Skip to main content
Top
Published in: Lasers in Medical Science 3/2014

01-05-2014 | Original Article

Myocardial necrosis depth prediction during extracellular photosensitization reaction of talaporfin sodium by defined index using fluorescence measurement

Authors: M. Takahashi, A. Ito, T. Kimura, S. Takatsuki, K. Fukuda, T. Arai

Published in: Lasers in Medical Science | Issue 3/2014

Login to get access

Abstract

An application of photodynamic therapy for myocardial ablation, which would induce myocardial electrical conduction block, is proposed. For the proposed application, an extracellular photosensitization reaction (PR) is performed while photosensitizer is distributed in myocardial interstitial space by employing a short drug-light interval. Because the myocardial necrosis depth must be accurately controlled to prevent surrounding tissue injury during the myocardial ablation procedure, the necrosis depth during PR needs to be predicted. The purpose of this study is to investigate the availability of predicting PR-induced myocardial necrosis depth (d nec) using a defined fluorescence-fall amount (FA), which is the calculated result of fluorescence intensity decrease from the start of the PR multiplied by irradiation duration and corresponds to photosensitizer consumption amount under an assumption that the photosensitizer consumption rate is faster than the photosensitizer supply rate. The correlation between FA and d nec was experimentally investigated in vivo using an open-chested canine heart model with 2.5 and 5.0 mg/kg of talaporfin sodium at an irradiance of 5–20 W/cm2 for 5–20 s. The fluorescence measurement was performed at a wavelength of 710 nm during the PR to derive FA. One week after the PR, a uniform necrosis depth was measured histopathologically as d mnec. A logarithmic correlation between d mnec and FA was confirmed with R 2 = 0.69–0.80 and a d mnec range of 0.2–7.1 mm. The defined FA might be useful for predicting d nec for the extracellular PR in myocardium when using talaporfin sodium.
Footnotes
1
Unit of FA should be in seconds, if fluo(t) and Ibs(t d) are the same unit.
 
