CrossRefPubMed Aoki T, Sumii T, Mori T, Wang X, Lo EH: Blood–brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke 2002, 33:2711–2717.CrossRefPubMed
2.
go back to reference Harris JE, Nuttall RK, Elkington PT, Green JA, Horncastle DE, Graeber MB, Edwards DR, Friedland JS: Monocyte-astrocyte networks regulate matrix metalloproteinase gene expression and secretion in central nervous system tuberculosis in vitro and in vivo. J Immunol 2007, 178:1199–1207.CrossRefPubMed Harris JE, Nuttall RK, Elkington PT, Green JA, Horncastle DE, Graeber MB, Edwards DR, Friedland JS: Monocyte-astrocyte networks regulate matrix metalloproteinase gene expression and secretion in central nervous system tuberculosis in vitro and in vivo. J Immunol 2007, 178:1199–1207.CrossRefPubMed
4.
go back to reference Wu CY, Hsieh HL, Jou MJ, Yang CM: Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-κB in interleukin-1β-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem 2004, 90:1477–1488.CrossRefPubMed Wu CY, Hsieh HL, Jou MJ, Yang CM: Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-κB in interleukin-1β-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem 2004, 90:1477–1488.CrossRefPubMed
5.
go back to reference Woo CH, Lim JH, Kim JH: Lipopolysaccharide induces matrix metalloproteinase-9 expression via a mitochondrial reactive oxygen species-p38 kinase-activator protein-1 pathway in Raw 264.7 cells. J Immunol 2004, 173:6973–6980.CrossRefPubMed Woo CH, Lim JH, Kim JH: Lipopolysaccharide induces matrix metalloproteinase-9 expression via a mitochondrial reactive oxygen species-p38 kinase-activator protein-1 pathway in Raw 264.7 cells. J Immunol 2004, 173:6973–6980.CrossRefPubMed
6.
go back to reference Hsieh HL, Wang HH, Wu WB, Chu PJ, Yang CM: Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-κB pathways. J Neuroinflammation 2010, 7:88.CrossRefPubMedPubMedCentral Hsieh HL, Wang HH, Wu WB, Chu PJ, Yang CM: Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-κB pathways. J Neuroinflammation 2010, 7:88.CrossRefPubMedPubMedCentral
7.
go back to reference Lee SJ, Lee S: Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy 2002, 1:181–191.CrossRefPubMed Lee SJ, Lee S: Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy 2002, 1:181–191.CrossRefPubMed
9.
go back to reference Kinsner A, Pilotto V, Deininger S, Brown GC, Coecke S, Hartung T, Bal-Price A: Inflammatory neurodegeneration induced by lipoteichoic acid from Staphylococcus aureus is mediated by glia activation, nitrosative and oxidative stress, and caspase activation. J Neurochem 2005, 95:1132–1143.CrossRefPubMed Kinsner A, Pilotto V, Deininger S, Brown GC, Coecke S, Hartung T, Bal-Price A: Inflammatory neurodegeneration induced by lipoteichoic acid from Staphylococcus aureus is mediated by glia activation, nitrosative and oxidative stress, and caspase activation. J Neurochem 2005, 95:1132–1143.CrossRefPubMed
10.
go back to reference Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, Nitsch R, Weber JR, Golenbock DT, Vartanian T: A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol 2006, 177:583–592.CrossRefPubMed Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, Nitsch R, Weber JR, Golenbock DT, Vartanian T: A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol 2006, 177:583–592.CrossRefPubMed
11.
go back to reference Neher JJ, Brown GC: Neurodegeneration in models of Gram-positive bacterial infections of the central nervous system. Biochem Soc Trans 2007, 35:1166–1167.CrossRefPubMed Neher JJ, Brown GC: Neurodegeneration in models of Gram-positive bacterial infections of the central nervous system. Biochem Soc Trans 2007, 35:1166–1167.CrossRefPubMed
12.
go back to reference Carpentier PA, Duncan DS, Miller SD: Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav Immun 2008, 22:140–147.CrossRefPubMed Carpentier PA, Duncan DS, Miller SD: Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav Immun 2008, 22:140–147.CrossRefPubMed
13.
