Skip to main content
Top
Published in: Cardiovascular Toxicology 11-12/2023

22-09-2023 | Myocardial Infarction

Salidroside Ameliorates Ischemia/Reperfusion-Induced Human Cardiomyocyte Injury by Inhibiting the Circ_0097682/miR-671-5p/USP46 Pathway

Authors: Yuyang Yang, Fangqian Liang, Jingyuan Gao, Jian Li, Chunhua Jiang, Wei Xie, Shujuan Wu, Ya Wang, Jing Yi

Published in: Cardiovascular Toxicology | Issue 11-12/2023

Login to get access

Abstract

Salidroside shows an inhibitory effect on myocardial ischemia/reperfusion (I/R) injury; however, the underlying mechanism remains to be explored. The present work analyzes the mechanism that drives salidroside to ameliorate I/R-induced human cardiomyocyte injury. Human cardiomyocytes were subjected to I/R treatment to simulate a myocardial infarction cell model. Cell viability, cell proliferation, and cell apoptosis were analyzed by CCK-8 assay, EdU assay, and flow cytometry analysis, respectively. RNA expression levels of circ_0097682, miR-671-5p, and F-box and ubiquitin-specific peptidase 46 (USP46) were detected by qRT-PCR. Protein expression was measured by Western blotting assay. The levels of IL-6, IL-1β, and TNF-α in cell supernatant were detected by enzyme-linked immunosorbent assays. Salidroside treatment relieved I/R-induced inhibitory effect on AC16 cell proliferation and promoting effects on cell apoptosis, inflammation, and oxidative stress. Salidroside inhibited circ_0097682 expression in I/R-treated AC16 cells. Salidroside-mediated inhibition of I/R-induced cell injury involved the downregulation of circ_0097682 expression. In addition, circ_0097682 bound to miR-671-5p in AC16 cells, and miR-671-5p inhibitors rescued salidroside pretreatment-mediated effects in I/R-treated AC16 cells. Moreover, miR-671-5p targeted USP46 in AC16 cells, and USP46 introduction partially relieved circ_0097682 depletion or salidroside pretreatment-induced effects in I/R-treated AC16 cells. Salidroside ameliorated I/R-induced AC16 cell injury by inhibiting the circ_0097682/miR-671-5p/USP46 pathway.
Appendix
Available only for authorised users
Literature
1.
go back to reference White, H. D., Thygesen, K., Alpert, J. S., & Jaffe, A. S. (2014). Clinical implications of the third universal definition of myocardial infarction. Heart, 100, 424–432.CrossRefPubMed White, H. D., Thygesen, K., Alpert, J. S., & Jaffe, A. S. (2014). Clinical implications of the third universal definition of myocardial infarction. Heart, 100, 424–432.CrossRefPubMed
2.
go back to reference Wang, Z. Y., Liu, X. X., & Deng, Y. F. (2022). Negative feedback of SNRK to circ-SNRK regulates cardiac function post-myocardial infarction. Cell Death and Differentiation, 29, 709–721.CrossRefPubMed Wang, Z. Y., Liu, X. X., & Deng, Y. F. (2022). Negative feedback of SNRK to circ-SNRK regulates cardiac function post-myocardial infarction. Cell Death and Differentiation, 29, 709–721.CrossRefPubMed
3.
go back to reference Yang, H. T., Xiu, W. J., Zheng, Y. Y., Liu, F., Gao, Y., Ma, X., et al. (2019). Invasive reperfusion after 12 hours of the symptom onset remains beneficial in patients with ST-segment elevation myocardial infarction: Evidence from a meta-analysis of published data. Cardiology Journal, 26, 333–342.CrossRefPubMedPubMedCentral Yang, H. T., Xiu, W. J., Zheng, Y. Y., Liu, F., Gao, Y., Ma, X., et al. (2019). Invasive reperfusion after 12 hours of the symptom onset remains beneficial in patients with ST-segment elevation myocardial infarction: Evidence from a meta-analysis of published data. Cardiology Journal, 26, 333–342.CrossRefPubMedPubMedCentral
4.