Literature
1.
go back to reference Huang Z, Xu H, Meyers AD, Musani AI, Wang L, Tagg R, Barqawi AB, Chen YK (2008) Photodynamic therapy for treatment of solid tumors—potential and technical challenges. Technol Cancer Res Treat 7(4):309–320PubMedCentralPubMed Huang Z, Xu H, Meyers AD, Musani AI, Wang L, Tagg R, Barqawi AB, Chen YK (2008) Photodynamic therapy for treatment of solid tumors—potential and technical challenges. Technol Cancer Res Treat 7(4):309–320PubMedCentralPubMed
2.
go back to reference Nava HR, Allamaneni SS, Dougherty TJ, Cooper MT, Tan W, Wilding G, Henderson BW (2011) Photodynamic therapy (PDT) using HPPH for the treatment of precancerous lesions associated with Barrett’s esophagus. Lasers Surg Med 43(7):705–712PubMedCentralPubMed Nava HR, Allamaneni SS, Dougherty TJ, Cooper MT, Tan W, Wilding G, Henderson BW (2011) Photodynamic therapy (PDT) using HPPH for the treatment of precancerous lesions associated with Barrett’s esophagus. Lasers Surg Med 43(7):705–712PubMedCentralPubMed
3.
go back to reference Huang Z, Chen Q, Luck D, Beckers J, Wilson BC, Trncic N, Larue SM, Blanc D, Hetzel FW (2005) Studies of a vascular-acting photosensitizer, Pd-bacteriopheophorbide (Tookad), in normal canine prostate and spontaneous canine prostate cancer. Lasers Surg Med 36(5):390–397PubMedCentralPubMedCrossRef Huang Z, Chen Q, Luck D, Beckers J, Wilson BC, Trncic N, Larue SM, Blanc D, Hetzel FW (2005) Studies of a vascular-acting photosensitizer, Pd-bacteriopheophorbide (Tookad), in normal canine prostate and spontaneous canine prostate cancer. Lasers Surg Med 36(5):390–397PubMedCentralPubMedCrossRef
4.
go back to reference Wachowska M, Muchowicz A, Firczuk M, Gabrysiak M, Winiarska M, Wańczyk M, Bojarczuk K, Golab J (2011) Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules 16(12):4140–4164CrossRef Wachowska M, Muchowicz A, Firczuk M, Gabrysiak M, Winiarska M, Wańczyk M, Bojarczuk K, Golab J (2011) Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules 16(12):4140–4164CrossRef
5.
go back to reference Osterloh J, Vicente MGH (2002) Mechanisms of porphyrinoid localization in tumors. J Porphyrins Phthalocyanines 6(5):305–324CrossRef Osterloh J, Vicente MGH (2002) Mechanisms of porphyrinoid localization in tumors. J Porphyrins Phthalocyanines 6(5):305–324CrossRef
6.
go back to reference Mitra S, Foster TH (2008) In vivo confocal fluorescence imaging of the intratumor distribution of the photosensitizer mono-l-aspartylchlorin-e6. Neoplasia 10(5):429–438PubMedCentralPubMed Mitra S, Foster TH (2008) In vivo confocal fluorescence imaging of the intratumor distribution of the photosensitizer mono-l-aspartylchlorin-e6. Neoplasia 10(5):429–438PubMedCentralPubMed
7.
go back to reference Ito A, Hosokawa S, Miyoshi S, Soejima K, Ogawa S, Arai T (2010) The myocardial electrical blockade induced by photosensitization reaction. IEEE T Biomed Eng 57(2):488–495CrossRef Ito A, Hosokawa S, Miyoshi S, Soejima K, Ogawa S, Arai T (2010) The myocardial electrical blockade induced by photosensitization reaction. IEEE T Biomed Eng 57(2):488–495CrossRef
8.
go back to reference Ito A, Kimura T, Miyoshi S, Ogawa S, Arai T (2011) Photosensitization reaction-induced acute electrophysiological cell response of rat myocardial cells in short loading periods of talaporfin sodium or porfimer sodium. Photochem Photobiol 87(1):199–207PubMedCrossRef Ito A, Kimura T, Miyoshi S, Ogawa S, Arai T (2011) Photosensitization reaction-induced acute electrophysiological cell response of rat myocardial cells in short loading periods of talaporfin sodium or porfimer sodium. Photochem Photobiol 87(1):199–207PubMedCrossRef
9.
go back to reference Kimura T, Takatsuki S, Miyoshi S, Fukumoto K, Takahashi M, Ogawa E, Ito A, Arai T, Ogawa S, Fukuda K (2013) Non-thermal cardiac catheter ablation using photodynamic therapy. Circ Arrhythm Electrophysiol 6(5):1025–1031PubMedCrossRef Kimura T, Takatsuki S, Miyoshi S, Fukumoto K, Takahashi M, Ogawa E, Ito A, Arai T, Ogawa S, Fukuda K (2013) Non-thermal cardiac catheter ablation using photodynamic therapy. Circ Arrhythm Electrophysiol 6(5):1025–1031PubMedCrossRef
10.
