Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2016

Open Access 01-12-2016 | Research

N-Docosahexaenoylethanolamine ameliorates LPS-induced neuroinflammation via cAMP/PKA-dependent signaling

Authors: Taeyeop Park, Huazhen Chen, Karl Kevala, Ji-Won Lee, Hee-Yong Kim

Published in: Journal of Neuroinflammation | Issue 1/2016

Login to get access

Abstract

Background

Brain inflammation has been implicated as a critical mechanism responsible for the progression of neurodegeneration and characterized by glial cell activation accompanied by production of inflammation-related cytokines and chemokines. Growing evidence also suggests that metabolites derived from docosahexaenoic acid (DHA) have anti-inflammatory and pro-resolving effects; however, the possible role of N-docosahexaenoylethanolamine (synaptamide), an endogenous neurogenic and synaptogenic metabolite of DHA, in inflammation, is largely unknown. (The term “synaptamide” instead of “DHEA” was used for N-docosahexaenoylethanolamine since DHEA is a widely used and accepted term for the steroid, dehydroepiandrosterone.) In the present study, we tested this possibility using a lipopolysaccharide (LPS)-induced neuroinflammation model both in vitro and in vivo.

Methods

For in vitro studies, we used P3 primary rat microglia and immortalized murine microglia cells (BV2) to assess synaptamide effects on LPS-induced cytokine/chemokine/iNOS (inducible nitric oxide synthase) expression by quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). To evaluate in vivo effects, mice were intraperitoneally (i.p.) injected with LPS followed by synaptamide, and expression of proinflammatory mediators was measured by qPCR and western blot analysis. Activation of microglia and astrocyte in the brain was examined by Iba-1 and GFAP immunostaining.

Results

Synaptamide significantly reduced LPS-induced production of TNF-α and NO in cultured microglia cells. Synaptamide increased intracellular cAMP levels, phosphorylation of PKA, and phosphorylation of CREB but suppressed LPS-induced nuclear translocation of NF-κB p65. Conversely, adenylyl cyclase or PKA inhibitors abolished the synaptamide effect on p65 translocation as well as TNF-α and iNOS expression. Administration of synaptamide following LPS injection (i.p.) significantly reduced neuroinflammatory responses, such as microglia activation and mRNA expression of inflammatory cytokines, chemokine, and iNOS in the brain.