go back to reference Chen, P., Liu, J., Ruan, H., Zhang, M., Wu, P., Yimei, D., et al. (2019). Protective effects of Salidroside on cardiac function in mice with myocardial infarction. Science and Reports, 9, 18127.CrossRef Chen, P., Liu, J., Ruan, H., Zhang, M., Wu, P., Yimei, D., et al. (2019). Protective effects of Salidroside on cardiac function in mice with myocardial infarction. Science and Reports, 9, 18127.CrossRef
5.
go back to reference Yu, S., Liu, M., Gu, X., & Ding, F. (2008). Neuroprotective effects of salidroside in the PC12 cell model exposed to hypoglycemia and serum limitation. Cellular and Molecular Neurobiology, 28, 1067–1078.CrossRefPubMed Yu, S., Liu, M., Gu, X., & Ding, F. (2008). Neuroprotective effects of salidroside in the PC12 cell model exposed to hypoglycemia and serum limitation. Cellular and Molecular Neurobiology, 28, 1067–1078.CrossRefPubMed
6.
go back to reference Wang, H., Ding, Y., Zhou, J., Sun, X., & Wang, S. (2009). The in vitro and in vivo antiviral effects of salidroside from Rhodiola rosea L. against coxsackievirus B3. Phytomedicine, 16, 146–155.CrossRefPubMed Wang, H., Ding, Y., Zhou, J., Sun, X., & Wang, S. (2009). The in vitro and in vivo antiviral effects of salidroside from Rhodiola rosea L. against coxsackievirus B3. Phytomedicine, 16, 146–155.CrossRefPubMed
7.
go back to reference Wu, Y. L., Piao, D. M., Han, X. H., & Nan, J. X. (2008). Protective effects of salidroside against acetaminophen-induced toxicity in mice. Biological and Pharmaceutical Bulletin, 31, 1523–1529.CrossRefPubMed Wu, Y. L., Piao, D. M., Han, X. H., & Nan, J. X. (2008). Protective effects of salidroside against acetaminophen-induced toxicity in mice. Biological and Pharmaceutical Bulletin, 31, 1523–1529.CrossRefPubMed
8.
go back to reference Guan, S., Feng, H., Song, B., Guo, W., Xiong, Y., Huang, G., et al. (2011). Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia. International Immunopharmacology, 11, 2194–2199.CrossRefPubMed Guan, S., Feng, H., Song, B., Guo, W., Xiong, Y., Huang, G., et al. (2011). Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia. International Immunopharmacology, 11, 2194–2199.CrossRefPubMed
9.
go back to reference Ming, D. S., Hillhouse, B. J., Guns, E. S., Eberding, A., Xie, S., Vimalanathan, S., et al. (2005). Bioactive compounds from Rhodiola rosea (Crassulaceae). Phytotherapy Research, 19, 740–743.CrossRefPubMed Ming, D. S., Hillhouse, B. J., Guns, E. S., Eberding, A., Xie, S., Vimalanathan, S., et al. (2005). Bioactive compounds from Rhodiola rosea (Crassulaceae). Phytotherapy Research, 19, 740–743.CrossRefPubMed
10.
go back to reference Zhong, H., Xin, H., Wu, L. X., & Zhu, Y. Z. (2010). Salidroside attenuates apoptosis in ischemic cardiomyocytes: A mechanism through a mitochondria-dependent pathway. Journal of Pharmacological Sciences, 114, 399–408.CrossRefPubMed Zhong, H., Xin, H., Wu, L. X., & Zhu, Y. Z. (2010). Salidroside attenuates apoptosis in ischemic cardiomyocytes: A mechanism through a mitochondria-dependent pathway. Journal of Pharmacological Sciences, 114, 399–408.CrossRefPubMed
11.
13.
go back to reference Zhang, F., Zhang, R., Zhang, X., Wu, Y., Li, X., Zhang, S., et al. (2018). Comprehensive analysis of circRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of atherosclerosis in rabbits. Aging (Albany NY)., 10, 2266–2283.CrossRefPubMedPubMedCentral Zhang, F., Zhang, R., Zhang, X., Wu, Y., Li, X., Zhang, S., et al. (2018). Comprehensive analysis of circRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of atherosclerosis in rabbits. Aging (Albany NY)., 10, 2266–2283.CrossRefPubMedPubMedCentral
14.
go back to reference Altesha, M. A., Ni, T., Khan, A., Liu, K., & Zheng, X. (2019). Circular RNA in cardiovascular disease. Journal of Cellular Physiology, 234, 5588–5600.CrossRefPubMed Altesha, M. A., Ni, T., Khan, A., Liu, K., & Zheng, X. (2019). Circular RNA in cardiovascular disease. Journal of Cellular Physiology, 234, 5588–5600.CrossRefPubMed
15.
go back to reference Zheng, H., Huang, S., Wei, G., Sun, Y., Li, C., Si, X., et al. (2022). CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Molecular Therapy, 30, 3477–3498.CrossRefPubMed Zheng, H., Huang, S., Wei, G., Sun, Y., Li, C., Si, X., et al. (2022). CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Molecular Therapy, 30, 3477–3498.CrossRefPubMed
16.
go back to reference Liu, X., Wang, M., Li, Q., Liu, W., Song, Q., & Jiang, H. (2022). CircRNA ACAP2 induces myocardial apoptosis after myocardial infarction by sponging miR-29. Minerva Medica, 113, 128–134.CrossRefPubMed Liu, X., Wang, M., Li, Q., Liu, W., Song, Q., & Jiang, H. (2022). CircRNA ACAP2 induces myocardial apoptosis after myocardial infarction by sponging miR-29. Minerva Medica, 113, 128–134.CrossRefPubMed
17.
go back to reference Jin, P., Li, L. H., Shi, Y., & Hu, N. B. (2021). Salidroside inhibits apoptosis and autophagy of cardiomyocyte by regulation of circular RNA hsa_circ_0000064 in cardiac ischemia-reperfusion injury. Gene, 767, 145075.CrossRefPubMed Jin, P., Li, L. H., Shi, Y., & Hu, N. B. (2021). Salidroside inhibits apoptosis and autophagy of cardiomyocyte by regulation of circular RNA hsa_circ_0000064 in cardiac ischemia-reperfusion injury. Gene, 767, 145075.CrossRefPubMed
18.
go back to reference Yin, L., Tang, Y., & Jiang, M. (2021). Research on the circular RNA bioinformatics in patients with acute myocardial infarction. Journal of Clinical Laboratory Analysis, 35, e23621.CrossRefPubMed Yin, L., Tang, Y., & Jiang, M. (2021). Research on the circular RNA bioinformatics in patients with acute myocardial infarction. Journal of Clinical Laboratory Analysis, 35, e23621.CrossRefPubMed
19.
go back to reference Correia, C., Koshkin, A., Carido, M., Espinha, N., Šarić, T., Lima, P. A., et al. (2016). Effective hypothermic storage of human pluripotent stem cell-derived cardiomyocytes compatible with global distribution of cells for clinical applications and toxicology testing. Stem Cells Translational Medicine, 5, 658–669.CrossRefPubMedPubMedCentral Correia, C., Koshkin, A., Carido, M., Espinha, N., Šarić, T., Lima, P. A., et al. (2016). Effective hypothermic storage of human pluripotent stem cell-derived cardiomyocytes compatible with global distribution of cells for clinical applications and toxicology testing. Stem Cells Translational Medicine, 5, 658–669.CrossRefPubMedPubMedCentral
20.
go back to reference Correia, C., Koshkin, A., Duarte, P., Hu, D., Carido, M., Sebastião, M. J., et al. (2018). 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnology and Bioengineering., 115, 630–644.CrossRefPubMed Correia, C., Koshkin, A., Duarte, P., Hu, D., Carido, M., Sebastião, M. J., et al. (2018). 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnology and Bioengineering., 115, 630–644.CrossRefPubMed
21.
go back to reference Wang, X., Ren, L., Chen, S., Tao, Y., Zhao, D., & Wu, C. (2022). Long non-coding RNA MIR4435-2HG/microRNA-125a-5p axis is involved in myocardial ischemic injuries. Bioengineered, 13, 10707–10720.CrossRefPubMedPubMedCentral Wang, X., Ren, L., Chen, S., Tao, Y., Zhao, D., & Wu, C. (2022). Long non-coding RNA MIR4435-2HG/microRNA-125a-5p axis is involved in myocardial ischemic injuries. Bioengineered, 13, 10707–10720.CrossRefPubMedPubMedCentral
22.
go back to reference Sebastião, M. J., Serra, M., Pereira, R., Palacios, I., Gomes-Alves, P., & Alves, P. M. (2019). Human cardiac progenitor cell activation and regeneration mechanisms: Exploring a novel myocardial ischemia/reperfusion in vitro model. Stem Cell Research & Therapy, 10, 77.CrossRef Sebastião, M. J., Serra, M., Pereira, R., Palacios, I., Gomes-Alves, P., & Alves, P. M. (2019). Human cardiac progenitor cell activation and regeneration mechanisms: Exploring a novel myocardial ischemia/reperfusion in vitro model. Stem Cell Research & Therapy, 10, 77.CrossRef
23.
go back to reference Sun, D., Chen, L., Lv, H., Gao, Y., Liu, X., & Zhang, X. (2020). Circ_0058124 Upregulates MAPK1 Expression to Promote Proliferation, Metastasis and Metabolic Abilities in Thyroid Cancer Through Sponging miR-940. Oncotargets and Therapy, 13, 1569–1581.CrossRefPubMedPubMedCentral Sun, D., Chen, L., Lv, H., Gao, Y., Liu, X., & Zhang, X. (2020). Circ_0058124 Upregulates MAPK1 Expression to Promote Proliferation, Metastasis and Metabolic Abilities in Thyroid Cancer Through Sponging miR-940. Oncotargets and Therapy, 13, 1569–1581.CrossRefPubMedPubMedCentral
24.
go back to reference Zhuang, W., Yue, L., Dang, X., Chen, F., Gong, Y., Lin, X., et al. (2019). Rosenroot (Rhodiola): Potential applications in aging-related diseases. Aging & Disease, 10, 134–146.CrossRef Zhuang, W., Yue, L., Dang, X., Chen, F., Gong, Y., Lin, X., et al. (2019). Rosenroot (Rhodiola): Potential applications in aging-related diseases. Aging & Disease, 10, 134–146.CrossRef
25.
go back to reference Kong, Y. H., & Xu, S. P. (2018). Salidroside prevents skin carcinogenesis induced by DMBA/TPA in a mouse model through suppression of inflammation and promotion of apoptosis. Oncology Reports, 39, 2513–2526.PubMedPubMedCentral Kong, Y. H., & Xu, S. P. (2018). Salidroside prevents skin carcinogenesis induced by DMBA/TPA in a mouse model through suppression of inflammation and promotion of apoptosis. Oncology Reports, 39, 2513–2526.PubMedPubMedCentral
26.
go back to reference Xu, N., Huang, F., Jian, C., Qin, L., Lu, F., Wang, Y., et al. (2019). Neuroprotective effect of salidroside against central nervous system inflammation-induced cognitive deficits: A pivotal role of sirtuin 1-dependent Nrf-2/HO-1/NF-κB pathway. Phytotherapy Research, 33, 1438–1447.CrossRefPubMed Xu, N., Huang, F., Jian, C., Qin, L., Lu, F., Wang, Y., et al. (2019). Neuroprotective effect of salidroside against central nervous system inflammation-induced cognitive deficits: A pivotal role of sirtuin 1-dependent Nrf-2/HO-1/NF-κB pathway. Phytotherapy Research, 33, 1438–1447.CrossRefPubMed
27.
go back to reference Qi, Z., Qi, S., Ling, L., Lv, J., & Feng, Z. (2016). Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus. International Immunopharmacology, 35, 265–271.CrossRefPubMed Qi, Z., Qi, S., Ling, L., Lv, J., & Feng, Z. (2016). Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus. International Immunopharmacology, 35, 265–271.CrossRefPubMed
28.
go back to reference Zhao, D., Sun, X., Lv, S., Sun, M., Guo, H., Zhai, Y., et al. (2019). Salidroside attenuates oxidized low-density lipoprotein-induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. International Journal of Molecular Medicine, 43, 2279–2290.PubMedPubMedCentral Zhao, D., Sun, X., Lv, S., Sun, M., Guo, H., Zhai, Y., et al. (2019). Salidroside attenuates oxidized low-density lipoprotein-induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. International Journal of Molecular Medicine, 43, 2279–2290.PubMedPubMedCentral
29.
go back to reference Zhang, L., Zhang, Y., Yu, F., Li, X., Gao, H., & Li, P. (2022). The circRNA-miRNA/RBP regulatory network in myocardial infarction. Frontiers in Pharmacology, 13, 941123.CrossRefPubMedPubMedCentral Zhang, L., Zhang, Y., Yu, F., Li, X., Gao, H., & Li, P. (2022). The circRNA-miRNA/RBP regulatory network in myocardial infarction. Frontiers in Pharmacology, 13, 941123.CrossRefPubMedPubMedCentral
30.
go back to reference Wen, Z. J., Xin, H., Wang, Y. C., Liu, H. W., Gao, Y. Y., & Zhang, Y. F. (2021). Emerging roles of circRNAs in the pathological process of myocardial infarction. Mol Ther Nucleic Acids., 26, 828–848.CrossRefPubMedPubMedCentral Wen, Z. J., Xin, H., Wang, Y. C., Liu, H. W., Gao, Y. Y., & Zhang, Y. F. (2021). Emerging roles of circRNAs in the pathological process of myocardial infarction. Mol Ther Nucleic Acids., 26, 828–848.CrossRefPubMedPubMedCentral
31.
go back to reference Boon, R., & Dimmeler, S. (2015). MicroRNAs in myocardial infarction. Nature reviews Cardiology, 12, 135–142.CrossRefPubMed Boon, R., & Dimmeler, S. (2015). MicroRNAs in myocardial infarction. Nature reviews Cardiology, 12, 135–142.CrossRefPubMed
32.
go back to reference Fiedler, J., & Thum, T. (2013). MicroRNAs in myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology., 33, 201–205.CrossRefPubMed Fiedler, J., & Thum, T. (2013). MicroRNAs in myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology., 33, 201–205.CrossRefPubMed
33.
go back to reference Ghafouri-Fard, S., Askari, A., Hussen, B. M., Rasul, M. F., Hatamian, S., Taheri, M., et al. (2022). A review on the role of miR-671 in human disorders. Frontiers in Molecular Biosciences, 9, 1077968.CrossRefPubMedPubMedCentral Ghafouri-Fard, S., Askari, A., Hussen, B. M., Rasul, M. F., Hatamian, S., Taheri, M., et al. (2022). A review on the role of miR-671 in human disorders. Frontiers in Molecular Biosciences, 9, 1077968.CrossRefPubMedPubMedCentral
34.
go back to reference Wang, X., Zhu, Y., Wu, C., Liu, W., He, Y., & Yang, Q. (2021). Adipose-derived mesenchymal stem cells-derived exosomes carry MicroRNA-671 to alleviate myocardial infarction through inactivating the TGFBR2/Smad2 Axis. Inflammation, 44, 1815–1830.CrossRefPubMed Wang, X., Zhu, Y., Wu, C., Liu, W., He, Y., & Yang, Q. (2021). Adipose-derived mesenchymal stem cells-derived exosomes carry MicroRNA-671 to alleviate myocardial infarction through inactivating the TGFBR2/Smad2 Axis. Inflammation, 44, 1815–1830.CrossRefPubMed
35.
go back to reference Walsh, C. T., Garneau-Tsodikova, S., & Gatto, G. J., Jr. (2005). Protein posttranslational modifications: The chemistry of proteome diversifications. Angewandte Chemie (International ed. in English), 44, 7342–7372.CrossRefPubMed Walsh, C. T., Garneau-Tsodikova, S., & Gatto, G. J., Jr. (2005). Protein posttranslational modifications: The chemistry of proteome diversifications. Angewandte Chemie (International ed. in English), 44, 7342–7372.CrossRefPubMed
36.
go back to reference Imai, S., Kano, M., Nonoyama, K., & Ebihara, S. (2013). Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice. PLoS ONE, 8, e58566.CrossRefPubMedPubMedCentral Imai, S., Kano, M., Nonoyama, K., & Ebihara, S. (2013). Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice. PLoS ONE, 8, e58566.CrossRefPubMedPubMedCentral
37.
go back to reference Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123, 773–786.CrossRefPubMed Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123, 773–786.CrossRefPubMed
38.
go back to reference Ye, X., Hang, Y., Lu, Y., Li, D., Shen, F., Guan, P., et al. (2021). CircRNA circ-NNT mediates myocardial ischemia/reperfusion injury through activating pyroptosis by sponging miR-33a-5p and regulating USP46 expression. Cell Death Discov., 7, 370.CrossRefPubMedPubMedCentral Ye, X., Hang, Y., Lu, Y., Li, D., Shen, F., Guan, P., et al. (2021). CircRNA circ-NNT mediates myocardial ischemia/reperfusion injury through activating pyroptosis by sponging miR-33a-5p and regulating USP46 expression. Cell Death Discov., 7, 370.CrossRefPubMedPubMedCentral
Metadata
Title
Salidroside Ameliorates Ischemia/Reperfusion-Induced Human Cardiomyocyte Injury by Inhibiting the Circ_0097682/miR-671-5p/USP46 Pathway
Authors
Yuyang Yang
Fangqian Liang
Jingyuan Gao
Jian Li
Chunhua Jiang
Wei Xie
Shujuan Wu
Ya Wang
Jing Yi
Publication date
22-09-2023
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 11-12/2023
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-023-09808-3

Other articles of this Issue 11-12/2023

Cardiovascular Toxicology 11-12/2023 Go to the issue