go back to reference Terasawa T, Balk EM, Chung M, Garlitski AC, Alsheikh-Ali AA, Lau J, Ip S (2009) Systematic review: comparative effectiveness of radiofrequency catheter ablation for atrial fibrillation. Ann Intern Med 151(3):191–202PubMedCrossRef Terasawa T, Balk EM, Chung M, Garlitski AC, Alsheikh-Ali AA, Lau J, Ip S (2009) Systematic review: comparative effectiveness of radiofrequency catheter ablation for atrial fibrillation. Ann Intern Med 151(3):191–202PubMedCrossRef
11.
go back to reference Dagres N, Hindricks G, Kottkamp H, Sommer P, Gaspar T, Bode K, Arya A, Husser D, Rallidis LS, Kremastinos DT, Piorkowski C (2009) Complications of atrial fibrillation ablation in a high-volume center in 1000 procedures: still cause for concern? J Cardiovasc Electrophysiol 20(9):1014–1019PubMedCrossRef Dagres N, Hindricks G, Kottkamp H, Sommer P, Gaspar T, Bode K, Arya A, Husser D, Rallidis LS, Kremastinos DT, Piorkowski C (2009) Complications of atrial fibrillation ablation in a high-volume center in 1000 procedures: still cause for concern? J Cardiovasc Electrophysiol 20(9):1014–1019PubMedCrossRef
12.
go back to reference Ito A, Matsuo H, Suenari T, Kajihara T, Kimura T, Miyoshi S, Arai T (2010) Non-thermal ablation technology for arrhythmia therapy: acute and chronic electrical conduction block with photosensitization reaction. Proc SPIE 7548:75483B–75483BCrossRef Ito A, Matsuo H, Suenari T, Kajihara T, Kimura T, Miyoshi S, Arai T (2010) Non-thermal ablation technology for arrhythmia therapy: acute and chronic electrical conduction block with photosensitization reaction. Proc SPIE 7548:75483B–75483BCrossRef
13.
go back to reference Takahashi M, Ogawa E, Motohashi S, Nakamura T, Kawakami H, Machida N, Ito A, Kimura T, Takatsuki S, Fukumoto K, Miyoshi S, Fukuda K, Arai T (2013) Electrophysiological and histological effects on canine right atrium by photosensitization reaction under catheterization in vivo. Proc SPIE 8565:85654A–85654ACrossRef Takahashi M, Ogawa E, Motohashi S, Nakamura T, Kawakami H, Machida N, Ito A, Kimura T, Takatsuki S, Fukumoto K, Miyoshi S, Fukuda K, Arai T (2013) Electrophysiological and histological effects on canine right atrium by photosensitization reaction under catheterization in vivo. Proc SPIE 8565:85654A–85654ACrossRef
14.
go back to reference Sanchez-Quintana D, Cabrera JA, Climent V, Farre J, Mendonca MC, Ho SY (2005) Anatomic relations between the esophagus and left atrium and relevance for ablation of atrial fibrillation. Circulation 112(10):1400–1405PubMedCrossRef Sanchez-Quintana D, Cabrera JA, Climent V, Farre J, Mendonca MC, Ho SY (2005) Anatomic relations between the esophagus and left atrium and relevance for ablation of atrial fibrillation. Circulation 112(10):1400–1405PubMedCrossRef
15.
go back to reference Macedo PG, Kapa S, Mears JA, Fratianni A, Asirvatham SJ (2010) Correlative anatomy for the electrophysiologist: ablation for atrial fibrillation. Part II: regional anatomy of the atria and relevance to damage of adjacent structures during AF ablation. J Cardiovasc Electrophysiol 21(7):829–836PubMed Macedo PG, Kapa S, Mears JA, Fratianni A, Asirvatham SJ (2010) Correlative anatomy for the electrophysiologist: ablation for atrial fibrillation. Part II: regional anatomy of the atria and relevance to damage of adjacent structures during AF ablation. J Cardiovasc Electrophysiol 21(7):829–836PubMed
16.
go back to reference Wilson BC, Patterson MS, Lilge L (1997) Implicit and explicit dosimetry in photodynamic therapy: a new paradigm. Lasers Med Sci 12(3):182–199PubMedCrossRef Wilson BC, Patterson MS, Lilge L (1997) Implicit and explicit dosimetry in photodynamic therapy: a new paradigm. Lasers Med Sci 12(3):182–199PubMedCrossRef
17.
go back to reference Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110(5):2795–2838PubMedCentralPubMedCrossRef Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110(5):2795–2838PubMedCentralPubMedCrossRef
18.
go back to reference Robinson DJ, de Bruijn HS, van der Veen N, Stringer MR, Brown SB, Star WM (1998) Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect. Photochem Photobiol 67(1):140–149PubMedCrossRef Robinson DJ, de Bruijn HS, van der Veen N, Stringer MR, Brown SB, Star WM (1998) Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect. Photochem Photobiol 67(1):140–149PubMedCrossRef
19.