Conclusions

DHA-derived synaptamide is a potent suppressor of neuroinflammation in an LPS-induced model, by enhancing cAMP/PKA signaling and inhibiting NF-κB activation. The anti-inflammatory capability of synaptamide may provide a new therapeutic avenue to ameliorate the inflammation-associated neurodegenerative conditions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rocha NP, de Miranda AS, Teixeira AL. Insights into neuroinflammation in Parkinson’s disease: from biomarkers to anti-inflammatory based therapies. Biomed Res Int. 2015;2015:628192.PubMedPubMedCentral Rocha NP, de Miranda AS, Teixeira AL. Insights into neuroinflammation in Parkinson’s disease: from biomarkers to anti-inflammatory based therapies. Biomed Res Int. 2015;2015:628192.PubMedPubMedCentral
2.
go back to reference Latta CH, Brothers HM, Wilcock DM. Neuroinflammation in Alzheimer’s disease; a source of heterogeneity and target for personalized therapy. Neuroscience. 2015;302:103–11.CrossRefPubMed Latta CH, Brothers HM, Wilcock DM. Neuroinflammation in Alzheimer’s disease; a source of heterogeneity and target for personalized therapy. Neuroscience. 2015;302:103–11.CrossRefPubMed
3.
go back to reference Bergold PJ. Treatment of traumatic brain injury with anti-inflammatory drugs. Exp Neurol. 2016;275(Pt 3):367–80.CrossRefPubMed Bergold PJ. Treatment of traumatic brain injury with anti-inflammatory drugs. Exp Neurol. 2016;275(Pt 3):367–80.CrossRefPubMed
4.
go back to reference Grigoriadis N, van Pesch V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol. 2015;22 Suppl 2:3–13.CrossRefPubMed Grigoriadis N, van Pesch V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol. 2015;22 Suppl 2:3–13.CrossRefPubMed
5.
go back to reference Masocha W. Systemic lipopolysaccharide (LPS)-induced microglial activation results in different temporal reduction of CD200 and CD200 receptor gene expression in the brain. J Neuroimmunol. 2009;214(1-2):78–82.CrossRefPubMed Masocha W. Systemic lipopolysaccharide (LPS)-induced microglial activation results in different temporal reduction of CD200 and CD200 receptor gene expression in the brain. J Neuroimmunol. 2009;214(1-2):78–82.CrossRefPubMed
6.
go back to reference Salem Jr N, et al. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 2001;36(9):945–59.CrossRefPubMed Salem Jr N, et al. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 2001;36(9):945–59.CrossRefPubMed
7.
go back to reference Kim HY, Akbar M, Kim YS. Phosphatidylserine-dependent neuroprotective signaling promoted by docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids. 2010;82(4-6):165–72.CrossRefPubMedPubMedCentral Kim HY, Akbar M, Kim YS. Phosphatidylserine-dependent neuroprotective signaling promoted by docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids. 2010;82(4-6):165–72.CrossRefPubMedPubMedCentral
8.
go back to reference Mayurasakorn K, et al. Docosahexaenoic acid: brain accretion and roles in neuroprotection after brain hypoxia and ischemia. Curr Opin Clin Nutr Metab Care. 2011;14(2):158–67.CrossRefPubMedPubMedCentral Mayurasakorn K, et al. Docosahexaenoic acid: brain accretion and roles in neuroprotection after brain hypoxia and ischemia. Curr Opin Clin Nutr Metab Care. 2011;14(2):158–67.CrossRefPubMedPubMedCentral
9.
go back to reference Rey C, et al. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro. Brain Behav Immun. 2015;55:249–59.CrossRefPubMed Rey C, et al. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro. Brain Behav Immun. 2015;55:249–59.CrossRefPubMed
10.
go back to reference Harvey LD, et al. Administration of DHA reduces endoplasmic reticulum stress-associated inflammation and alters microglial or macrophage activation in traumatic brain injury. ASN Neuro. 2015;7(6). doi:10.1177/1759091415618969. Harvey LD, et al. Administration of DHA reduces endoplasmic reticulum stress-associated inflammation and alters microglial or macrophage activation in traumatic brain injury. ASN Neuro. 2015;7(6). doi:10.​1177/​1759091415618969​.
11.