go back to reference Bowman CC, Rasley A, Tranguch SL, Marriott I: Cultured astrocytes express toll-like receptors for bacterial products. Glia 2003, 43:281–291.CrossRefPubMed Bowman CC, Rasley A, Tranguch SL, Marriott I: Cultured astrocytes express toll-like receptors for bacterial products. Glia 2003, 43:281–291.CrossRefPubMed
14.
go back to reference Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP: TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 2005, 175:4320–4330.CrossRefPubMed Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP: TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 2005, 175:4320–4330.CrossRefPubMed
15.
go back to reference De Keyser J, Mostert JP, Koch MW: Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 2008, 267:3–16.CrossRefPubMed De Keyser J, Mostert JP, Koch MW: Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 2008, 267:3–16.CrossRefPubMed
16.
go back to reference Mullaly SC, Kubes P: The role of TLR2 in vivo following challenge with Staphylococcus aureus and prototypic ligands. J Immunol 2006, 177:8154–8163.CrossRefPubMed Mullaly SC, Kubes P: The role of TLR2 in vivo following challenge with Staphylococcus aureus and prototypic ligands. J Immunol 2006, 177:8154–8163.CrossRefPubMed
17.
go back to reference Hsieh HL, Wu CY, Yang CM: Bradykinin induces matrix metalloproteinase-9 expression and cell migration through a PKC-δ-dependent ERK/Elk-1 pathway in astrocytes. Glia 2008, 56:619–632.CrossRefPubMed Hsieh HL, Wu CY, Yang CM: Bradykinin induces matrix metalloproteinase-9 expression and cell migration through a PKC-δ-dependent ERK/Elk-1 pathway in astrocytes. Glia 2008, 56:619–632.CrossRefPubMed
18.
go back to reference Wang HH, Hsieh HL, Wu CY, Sun CC, Yang CM: Oxidized low-density lipoprotein induces matrix metalloproteinase-9 expression via a p42/p44 and JNK-dependent AP-1 pathway in brain astrocytes. Glia 2009, 57:24–38.CrossRefPubMed Wang HH, Hsieh HL, Wu CY, Sun CC, Yang CM: Oxidized low-density lipoprotein induces matrix metalloproteinase-9 expression via a p42/p44 and JNK-dependent AP-1 pathway in brain astrocytes. Glia 2009, 57:24–38.CrossRefPubMed
19.
go back to reference O’Neill LA: Primer: Toll-like receptor signaling pathways–what do rheumatologists need to know? Nat Clin Pract Rheumatol 2008, 4:319–327.CrossRefPubMed O’Neill LA: Primer: Toll-like receptor signaling pathways–what do rheumatologists need to know? Nat Clin Pract Rheumatol 2008, 4:319–327.CrossRefPubMed
20.
go back to reference Souza LF, Jardim FR, Sauter IP, Souza MM, Barreto F, Margis R, Bernard EA: Lipoteichoic acid from Staphylococcus aureus increases matrix metalloproteinase 9 expression in RAW 264.7 macrophages: modulation by A2A and A2B adenosine receptors. Mol Immunol 2009, 46:937–942.CrossRefPubMed Souza LF, Jardim FR, Sauter IP, Souza MM, Barreto F, Margis R, Bernard EA: Lipoteichoic acid from Staphylococcus aureus increases matrix metalloproteinase 9 expression in RAW 264.7 macrophages: modulation by A2A and A2B adenosine receptors. Mol Immunol 2009, 46:937–942.CrossRefPubMed
22.
go back to reference Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007, 39:44–84.CrossRefPubMed Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007, 39:44–84.CrossRefPubMed
23.
go back to reference Demchenko IT, Oury TD, Crapo JD, Piantadosi CA: Regulation of the brain’s vascular responses to oxygen. Circ Res 2002, 91:1031–1037.CrossRefPubMed Demchenko IT, Oury TD, Crapo JD, Piantadosi CA: Regulation of the brain’s vascular responses to oxygen. Circ Res 2002, 91:1031–1037.CrossRefPubMed
24.
go back to reference Halliwell B: Oxidative stress and neurodegeneration: where are we now? J Neurochem 2006, 97:1634–1658.CrossRefPubMed Halliwell B: Oxidative stress and neurodegeneration: where are we now? J Neurochem 2006, 97:1634–1658.CrossRefPubMed
25.