go back to reference Ferreira J, Moriyama LT, Kurachi C, Sibata C, Castro e Silva O, Zucoloto S, Bagnato VS (2007) Experimental determination of threshold dose in photodynamic therapy in normal rat liver. Laser Phys Lett 4(6):469–475CrossRef Ferreira J, Moriyama LT, Kurachi C, Sibata C, Castro e Silva O, Zucoloto S, Bagnato VS (2007) Experimental determination of threshold dose in photodynamic therapy in normal rat liver. Laser Phys Lett 4(6):469–475CrossRef
20.
go back to reference Zeng H, Korbelik M, McLean DI, MacAulay C, Lui H (2002) Monitoring photoproduct formation and photobleaching by fluorescence spectroscopy has the potential to improve PDT dosimetry with a verteporfin-like photosensitizer. Photochem Photobiol 75(4):398–405PubMedCrossRef Zeng H, Korbelik M, McLean DI, MacAulay C, Lui H (2002) Monitoring photoproduct formation and photobleaching by fluorescence spectroscopy has the potential to improve PDT dosimetry with a verteporfin-like photosensitizer. Photochem Photobiol 75(4):398–405PubMedCrossRef
21.
go back to reference Sheng C, Jack Hoopes P, Hasan T, Pogue BW (2007) Photobleaching-based dosimetry predicts deposited dose in ALA-PpIX PDT of rodent esophagus. Photochem Photobiol 83(3):738–748PubMedCrossRef Sheng C, Jack Hoopes P, Hasan T, Pogue BW (2007) Photobleaching-based dosimetry predicts deposited dose in ALA-PpIX PDT of rodent esophagus. Photochem Photobiol 83(3):738–748PubMedCrossRef
22.
go back to reference Jacques SL, Joseph R, Gofstein G (1993) How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media. Proc SPIE 1881:168–179CrossRef Jacques SL, Joseph R, Gofstein G (1993) How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media. Proc SPIE 1881:168–179CrossRef
23.
go back to reference Ito A, Miyoshi S, Kimura T, Takatsuki S, Fukumoto K, Fukuda K, Arai T (2011) Myocardial electrical conduction block induced by photosensitization reaction in exposed porcine hearts in vivo. Lasers Surg Med 43(10):984–990PubMedCrossRef Ito A, Miyoshi S, Kimura T, Takatsuki S, Fukumoto K, Fukuda K, Arai T (2011) Myocardial electrical conduction block induced by photosensitization reaction in exposed porcine hearts in vivo. Lasers Surg Med 43(10):984–990PubMedCrossRef
24.
go back to reference Dash RK, Bassingthwaighte JB (2006) Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion. Ann Biomed Eng 34(7):1129–1148PubMedCrossRef Dash RK, Bassingthwaighte JB (2006) Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion. Ann Biomed Eng 34(7):1129–1148PubMedCrossRef
25.
go back to reference Spikes JD, Bommer JC (1993) Photobleaching of mono-l-aspartyl chlorin e6 (NPe6): a candidate sensitizer for the photodynamic therapy of tumors. Photochem Photobiol 58(3):346–350PubMedCrossRef Spikes JD, Bommer JC (1993) Photobleaching of mono-l-aspartyl chlorin e6 (NPe6): a candidate sensitizer for the photodynamic therapy of tumors. Photochem Photobiol 58(3):346–350PubMedCrossRef
26.
go back to reference Mojzisova H, Bonneau S, Vever-Bizet C, Brault D (2007) Cellular uptake and subcellular distribution of chlorin e6 as functions of pH and interactions with membranes and lipoproteins. Biochim Biophys Acta 1768(11):2748–2756PubMedCrossRef Mojzisova H, Bonneau S, Vever-Bizet C, Brault D (2007) Cellular uptake and subcellular distribution of chlorin e6 as functions of pH and interactions with membranes and lipoproteins. Biochim Biophys Acta 1768(11):2748–2756PubMedCrossRef
27.
go back to reference Ferrario A, Kessel D, Gomer CJ (1992) Metabolic properties and photosensitizing responsiveness of mono-l-aspartyl chlorin e6 in a mouse tumor model. Cancer Res 52(10):2890–2893PubMed Ferrario A, Kessel D, Gomer CJ (1992) Metabolic properties and photosensitizing responsiveness of mono-l-aspartyl chlorin e6 in a mouse tumor model. Cancer Res 52(10):2890–2893PubMed
28.
go back to reference Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118(20):4731–4739PubMedCrossRef Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118(20):4731–4739PubMedCrossRef
29.
go back to reference Fingar VH, Wieman TJ, Wiehle SA, Cerrito PB (1992) The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion. cancer res 52(18):4914–4921PubMed Fingar VH, Wieman TJ, Wiehle SA, Cerrito PB (1992) The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion. cancer res 52(18):4914–4921PubMed