go back to reference Wang L, et al. DHA inhibited AGEs-induced retinal microglia activation via suppression of the PPARgamma/NFkappaB pathway and reduction of signal transducers in the AGEs/RAGE axis recruitment into lipid rafts. Neurochem Res. 2015;40(4):713–22.CrossRefPubMed Wang L, et al. DHA inhibited AGEs-induced retinal microglia activation via suppression of the PPARgamma/NFkappaB pathway and reduction of signal transducers in the AGEs/RAGE axis recruitment into lipid rafts. Neurochem Res. 2015;40(4):713–22.CrossRefPubMed
12.
14.
go back to reference Rashid MA, Kim HY. N-Docosahexaenoylethanolamine ameliorates ethanol-induced impairment of neural stem cell neurogenic differentiation. Neuropharmacology. 2016;102:174–85.CrossRefPubMed Rashid MA, Kim HY. N-Docosahexaenoylethanolamine ameliorates ethanol-induced impairment of neural stem cell neurogenic differentiation. Neuropharmacology. 2016;102:174–85.CrossRefPubMed
15.
16.
go back to reference Balvers MG, et al. Docosahexaenoic acid and eicosapentaenoic acid are converted by 3T3-L1 adipocytes to N-acyl ethanolamines with anti-inflammatory properties. Biochim Biophys Acta. 2010;1801(10):1107–14.CrossRefPubMed Balvers MG, et al. Docosahexaenoic acid and eicosapentaenoic acid are converted by 3T3-L1 adipocytes to N-acyl ethanolamines with anti-inflammatory properties. Biochim Biophys Acta. 2010;1801(10):1107–14.CrossRefPubMed
17.
go back to reference Meijerink J, et al. The ethanolamide metabolite of DHA, docosahexaenoylethanolamine, shows immunomodulating effects in mouse peritoneal and RAW264.7 macrophages: evidence for a new link between fish oil and inflammation. Br J Nutr. 2011;105(12):1798–807.CrossRefPubMed Meijerink J, et al. The ethanolamide metabolite of DHA, docosahexaenoylethanolamine, shows immunomodulating effects in mouse peritoneal and RAW264.7 macrophages: evidence for a new link between fish oil and inflammation. Br J Nutr. 2011;105(12):1798–807.CrossRefPubMed
18.
go back to reference Yang R, et al. Decoding functional metabolomics with docosahexaenoyl ethanolamide (DHEA) identifies novel bioactive signals. J Biol Chem. 2011;286(36):31532–41.CrossRefPubMedPubMedCentral Yang R, et al. Decoding functional metabolomics with docosahexaenoyl ethanolamide (DHEA) identifies novel bioactive signals. J Biol Chem. 2011;286(36):31532–41.CrossRefPubMedPubMedCentral
19.
go back to reference Tamashiro TT, Dalgard CL, Byrnes KR. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue. J Vis Exp. 2012;66, e3814. Tamashiro TT, Dalgard CL, Byrnes KR. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue. J Vis Exp. 2012;66, e3814.
20.
go back to reference Gisch N, et al. Structural reevaluation of Streptococcus pneumoniae lipoteichoic acid and new insights into its immunostimulatory potency. J Biol Chem. 2013;288(22):15654–67.CrossRefPubMedPubMedCentral Gisch N, et al. Structural reevaluation of Streptococcus pneumoniae lipoteichoic acid and new insights into its immunostimulatory potency. J Biol Chem. 2013;288(22):15654–67.CrossRefPubMedPubMedCentral
21.
go back to reference Norris PC, Dennis EA. Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. Proc Natl Acad Sci U S A. 2012;109(22):8517–22.CrossRefPubMedPubMedCentral Norris PC, Dennis EA. Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. Proc Natl Acad Sci U S A. 2012;109(22):8517–22.CrossRefPubMedPubMedCentral
22.
go back to reference Takahashi N, et al. Inhibition of the NF-kappaB transcriptional activity by protein kinase A. Eur J Biochem. 2002;269(18):4559–65.CrossRefPubMed Takahashi N, et al. Inhibition of the NF-kappaB transcriptional activity by protein kinase A. Eur J Biochem. 2002;269(18):4559–65.CrossRefPubMed
23.
go back to reference Milne GR, Palmer TM. Anti-inflammatory and immunosuppressive effects of the A2A adenosine receptor. ScientificWorldJournal. 2011;11:320–39.CrossRefPubMed Milne GR, Palmer TM. Anti-inflammatory and immunosuppressive effects of the A2A adenosine receptor. ScientificWorldJournal. 2011;11:320–39.CrossRefPubMed
24.
go back to reference Kleinert H, et al. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol. 2004;500(1-3):255–66.CrossRefPubMed Kleinert H, et al. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol. 2004;500(1-3):255–66.CrossRefPubMed
25.
go back to reference Shames BD, et al. Suppression of tumor necrosis factor alpha production by cAMP in human monocytes: dissociation with mRNA level and independent of interleukin-10. J Surg Res. 2001;99(2):187–93.CrossRefPubMed Shames BD, et al. Suppression of tumor necrosis factor alpha production by cAMP in human monocytes: dissociation with mRNA level and independent of interleukin-10. J Surg Res. 2001;99(2):187–93.CrossRefPubMed
26.
go back to reference Shi J, et al. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity. J Immunol. 2010;184(12):7207–18.CrossRefPubMedPubMedCentral Shi J, et al. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity. J Immunol. 2010;184(12):7207–18.CrossRefPubMedPubMedCentral
27.
go back to reference Saia RS, et al. Cholecystokinin inhibits inducible nitric oxide synthase expression by lipopolysaccharide-stimulated peritoneal macrophages. Mediators Inflamm. 2014;2014:896029.CrossRefPubMedPubMedCentral Saia RS, et al. Cholecystokinin inhibits inducible nitric oxide synthase expression by lipopolysaccharide-stimulated peritoneal macrophages. Mediators Inflamm. 2014;2014:896029.CrossRefPubMedPubMedCentral
29.
30.
go back to reference Yanguas-Casas N, et al. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation. J Neuroinflammation. 2014;11:50.CrossRefPubMedPubMedCentral Yanguas-Casas N, et al. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation. J Neuroinflammation. 2014;11:50.CrossRefPubMedPubMedCentral
31.
go back to reference Bauer J, Rauschka H, Lassmann H. Inflammation in the nervous system: the human perspective. Glia. 2001;36(2):235–43.CrossRefPubMed Bauer J, Rauschka H, Lassmann H. Inflammation in the nervous system: the human perspective. Glia. 2001;36(2):235–43.CrossRefPubMed
32.
go back to reference Minghetti L, Levi G. Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol. 1998;54(1):99–125.CrossRefPubMed Minghetti L, Levi G. Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol. 1998;54(1):99–125.CrossRefPubMed
33.
go back to reference Kim EJ, et al. Neuroprotective effects of prostaglandin E2 or cAMP against microglial and neuronal free radical mediated toxicity associated with inflammation. J Neurosci Res. 2002;70(1):97–107.CrossRefPubMed Kim EJ, et al. Neuroprotective effects of prostaglandin E2 or cAMP against microglial and neuronal free radical mediated toxicity associated with inflammation. J Neurosci Res. 2002;70(1):97–107.CrossRefPubMed
34.
go back to reference Woo MS, et al. Selective modulation of lipopolysaccharide-stimulated cytokine expression and mitogen-activated protein kinase pathways by dibutyryl-cAMP in BV2 microglial cells. Brain Res Mol Brain Res. 2003;113(1-2):86–96.CrossRefPubMed Woo MS, et al. Selective modulation of lipopolysaccharide-stimulated cytokine expression and mitogen-activated protein kinase pathways by dibutyryl-cAMP in BV2 microglial cells. Brain Res Mol Brain Res. 2003;113(1-2):86–96.CrossRefPubMed
35.
go back to reference Ghosh M, et al. The interplay between cyclic AMP, MAPK, and NF-kappaB pathways in response to proinflammatory signals in microglia. Biomed Res Int. 2015;2015:308461.CrossRefPubMedPubMedCentral Ghosh M, et al. The interplay between cyclic AMP, MAPK, and NF-kappaB pathways in response to proinflammatory signals in microglia. Biomed Res Int. 2015;2015:308461.CrossRefPubMedPubMedCentral
36.
go back to reference Kim YC, et al. Fructose-1,6-bisphosphate attenuates induction of nitric oxide synthase in microglia stimulated with lipopolysaccharide. Life Sci. 2012;90(9-10):365–72.CrossRefPubMed Kim YC, et al. Fructose-1,6-bisphosphate attenuates induction of nitric oxide synthase in microglia stimulated with lipopolysaccharide. Life Sci. 2012;90(9-10):365–72.CrossRefPubMed
40.
go back to reference Moon DO, et al. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol. 2007;7(8):1092–101.CrossRefPubMed Moon DO, et al. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol. 2007;7(8):1092–101.CrossRefPubMed
41.
go back to reference Campo GM, et al. Small hyaluronan oligosaccharides induce inflammation by engaging both toll-like-4 and CD44 receptors in human chondrocytes. Biochem Pharmacol. 2010;80(4):480–90.CrossRefPubMed Campo GM, et al. Small hyaluronan oligosaccharides induce inflammation by engaging both toll-like-4 and CD44 receptors in human chondrocytes. Biochem Pharmacol. 2010;80(4):480–90.CrossRefPubMed
42.
go back to reference Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell. 1998;1(5):661–71.CrossRefPubMed Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell. 1998;1(5):661–71.CrossRefPubMed
43.
go back to reference Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor CREB in immune function. J Immunol. 2010;185(11):6413–9.CrossRefPubMed Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor CREB in immune function. J Immunol. 2010;185(11):6413–9.CrossRefPubMed
44.
go back to reference Singh AK, Jiang Y. How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology. 2004;201(1-3):197–207.CrossRefPubMed Singh AK, Jiang Y. How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology. 2004;201(1-3):197–207.CrossRefPubMed
45.
46.
go back to reference Sugita H, et al. Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance. Am J Physiol Endocrinol Metab. 2002;282(2):E386–94.CrossRefPubMed Sugita H, et al. Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance. Am J Physiol Endocrinol Metab. 2002;282(2):E386–94.CrossRefPubMed
47.
go back to reference Ji KA, et al. Resident microglia die and infiltrated neutrophils and monocytes become major inflammatory cells in lipopolysaccharide-injected brain. Glia. 2007;55(15):1577–88.CrossRefPubMed Ji KA, et al. Resident microglia die and infiltrated neutrophils and monocytes become major inflammatory cells in lipopolysaccharide-injected brain. Glia. 2007;55(15):1577–88.CrossRefPubMed
48.
go back to reference Watkins LR, Maier SF, Goehler LE. Cytokine-to-brain communication: a review & analysis of alternative mechanisms. Life Sci. 1995;57(11):1011–26.CrossRefPubMed Watkins LR, Maier SF, Goehler LE. Cytokine-to-brain communication: a review & analysis of alternative mechanisms. Life Sci. 1995;57(11):1011–26.CrossRefPubMed
49.
go back to reference Banks WA. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des. 2005;11(8):973–84.CrossRefPubMed Banks WA. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des. 2005;11(8):973–84.CrossRefPubMed
50.
go back to reference Patsenker E, et al. Elevated levels of endocannabinoids in chronic hepatitis C may modulate cellular immune response and hepatic stellate cell activation. Int J Mol Sci. 2015;16(4):7057–76.CrossRefPubMedPubMedCentral Patsenker E, et al. Elevated levels of endocannabinoids in chronic hepatitis C may modulate cellular immune response and hepatic stellate cell activation. Int J Mol Sci. 2015;16(4):7057–76.CrossRefPubMedPubMedCentral
52.
go back to reference Li J, et al. Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present. J Neurosci. 2008;28(20):5321–30.CrossRefPubMedPubMedCentral Li J, et al. Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present. J Neurosci. 2008;28(20):5321–30.CrossRefPubMedPubMedCentral
53.
go back to reference Facci L, et al. Toll-like receptors 2, -3 and -4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1beta release. Sci Rep. 2014;4:6824.CrossRefPubMed Facci L, et al. Toll-like receptors 2, -3 and -4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1beta release. Sci Rep. 2014;4:6824.CrossRefPubMed
Metadata
Title
N-Docosahexaenoylethanolamine ameliorates LPS-induced neuroinflammation via cAMP/PKA-dependent signaling
Authors
Taeyeop Park
Huazhen Chen
Karl Kevala
Ji-Won Lee
Hee-Yong Kim
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2016
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-016-0751-z

Other articles of this Issue 1/2016

Journal of Neuroinflammation 1/2016 Go to the issue