26.
go back to reference Lee IT, Wang SW, Lee CW, Chang CC, Lin CC, Luo SF, Yang CM: Lipoteichoic acid induces HO-1 expression via the TLR2/MyD88/c-Src/NADPH oxidase pathway and Nrf2 in human tracheal smooth muscle cells. J Immunol 2008, 181:5098–5110.CrossRefPubMed Lee IT, Wang SW, Lee CW, Chang CC, Lin CC, Luo SF, Yang CM: Lipoteichoic acid induces HO-1 expression via the TLR2/MyD88/c-Src/NADPH oxidase pathway and Nrf2 in human tracheal smooth muscle cells. J Immunol 2008, 181:5098–5110.CrossRefPubMed
27.
go back to reference Chatterjee PK, Zacharowski K, Cuzzocrea S, Brown PA, Stewart KN, Mota-Filipe H, Thiemermann C: Lipoteichoic acid from Staphylococcus aureus reduces renal ischemia/reperfusion injury. Kidney Int 2002, 62:1249–1263.CrossRefPubMed Chatterjee PK, Zacharowski K, Cuzzocrea S, Brown PA, Stewart KN, Mota-Filipe H, Thiemermann C: Lipoteichoic acid from Staphylococcus aureus reduces renal ischemia/reperfusion injury. Kidney Int 2002, 62:1249–1263.CrossRefPubMed
28.
go back to reference Jou TC, Jou MJ, Chen JY, Lee SY: Properties of rat brain astrocytes in long-term culture. J Formos Med Assoc 1985, 84:865–881. Jou TC, Jou MJ, Chen JY, Lee SY: Properties of rat brain astrocytes in long-term culture. J Formos Med Assoc 1985, 84:865–881.
29.
go back to reference Hsieh HL, Yen MH, Jou MJ, Yang CM: Intracellular signalings underlying bradykinin-induced matrix metalloproteinase-9 expression in rat brain astrocyte-1. Cell Signal 2004, 16:1163–1176.CrossRefPubMed Hsieh HL, Yen MH, Jou MJ, Yang CM: Intracellular signalings underlying bradykinin-induced matrix metalloproteinase-9 expression in rat brain astrocyte-1. Cell Signal 2004, 16:1163–1176.CrossRefPubMed
30.
go back to reference Reinehr R, Görg B, Becker S, Qvartskhava N, Bidmon HJ, Selbach O, Haas HL, Schliess F, Häussinger D: Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 2007, 55:758–771.CrossRefPubMed Reinehr R, Görg B, Becker S, Qvartskhava N, Bidmon HJ, Selbach O, Haas HL, Schliess F, Häussinger D: Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 2007, 55:758–771.CrossRefPubMed
31.
go back to reference LeBel CP, Ischiropoulos H, Bondy SC: Evaluation of the probe 2′,7′-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 1992, 5:227–231.CrossRefPubMed LeBel CP, Ischiropoulos H, Bondy SC: Evaluation of the probe 2′,7′-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 1992, 5:227–231.CrossRefPubMed
32.
go back to reference Parinandi NL, Kleinberg MA, Usatyuk PV, Cummings RJ, Pennathur A, Cardounel AJ, Zweier JL, Garcia JG, Natarajan V: Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells. Am J Physiol Lung Cell Mol Physiol 2003, 284:L26-L38.CrossRefPubMed Parinandi NL, Kleinberg MA, Usatyuk PV, Cummings RJ, Pennathur A, Cardounel AJ, Zweier JL, Garcia JG, Natarajan V: Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells. Am J Physiol Lung Cell Mol Physiol 2003, 284:L26-L38.CrossRefPubMed
33.
go back to reference Nelson KK, Melendez JA: Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 2004, 37:768–784.CrossRefPubMed Nelson KK, Melendez JA: Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 2004, 37:768–784.CrossRefPubMed
34.
go back to reference Infanger DW, Sharma RV, Davisson RL: NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 2006, 8:1583–1596.CrossRefPubMed Infanger DW, Sharma RV, Davisson RL: NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 2006, 8:1583–1596.CrossRefPubMed
35.
go back to reference Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007, 87:245–313.CrossRefPubMed Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007, 87:245–313.CrossRefPubMed
36.