30.
go back to reference Gomer CJ, Ferrario A (1990) Tissue distribution and photosensitizing properties of mono-l-aspartyl chlorin e6 in a mouse tumor model. Cancer Res 50(13):3985–3990PubMed Gomer CJ, Ferrario A (1990) Tissue distribution and photosensitizing properties of mono-l-aspartyl chlorin e6 in a mouse tumor model. Cancer Res 50(13):3985–3990PubMed
31.
go back to reference Ho SY, Anderson RH, Sánchez-Quintana D (2002) Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc Res 54(2):325–336PubMedCrossRef Ho SY, Anderson RH, Sánchez-Quintana D (2002) Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc Res 54(2):325–336PubMedCrossRef
32.
go back to reference Ho SY, Sanchez-Quintana D, Cabrera JA, Anderson RH (1999) Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol 10(11):1525–1533PubMedCrossRef Ho SY, Sanchez-Quintana D, Cabrera JA, Anderson RH (1999) Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol 10(11):1525–1533PubMedCrossRef
33.
go back to reference Ho SY, Cabrera JA, Tran VH, Farré J, Anderson RH, Sánchez-Quintana D (2001) Architecture of the pulmonary veins: relevance to radiofrequency ablation. Heart 86(3):265–270PubMedCentralPubMedCrossRef Ho SY, Cabrera JA, Tran VH, Farré J, Anderson RH, Sánchez-Quintana D (2001) Architecture of the pulmonary veins: relevance to radiofrequency ablation. Heart 86(3):265–270PubMedCentralPubMedCrossRef
34.
go back to reference Heidbüchel H, Willems R, van Rensburg H, Adams J, Ector H, Van de Werf F (2000) Right atrial angiographic evaluation of the posterior isthmus: relevance for ablation of typical atrial flutter. Circulation 101(18):2178–2184PubMedCrossRef Heidbüchel H, Willems R, van Rensburg H, Adams J, Ector H, Van de Werf F (2000) Right atrial angiographic evaluation of the posterior isthmus: relevance for ablation of typical atrial flutter. Circulation 101(18):2178–2184PubMedCrossRef
35.
go back to reference Langberg JJ, Gallagher M, Strickberger SA, Amirana O (1993) Temperature-guided radiofrequency catheter ablation with very large distal electrodes. Circulation 88(1):245–249PubMedCrossRef Langberg JJ, Gallagher M, Strickberger SA, Amirana O (1993) Temperature-guided radiofrequency catheter ablation with very large distal electrodes. Circulation 88(1):245–249PubMedCrossRef
36.
go back to reference Reed MWR, Wieman TJ, Doak KW, Pietsch CG, Schuschke DA (1989) The microvascular effects of photodynamic therapy: evidence for a possible role of cyclooxygenase products. Photochem Photobiol 50(3):419–423PubMedCrossRef Reed MWR, Wieman TJ, Doak KW, Pietsch CG, Schuschke DA (1989) The microvascular effects of photodynamic therapy: evidence for a possible role of cyclooxygenase products. Photochem Photobiol 50(3):419–423PubMedCrossRef
37.
go back to reference Roberts WG, Hasan T (1992) Role of neovasculature and vascular permeability on the tumor retention of photodynamic agents. Cancer Res 52(4):924–930PubMed Roberts WG, Hasan T (1992) Role of neovasculature and vascular permeability on the tumor retention of photodynamic agents. Cancer Res 52(4):924–930PubMed
38.
go back to reference Whittaker P, Kloner RA, Boughner DR, Pickering JG (1994) Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res Cardiol 89(5):397–410PubMedCrossRef Whittaker P, Kloner RA, Boughner DR, Pickering JG (1994) Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res Cardiol 89(5):397–410PubMedCrossRef
39.
go back to reference Chimenti C, Russo MA, Carpi A, Frustaci A (2010) Histological substrate of human atrial fibrillation. Biomed Pharmacother 64(3):177–183PubMedCrossRef Chimenti C, Russo MA, Carpi A, Frustaci A (2010) Histological substrate of human atrial fibrillation. Biomed Pharmacother 64(3):177–183PubMedCrossRef
Metadata
Title
Myocardial necrosis depth prediction during extracellular photosensitization reaction of talaporfin sodium by defined index using fluorescence measurement
Authors
M. Takahashi
A. Ito
T. Kimura
S. Takatsuki
K. Fukuda
T. Arai
Publication date
01-05-2014
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 3/2014
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-013-1504-1

Other articles of this Issue 3/2014

Lasers in Medical Science 3/2014 Go to the issue