go back to reference Fontayne A, Dang PM, Gougerot-Pocidalo MA, El-Benna J: Phosphorylation of p47phox sites by PKC α, βII, δ, and ζ: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry 2002, 41:7743–7750.CrossRefPubMed Fontayne A, Dang PM, Gougerot-Pocidalo MA, El-Benna J: Phosphorylation of p47phox sites by PKC α, βII, δ, and ζ: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry 2002, 41:7743–7750.CrossRefPubMed
37.
go back to reference Lin CW, Shen SC, Chien CC, Yang LY, Shia LT, Chen YC: 12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKCα/ERK/NF-κB-dependent MMP-9 expression. J Cell Physiol 2010, 225:472–481.CrossRefPubMed Lin CW, Shen SC, Chien CC, Yang LY, Shia LT, Chen YC: 12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKCα/ERK/NF-κB-dependent MMP-9 expression. J Cell Physiol 2010, 225:472–481.CrossRefPubMed
38.
go back to reference Hsieh HL, Wang HH, Wu CY, Yang CM: Reactive Oxygen Species-Dependent c-Fos/Activator Protein 1 Induction Upregulates Heme Oxygenase-1 Expression by Bradykinin in Brain Astrocytes. Antioxid Redox Signal 2010, 13:1829–1844.CrossRefPubMed Hsieh HL, Wang HH, Wu CY, Yang CM: Reactive Oxygen Species-Dependent c-Fos/Activator Protein 1 Induction Upregulates Heme Oxygenase-1 Expression by Bradykinin in Brain Astrocytes. Antioxid Redox Signal 2010, 13:1829–1844.CrossRefPubMed
39.
go back to reference Chan HM, La Thangue NB: p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 2001, 114:2363–2373.PubMed Chan HM, La Thangue NB: p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 2001, 114:2363–2373.PubMed
40.
go back to reference Svedin P, Hagberg H, Savman K, Zhu C, Mallard C: Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neurosci 2007, 27:1511–1518.CrossRefPubMed Svedin P, Hagberg H, Savman K, Zhu C, Mallard C: Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neurosci 2007, 27:1511–1518.CrossRefPubMed
41.
go back to reference McColl BW, Rothwell NJ, Allan SM: Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 2008, 28:9451–9462.CrossRefPubMed McColl BW, Rothwell NJ, Allan SM: Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 2008, 28:9451–9462.CrossRefPubMed
42.
43.
go back to reference Floyd RA: Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med 1999, 26:1346–1355.CrossRefPubMed Floyd RA: Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med 1999, 26:1346–1355.CrossRefPubMed
44.
go back to reference Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS: NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 2004, 279:1415–1421.CrossRefPubMed Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS: NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 2004, 279:1415–1421.CrossRefPubMed
45.
go back to reference Abramov AY, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen MR: Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci 2005, 25:9176–9184.CrossRefPubMed Abramov AY, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen MR: Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci 2005, 25:9176–9184.CrossRefPubMed
46.
go back to reference Liu Q, Kang JH, Zheng RL: NADPH oxidase produces reactive oxygen species and maintains survival of rat astrocytes. Cell Biochem Funct 2005, 23:93–100.CrossRefPubMed Liu Q, Kang JH, Zheng RL: NADPH oxidase produces reactive oxygen species and maintains survival of rat astrocytes. Cell Biochem Funct 2005, 23:93–100.CrossRefPubMed
47.
go back to reference Kim SY, Lee JG, Cho WS, Cho KH, Sakong J, Kim JR, Chin BR, Baek SH: Role of NADPH oxidase-2 in lipopolysaccharide-induced matrix metalloproteinase expression and cell migration. Immunol Cell Biol 2010, 88:197–204.CrossRefPubMed Kim SY, Lee JG, Cho WS, Cho KH, Sakong J, Kim JR, Chin BR, Baek SH: Role of NADPH oxidase-2 in lipopolysaccharide-induced matrix metalloproteinase expression and cell migration. Immunol Cell Biol 2010, 88:197–204.CrossRefPubMed
48.
go back to reference Sen CK, Packer L: Antioxidant and redox regulation of gene transcription. FASEB J 1996, 10:709–720.PubMed Sen CK, Packer L: Antioxidant and redox regulation of gene transcription. FASEB J 1996, 10:709–720.PubMed
49.
go back to reference van Dam H, Castellazzi M: Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene 2001, 20:2453–2464.CrossRefPubMed van Dam H, Castellazzi M: Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene 2001, 20:2453–2464.CrossRefPubMed
50.
go back to reference Kim ES, Sohn YW, Moon A: TGF-β-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett 2007, 252:147–156.CrossRefPubMed Kim ES, Sohn YW, Moon A: TGF-β-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett 2007, 252:147–156.CrossRefPubMed
51.
go back to reference Aggeli IK, Gaitanaki C, Beis I: Involvement of JNKs and p38-MAPK/MSK1 pathways in H2O2-induced upregulation of heme oxygenase-1 mRNA in H9c2 cells. Cell Signal 2006, 18:1801–1812.CrossRefPubMed Aggeli IK, Gaitanaki C, Beis I: Involvement of JNKs and p38-MAPK/MSK1 pathways in H2O2-induced upregulation of heme oxygenase-1 mRNA in H9c2 cells. Cell Signal 2006, 18:1801–1812.CrossRefPubMed
52.
go back to reference Wu CY, Hsieh HL, Sun CC, Tseng CP, Yang CM: IL-1β induces proMMP-9 expression via c-Src-dependent PDGFR/PI3K/Akt/p300 cascade in rat brain astrocytes. J Neurochem 2008, 105:1499–1512.CrossRefPubMed Wu CY, Hsieh HL, Sun CC, Tseng CP, Yang CM: IL-1β induces proMMP-9 expression via c-Src-dependent PDGFR/PI3K/Akt/p300 cascade in rat brain astrocytes. J Neurochem 2008, 105:1499–1512.CrossRefPubMed
53.
go back to reference Cheng SE, Lin CC, Lee IT, Hsu CK, Kou YR, Yang CM: Cigarette smoke extract regulates cytosolic phospholipase A2 expression via NADPH oxidase/MAPKs/AP-1 and p300 in human tracheal smooth muscle cells. J Cell Biochem 2011, 112:589–599.CrossRefPubMed Cheng SE, Lin CC, Lee IT, Hsu CK, Kou YR, Yang CM: Cigarette smoke extract regulates cytosolic phospholipase A2 expression via NADPH oxidase/MAPKs/AP-1 and p300 in human tracheal smooth muscle cells. J Cell Biochem 2011, 112:589–599.CrossRefPubMed
54.
go back to reference Lauffenburger DA, Horwitz AF: Cell migration: a physically integrated molecular process. Cell 1996, 84:359–369.CrossRefPubMed Lauffenburger DA, Horwitz AF: Cell migration: a physically integrated molecular process. Cell 1996, 84:359–369.CrossRefPubMed
55.
go back to reference Hsieh HL, Wang HH, Wu CY, Tung WH, Yang CM: Lipoteichoic acid induces matrix metalloproteinase-9 expression via transactivation of PDGF receptors and NF-κB activation in rat brain astrocytes. Neurotox Res 2010, 17:344–359.CrossRefPubMed Hsieh HL, Wang HH, Wu CY, Tung WH, Yang CM: Lipoteichoic acid induces matrix metalloproteinase-9 expression via transactivation of PDGF receptors and NF-κB activation in rat brain astrocytes. Neurotox Res 2010, 17:344–359.CrossRefPubMed
56.
go back to reference Wang HH, Hsieh HL, Yang CM: Calmodulin kinase II-dependent transactivation of PDGF receptors mediates astrocytic MMP-9 expression and cell motility induced by lipoteichoic acid. J Neuroinflammation 2010, 7:84.CrossRefPubMedPubMedCentral Wang HH, Hsieh HL, Yang CM: Calmodulin kinase II-dependent transactivation of PDGF receptors mediates astrocytic MMP-9 expression and cell motility induced by lipoteichoic acid. J Neuroinflammation 2010, 7:84.CrossRefPubMedPubMedCentral
Metadata
Title
NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes
Authors
Hsi-Lung Hsieh
Chih-Chung Lin
Ruey-Horng Shih
Li-Der Hsiao
Chuen-Mao Yang
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-110

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue