Skip to main content
Top
Published in: Heart Failure Reviews 1/2022

01-01-2022 | Myocardial Infarction

Targeting the forkhead box protein P1 pathway as a novel therapeutic approach for cardiovascular diseases

Authors: Xin-Ming Liu, Sheng-Li Du, Ran Miao, Le-Feng Wang, Jiu-Chang Zhong

Published in: Heart Failure Reviews | Issue 1/2022

Login to get access

Abstract

Cardiovascular disease (CVD) is the leading cause of death worldwide and encompasses diverse diseases of the vasculature, myocardium, cardiac electrical circuit, and cardiac development. Forkhead box protein P1 (Foxp1) is a large multi-domain transcriptional regulator belonging to the Fox family with winged helix DNA-binding protein, which plays critical roles in cardiovascular homeostasis and disorders. The broad distribution of Foxp1 and alternative splicing isoforms implicate its distinct functions in diverse cardiac and vascular cells and tissue types. Foxp1 is essential for diverse biological processes and has been shown to regulate cellular proliferation, apoptosis, oxidative stress, fibrosis, angiogenesis, cardiovascular remodeling, and dysfunction. Notably, both loss-of-function and gain-of-function approaches have defined critical roles of Foxp1 in CVD. Genetic deletion of Foxp1 results in pathological cardiac remodeling, exacerbation of atherosclerotic lesion formation, prolonged occlusive thrombus formation, severe cardiac defects, and embryo death. In contrast, activation of Foxp1 performs a wide range of physiological effects, including cell growth, hypertrophy, differentiation, angiogenesis, and cardiac development. More importantly, Foxp1 exerts anti-inflammatory and anti-atherosclerotic effects in controlling coronary thrombus formation and myocardial infarction (MI). Thus, targeting for Foxp1 signaling has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of CVD, and an increased understanding of cardiovascular actions of the Foxp1 signaling will help to develop effective interventions. In this review, we focus on the diverse actions and underlying mechanisms of Foxp1 highlighting its roles in CVD, including heart failure, MI, atherosclerosis, congenital heart defects, and atrial fibrillation.
Literature
1.
go back to reference Wang J, Wei L, Yang X, Zhong JC (2019) Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. J Am Heart Assoc 8:e012826PubMedPubMedCentral Wang J, Wei L, Yang X, Zhong JC (2019) Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. J Am Heart Assoc 8:e012826PubMedPubMedCentral
2.
go back to reference Patel VB, Zhong JC, Grant MB, Oudit GY (2016) Role of the ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart failure. Circ Res 118(8):1313–1326PubMedPubMedCentral Patel VB, Zhong JC, Grant MB, Oudit GY (2016) Role of the ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart failure. Circ Res 118(8):1313–1326PubMedPubMedCentral
3.
go back to reference Farzadfar F (2019) Cardiovascular disease risk prediction models: challenges and perspectives. Lancet Glob Health 7(10):e1288–e1289PubMed Farzadfar F (2019) Cardiovascular disease risk prediction models: challenges and perspectives. Lancet Glob Health 7(10):e1288–e1289PubMed
4.
go back to reference Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M (2013) Cancer genetics and genomics of human FOX family genes. Cancer Lett 328(2):198–206PubMed Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M (2013) Cancer genetics and genomics of human FOX family genes. Cancer Lett 328(2):198–206PubMed
5.
go back to reference Shu W, Yang H, Zhang L, Lu M, Morrisey E (2001) Characterization of a new subfamily of winged-helix/forkhead (fox) genes that are expressed in the lung and act as transcriptional repressors. J Biol Chem 276(29):27488–27497PubMed Shu W, Yang H, Zhang L, Lu M, Morrisey E (2001) Characterization of a new subfamily of winged-helix/forkhead (fox) genes that are expressed in the lung and act as transcriptional repressors. J Biol Chem 276(29):27488–27497PubMed
6.
go back to reference Wang B, Lin D, Li C, Tucker P (2003) Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol Chem 278(27):24259–24268PubMed Wang B, Lin D, Li C, Tucker P (2003) Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol Chem 278(27):24259–24268PubMed
7.
go back to reference Laissue P (2019) The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis. Mol Cancer 18(1):5PubMedPubMedCentral Laissue P (2019) The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis. Mol Cancer 18(1):5PubMedPubMedCentral
8.
go back to reference Santos ME, Athanasiadis A, Leitão AB, DuPasquier L, Sucena E (2011) Alternative splicing and gene duplication in the evolution of the FoxP gene subfamily. Mol Biol Evol 28(1):237–247PubMed Santos ME, Athanasiadis A, Leitão AB, DuPasquier L, Sucena E (2011) Alternative splicing and gene duplication in the evolution of the FoxP gene subfamily. Mol Biol Evol 28(1):237–247PubMed
9.
go back to reference Hannenhalli S, Putt ME, Gilmore JM, Wang J, Parmacek MS, Epstein JA et al (2006) Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation 11(12):1269–1276 Hannenhalli S, Putt ME, Gilmore JM, Wang J, Parmacek MS, Epstein JA et al (2006) Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation 11(12):1269–1276
10.
go back to reference Kim JH, Hwang J, Jung JH, Lee HJ, Lee DY, Kim SH (2019) Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression. Mol Cancer 18(1):180PubMedPubMedCentral Kim JH, Hwang J, Jung JH, Lee HJ, Lee DY, Kim SH (2019) Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression. Mol Cancer 18(1):180PubMedPubMedCentral
11.
go back to reference Zhang SP, Yang RH, Shang J, Gao T, Wang R, Peng XD, Miao X, Pan L, Yuan WJ, Lin L, Hu QK (2019) FOXC1 up-regulates the expression of toll-like receptors in myocardial ischaemia. J Cell Mol Med 23(11):7566–7580PubMedPubMedCentral Zhang SP, Yang RH, Shang J, Gao T, Wang R, Peng XD, Miao X, Pan L, Yuan WJ, Lin L, Hu QK (2019) FOXC1 up-regulates the expression of toll-like receptors in myocardial ischaemia. J Cell Mol Med 23(11):7566–7580PubMedPubMedCentral
12.
go back to reference Wang C, Xu W, Zhang Y, Zhang F, Huang K (2018) PARP1 promote autophagy in cardiomyocytes via modulating FoxO3a transcription. Cell Death Dis 9(11):1047PubMedPubMedCentral Wang C, Xu W, Zhang Y, Zhang F, Huang K (2018) PARP1 promote autophagy in cardiomyocytes via modulating FoxO3a transcription. Cell Death Dis 9(11):1047PubMedPubMedCentral
13.
go back to reference Evans-Anderson HJ, Alfieri CM, Yutzey KE (2008) Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res 102(6):686–694PubMed Evans-Anderson HJ, Alfieri CM, Yutzey KE (2008) Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res 102(6):686–694PubMed
14.
go back to reference Li S, Weidenfeld J, Morrisey EE (2004) Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol Cell Biol 24(2):809–822PubMedPubMedCentral Li S, Weidenfeld J, Morrisey EE (2004) Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol Cell Biol 24(2):809–822PubMedPubMedCentral
15.
go back to reference Yang Y, Del Re DP, Nakano N, Sciarretta S, Zhai P, Park J et al (2015) miR-206 mediates YAP induced cardiac hypertrophy and survival. Circ Res 117(10):891–904PubMedPubMedCentral Yang Y, Del Re DP, Nakano N, Sciarretta S, Zhai P, Park J et al (2015) miR-206 mediates YAP induced cardiac hypertrophy and survival. Circ Res 117(10):891–904PubMedPubMedCentral
16.
go back to reference Wang B (2004) Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development 131(18):4477–4487PubMed Wang B (2004) Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development 131(18):4477–4487PubMed
17.
go back to reference Zhang Y, Li S, Yuan L, Tian Y, Weidenfeld J, Yang J, Liu F, Chokas AL, Morrisey EE (2010) Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms. Genes Dev 24(16):1746–1757PubMedPubMedCentral Zhang Y, Li S, Yuan L, Tian Y, Weidenfeld J, Yang J, Liu F, Chokas AL, Morrisey EE (2010) Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms. Genes Dev 24(16):1746–1757PubMedPubMedCentral
18.
go back to reference Xing T, Du L, Zhuang X, Zhang L, Hao J, Wang J (2017) Upregulation of microRNA-206 induces apoptosis of vascular smooth muscle cells and decreases risk of atherosclerosis through modulating FOXP1. Exp Ther Med 14(5):4097–4103PubMedPubMedCentral Xing T, Du L, Zhuang X, Zhang L, Hao J, Wang J (2017) Upregulation of microRNA-206 induces apoptosis of vascular smooth muscle cells and decreases risk of atherosclerosis through modulating FOXP1. Exp Ther Med 14(5):4097–4103PubMedPubMedCentral
19.
go back to reference Liu J, Zhuang T, Pi J, Chen X, Zhang Q, Li Y, Wang H, Shen Y, Tomlinson B, Chan P, Yu Z, Cheng Y, Zheng X, Reilly M, Morrisey E, Zhang L, Liu Z, Zhang Y (2019) Endothelial Foxp1 regulates pathological cardiac remodeling through TGF-β1-endothelin-1 signal pathway. Circulation 140(8):665–680PubMed Liu J, Zhuang T, Pi J, Chen X, Zhang Q, Li Y, Wang H, Shen Y, Tomlinson B, Chan P, Yu Z, Cheng Y, Zheng X, Reilly M, Morrisey E, Zhang L, Liu Z, Zhang Y (2019) Endothelial Foxp1 regulates pathological cardiac remodeling through TGF-β1-endothelin-1 signal pathway. Circulation 140(8):665–680PubMed
20.
go back to reference Bai S, Kerppola TK (2011) Opposing roles of FoxP1 and Nfat3 in transcriptional control of cardiomyocyte hypertrophy. Mol Cell Biol 31(14):3068–3080PubMedPubMedCentral Bai S, Kerppola TK (2011) Opposing roles of FoxP1 and Nfat3 in transcriptional control of cardiomyocyte hypertrophy. Mol Cell Biol 31(14):3068–3080PubMedPubMedCentral
21.
go back to reference Grundmann S, Lindmayer C, Hans FP, Hoefer I, Helbing T, Pasterkamp G (2013) FoxP1 stimulates angiogenesis by repressing the inhibitory guidance protein semaphorin 5B in endothelial cells. PLoS One 8(9):e70873PubMedPubMedCentral Grundmann S, Lindmayer C, Hans FP, Hoefer I, Helbing T, Pasterkamp G (2013) FoxP1 stimulates angiogenesis by repressing the inhibitory guidance protein semaphorin 5B in endothelial cells. PLoS One 8(9):e70873PubMedPubMedCentral
22.
go back to reference Zhuang T, Liu J, Chen X, Zhang L, Pi J, Sun H, Li L, Bauer R, Wang H, Yu Z, Zhang Q, Tomlinson B, Chan P, Zheng X, Morrisey E, Liu Z, Reilly M, Zhang Y (2019) Endothelial Foxp1 suppresses atherosclerosis via modulation of Nlrp3 inflammasome activation. Circ Res 125(6):590–605PubMed Zhuang T, Liu J, Chen X, Zhang L, Pi J, Sun H, Li L, Bauer R, Wang H, Yu Z, Zhang Q, Tomlinson B, Chan P, Zheng X, Morrisey E, Liu Z, Reilly M, Zhang Y (2019) Endothelial Foxp1 suppresses atherosclerosis via modulation of Nlrp3 inflammasome activation. Circ Res 125(6):590–605PubMed
23.
go back to reference Wang Y, Gao H, Shi C, Erhardt PW, Pavlovsky A, Soloviev DA, Bledzka K, Ustinov V, Zhu L, Qin J, Munday AD, Lopez J, Plow E, Simon DI (2017) Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat Commun 8:16124PubMedPubMedCentral Wang Y, Gao H, Shi C, Erhardt PW, Pavlovsky A, Soloviev DA, Bledzka K, Ustinov V, Zhu L, Qin J, Munday AD, Lopez J, Plow E, Simon DI (2017) Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat Commun 8:16124PubMedPubMedCentral
24.
go back to reference Co M, Anderson AG, Konopka G (2020) FOXP transcription factors in vertebrate brain development, function, and disorders. Wiley Interdiscip Rev Dev Biol 30:e375 Co M, Anderson AG, Konopka G (2020) FOXP transcription factors in vertebrate brain development, function, and disorders. Wiley Interdiscip Rev Dev Biol 30:e375
25.
go back to reference Shu W, Lu MM, Zhang Y, Tucker PW, Zhou D, Morrisey EE (2007) Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development 134(10):1991–2000PubMed Shu W, Lu MM, Zhang Y, Tucker PW, Zhou D, Morrisey EE (2007) Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development 134(10):1991–2000PubMed
26.
go back to reference Jepsen K, Gleiberman AS, Shi C, Simon DI, Rosenfeld MG (2008) Cooperative regulation in development by SMRT and FOXP1. Genes Dev 22(6):740–745PubMedPubMedCentral Jepsen K, Gleiberman AS, Shi C, Simon DI, Rosenfeld MG (2008) Cooperative regulation in development by SMRT and FOXP1. Genes Dev 22(6):740–745PubMedPubMedCentral
27.
go back to reference Bot PT, Grundmann S, Goumans MJ, de Kleijn D, Moll F, de Boer O, van der Wal AC, van Soest A, de Vries JP, van Royen N, Piek JJ, Pasterkamp G, Hoefer IE (2011) Forkhead box protein P1 as a downstream target of transforming growth factor-β induces collagen synthesis and correlates with a more stable plaque phenotype. Atherosclerosis 218(1):33–43PubMed Bot PT, Grundmann S, Goumans MJ, de Kleijn D, Moll F, de Boer O, van der Wal AC, van Soest A, de Vries JP, van Royen N, Piek JJ, Pasterkamp G, Hoefer IE (2011) Forkhead box protein P1 as a downstream target of transforming growth factor-β induces collagen synthesis and correlates with a more stable plaque phenotype. Atherosclerosis 218(1):33–43PubMed
28.
go back to reference Cerna K, Mraz M (2018) p53 limits B cell receptor (BCR) signalling: a new role for miR-34a and FOXP1. Oncotarget 9(92):36409–36410PubMedPubMedCentral Cerna K, Mraz M (2018) p53 limits B cell receptor (BCR) signalling: a new role for miR-34a and FOXP1. Oncotarget 9(92):36409–36410PubMedPubMedCentral
29.
go back to reference Gadage V, Kembhavi S, Kumar P, Shet T (2011) Primary cardiac diffuse large B-cell lymphoma with activated B-cell-like phenotype. Indian J Pathol Microbiol 54(3):591–593PubMed Gadage V, Kembhavi S, Kumar P, Shet T (2011) Primary cardiac diffuse large B-cell lymphoma with activated B-cell-like phenotype. Indian J Pathol Microbiol 54(3):591–593PubMed
30.
go back to reference Patzelt T, Keppler SJ, Gorka O, Thoene S, Wartewig T, Reth M, Förster I, Lang R, Buchner M, Ruland J (2018) Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells. Proc Natl Acad Sci U S A 115(12):3120–3125PubMedPubMedCentral Patzelt T, Keppler SJ, Gorka O, Thoene S, Wartewig T, Reth M, Förster I, Lang R, Buchner M, Ruland J (2018) Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells. Proc Natl Acad Sci U S A 115(12):3120–3125PubMedPubMedCentral
31.
go back to reference Konopacki C, Pritykin Y, Rubtsov Y, Leslie CS, Rudensky AY (2019) Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates regulatory T cell function. Nat Immunol 20(2):232–242PubMedPubMedCentral Konopacki C, Pritykin Y, Rubtsov Y, Leslie CS, Rudensky AY (2019) Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates regulatory T cell function. Nat Immunol 20(2):232–242PubMedPubMedCentral
32.
go back to reference Stephen TL, Rutkowski MR, Allegrezza MJ, Perales-Puchalt A, Tesone AJ, Svoronos N, Nguyen JM, Sarmin F, Borowsky ME, Tchou J, Conejo-Garcia JR (2014) Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Immunity 41(3):427–439PubMedPubMedCentral Stephen TL, Rutkowski MR, Allegrezza MJ, Perales-Puchalt A, Tesone AJ, Svoronos N, Nguyen JM, Sarmin F, Borowsky ME, Tchou J, Conejo-Garcia JR (2014) Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Immunity 41(3):427–439PubMedPubMedCentral
33.
go back to reference Shi C, Sakuma M, Mooroka T, Liscoe A, Gao H, Croce KJ, Sharma A, Kaplan D, Greaves DR, Wang Y, Simon DI (2008) Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage function. Blood 112(12):4699–4711PubMedPubMedCentral Shi C, Sakuma M, Mooroka T, Liscoe A, Gao H, Croce KJ, Sharma A, Kaplan D, Greaves DR, Wang Y, Simon DI (2008) Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage function. Blood 112(12):4699–4711PubMedPubMedCentral
34.
go back to reference Shi C, Zhang X, Chen Z, Sulaiman K, Feinberg MW, Ballantyne CM, Jain MK, Simon DI (2004) Integrin engagement regulates monocyte differentiation through the forkhead transcription factor Foxp1. J Clin Invest 114(3):408–418PubMedPubMedCentral Shi C, Zhang X, Chen Z, Sulaiman K, Feinberg MW, Ballantyne CM, Jain MK, Simon DI (2004) Integrin engagement regulates monocyte differentiation through the forkhead transcription factor Foxp1. J Clin Invest 114(3):408–418PubMedPubMedCentral
35.
go back to reference Zou Y, Gong N, Cui Y, Wang X, Cui A, Chen Q, Jiao T, Dong X, Yang H, Zhang S, Fang F, Chang Y (2015) Forkhead box P1 (FOXP1) transcription factor regulates hepatic glucose homeostasis. J Biol Chem 290(51):30607–30615PubMedPubMedCentral Zou Y, Gong N, Cui Y, Wang X, Cui A, Chen Q, Jiao T, Dong X, Yang H, Zhang S, Fang F, Chang Y (2015) Forkhead box P1 (FOXP1) transcription factor regulates hepatic glucose homeostasis. J Biol Chem 290(51):30607–30615PubMedPubMedCentral
36.
go back to reference Xiang H, Xue W, Wu X, Zheng J, Ding C, Li Y, Dou M (2019) FOXP1 inhibits high glucose-induced ECM accumulation and oxidative stress in mesangial cells. Chem Biol Interact 313:108818PubMed Xiang H, Xue W, Wu X, Zheng J, Ding C, Li Y, Dou M (2019) FOXP1 inhibits high glucose-induced ECM accumulation and oxidative stress in mesangial cells. Chem Biol Interact 313:108818PubMed
37.
go back to reference Zhang XL, Zhu HQ, Zhang Y, Zhang CY, Jiao JS, Xing XY (2020) LncRNA CASC2 regulates high glucose-induced proliferation, extracellular matrix accumulation and oxidative stress of human mesangial cells via miR-133b FOXP1 axis. Eur Rev Med Pharmacol Sci 24(2):802–812PubMed Zhang XL, Zhu HQ, Zhang Y, Zhang CY, Jiao JS, Xing XY (2020) LncRNA CASC2 regulates high glucose-induced proliferation, extracellular matrix accumulation and oxidative stress of human mesangial cells via miR-133b FOXP1 axis. Eur Rev Med Pharmacol Sci 24(2):802–812PubMed
38.
go back to reference Ya J, Schilham MW, de Boer PA, Moorman AF, Clevers H, Lamers WH (1998) Sox4-deficiency syndrome in mice is an animal model for common trunk. Circ Res 83(10):986–994PubMed Ya J, Schilham MW, de Boer PA, Moorman AF, Clevers H, Lamers WH (1998) Sox4-deficiency syndrome in mice is an animal model for common trunk. Circ Res 83(10):986–994PubMed
39.
go back to reference Kumai M, Nishii K, Nakamura K, Takeda N, Suzuki M, Shibata Y (2000) Loss of connexin45 causes a cushion defect in early cardiogenesis. Development 127(16):3501–3512PubMed Kumai M, Nishii K, Nakamura K, Takeda N, Suzuki M, Shibata Y (2000) Loss of connexin45 causes a cushion defect in early cardiogenesis. Development 127(16):3501–3512PubMed
40.
go back to reference Wang Y, Morrisey EE (2010) Regulation of cardiomyocyte proliferation by Foxp1. Cell Cycle 9(21):4251–4252PubMed Wang Y, Morrisey EE (2010) Regulation of cardiomyocyte proliferation by Foxp1. Cell Cycle 9(21):4251–4252PubMed
41.
go back to reference Günthel M, Phil B, Christoffels VM (2018) Development, proliferation, and growth of the mammalian heart. Mol Ther 26(7):1599–1609PubMedPubMedCentral Günthel M, Phil B, Christoffels VM (2018) Development, proliferation, and growth of the mammalian heart. Mol Ther 26(7):1599–1609PubMedPubMedCentral
42.
go back to reference Ponnusamy M, Li PF, Wang K (2017) Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cell Mol Life Sci 74(6):1019–1034PubMed Ponnusamy M, Li PF, Wang K (2017) Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cell Mol Life Sci 74(6):1019–1034PubMed
43.
go back to reference Chang SW, Mislankar M, Misra C, Huang N, Dajusta DG, Harrison SM et al (2013) Genetic abnormalities in FOXP1 are associated with congenital heart defects. Hum Mutat 34(9):1226–1230PubMedPubMedCentral Chang SW, Mislankar M, Misra C, Huang N, Dajusta DG, Harrison SM et al (2013) Genetic abnormalities in FOXP1 are associated with congenital heart defects. Hum Mutat 34(9):1226–1230PubMedPubMedCentral
44.
go back to reference Prall OW, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F et al (2007) An Nkx2.5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128(5):947–959PubMedPubMedCentral Prall OW, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F et al (2007) An Nkx2.5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128(5):947–959PubMedPubMedCentral
45.
go back to reference Chamorro MN, Schwartz DR, Vonica A, Brivanlou AH, Cho KR, Varmus HE (2005) FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J 24(1):73–84PubMed Chamorro MN, Schwartz DR, Vonica A, Brivanlou AH, Cho KR, Varmus HE (2005) FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J 24(1):73–84PubMed
46.
go back to reference He Q, Zhao L, Liu Y, Liu X, Zheng J, Yu H, Cai H, Ma J, Liu L, Wang P, Li Z, Xue Y (2018) Circ-SHKBP1 regulates the angiogenesis of U87 glioma-exposed endothelial cells through miR-544a/FOXP1 and miR-379/FOXP2 pathways. Mol Ther Nucleic Acids 10:331–348PubMed He Q, Zhao L, Liu Y, Liu X, Zheng J, Yu H, Cai H, Ma J, Liu L, Wang P, Li Z, Xue Y (2018) Circ-SHKBP1 regulates the angiogenesis of U87 glioma-exposed endothelial cells through miR-544a/FOXP1 and miR-379/FOXP2 pathways. Mol Ther Nucleic Acids 10:331–348PubMed
47.
go back to reference Lähteenvuo JE, Lähteenvuo MT, Kivelä A, Rosenlew C, Falkevall A, Klar J et al (2009) Vascular endothelial growth factor-β induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119(6):845–856PubMed Lähteenvuo JE, Lähteenvuo MT, Kivelä A, Rosenlew C, Falkevall A, Klar J et al (2009) Vascular endothelial growth factor-β induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119(6):845–856PubMed
48.
go back to reference De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW 2nd et al (2000) Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: an apoptosis-independent model of dilated heart failure. Circ Res 86(3):255–263PubMed De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW 2nd et al (2000) Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: an apoptosis-independent model of dilated heart failure. Circ Res 86(3):255–263PubMed
49.
go back to reference Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA et al (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105(10):1395–1406PubMedPubMedCentral Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA et al (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105(10):1395–1406PubMedPubMedCentral
50.
go back to reference Li X, Chu G, Zhu F, Zheng Z, Wang X, Zhang G, Wang F (2020) Epoxyeicosatrienoic acid prevents maladaptive remodeling in pressure overload by targeting calcineurin/NFAT and Smad-7. Exp Cell Res 386(1):111716PubMed Li X, Chu G, Zhu F, Zheng Z, Wang X, Zhang G, Wang F (2020) Epoxyeicosatrienoic acid prevents maladaptive remodeling in pressure overload by targeting calcineurin/NFAT and Smad-7. Exp Cell Res 386(1):111716PubMed
51.
go back to reference Ikeda S, Sadoshima J (2016) Regulation of myocardial cell growth and death by the Hippo pathway. Circ J 80(7):1511–1519PubMed Ikeda S, Sadoshima J (2016) Regulation of myocardial cell growth and death by the Hippo pathway. Circ J 80(7):1511–1519PubMed
52.
go back to reference Shao D, Zhai P, Del Re DP, Sciarretta S, Yabuta N, Nojima H et al (2014) A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun 5:3315PubMed Shao D, Zhai P, Del Re DP, Sciarretta S, Yabuta N, Nojima H et al (2014) A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun 5:3315PubMed
53.
go back to reference Eisinger TS, Mucaj V, Biju KM, Nakazawa MS, Gohil M, Cash TP et al (2015) Deregulation of the Hippo pathway in soft-tissue sarcoma promotes FOXM1 expression and tumorigenesis. Proc Natl Acad Sci U S A 112(26):E3402–E3411 Eisinger TS, Mucaj V, Biju KM, Nakazawa MS, Gohil M, Cash TP et al (2015) Deregulation of the Hippo pathway in soft-tissue sarcoma promotes FOXM1 expression and tumorigenesis. Proc Natl Acad Sci U S A 112(26):E3402–E3411
54.
go back to reference Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262PubMed Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262PubMed
55.
go back to reference Kamo T, Akazawa H, Komuro I (2015) Cardiac nonmyocytes in the hub of cardiac hypertrophy. Circ Res 117(1):89–98PubMed Kamo T, Akazawa H, Komuro I (2015) Cardiac nonmyocytes in the hub of cardiac hypertrophy. Circ Res 117(1):89–98PubMed
56.
go back to reference Zhang S, Liu X, Ge LL, Li K, Sun Y, Wang F, Han Y, Sun C, Wang J, Jiang W, Xin Q, Xu C, Chen Y, chen O, Zhang Z, Luan Y (2020) Mesenchymal stromal cell-derived exosomes improve pulmonary hypertension through inhibition of pulmonary vascular remodeling. Respir Res 21(1):71PubMedPubMedCentral Zhang S, Liu X, Ge LL, Li K, Sun Y, Wang F, Han Y, Sun C, Wang J, Jiang W, Xin Q, Xu C, Chen Y, chen O, Zhang Z, Luan Y (2020) Mesenchymal stromal cell-derived exosomes improve pulmonary hypertension through inhibition of pulmonary vascular remodeling. Respir Res 21(1):71PubMedPubMedCentral
57.
go back to reference Jalali S, Ramanathan GK, Parthasarathy PT, Aljubran S, Galam L, Yunus A, Garcia S, Cox RR, Lockey RF, Kolliputi N (2012) Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS One 7(10):e46808PubMedPubMedCentral Jalali S, Ramanathan GK, Parthasarathy PT, Aljubran S, Galam L, Yunus A, Garcia S, Cox RR, Lockey RF, Kolliputi N (2012) Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS One 7(10):e46808PubMedPubMedCentral
58.
go back to reference Shi C, Miley J, Nottingham A, Morooka T, Prosdocimo DA, Simon DI (2019) Leukocyte integrin signaling regulates FOXP1 gene expression. Biochim Biophys Acta Gene Regul Mech 1862(4):493–508PubMedPubMedCentral Shi C, Miley J, Nottingham A, Morooka T, Prosdocimo DA, Simon DI (2019) Leukocyte integrin signaling regulates FOXP1 gene expression. Biochim Biophys Acta Gene Regul Mech 1862(4):493–508PubMedPubMedCentral
59.
go back to reference Shi C, Simon DI (2006) Integrin signals, transcription factors, and monocyte differentiation. Trends Cardiovasc Med 16(5):146–152PubMed Shi C, Simon DI (2006) Integrin signals, transcription factors, and monocyte differentiation. Trends Cardiovasc Med 16(5):146–152PubMed
60.
61.
go back to reference Koupenova M, Clancy L, Corkrey HA, Freedman JE (2018) Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res 122(2):337–351PubMedPubMedCentral Koupenova M, Clancy L, Corkrey HA, Freedman JE (2018) Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res 122(2):337–351PubMedPubMedCentral
62.
go back to reference Sansbury BE, Spite M (2016) Resolution of acute inflammation and the role of Resolvins in immunity, thrombosis, and vascular biology. Circ Res 119(1):113–130PubMedPubMedCentral Sansbury BE, Spite M (2016) Resolution of acute inflammation and the role of Resolvins in immunity, thrombosis, and vascular biology. Circ Res 119(1):113–130PubMedPubMedCentral
63.
go back to reference Pierpont M, Basson C, Benson D, Gelb B, Giglia T, Goldmuntz E (2007) Genetic basis for congenital heart defects: current knowledge. Pediatrics 120(2):447 Pierpont M, Basson C, Benson D, Gelb B, Giglia T, Goldmuntz E (2007) Genetic basis for congenital heart defects: current knowledge. Pediatrics 120(2):447
65.
go back to reference Gambetta K, Al-Ahdab MK, Ilbawi MN, Hassaniya N, Gupta M (2008) Transcription repression and blocks in cell cycle progression in hypoplastic left heart syndrome. Am J Physiol Heart Circ Physiol 294(5):H2268–H2275PubMed Gambetta K, Al-Ahdab MK, Ilbawi MN, Hassaniya N, Gupta M (2008) Transcription repression and blocks in cell cycle progression in hypoplastic left heart syndrome. Am J Physiol Heart Circ Physiol 294(5):H2268–H2275PubMed
66.
go back to reference Linglart L, Gelb BD (2020) Congenital heart defects in Noonan syndrome: diagnosis, management, and treatment. Am J Med Genet C Semin Med Genet 184(1):73–80PubMedPubMedCentral Linglart L, Gelb BD (2020) Congenital heart defects in Noonan syndrome: diagnosis, management, and treatment. Am J Med Genet C Semin Med Genet 184(1):73–80PubMedPubMedCentral
67.
go back to reference Lauriol J, Cabrera JR, Roy A, Keith K, Hough SM, Damilano F, Wang B, Segarra GC, Flessa ME, Miller LE, Das S, Bronson R, Lee KH, Kontaridis MI (2016) Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines. J Clin Invest 126(8):2989–3005PubMedPubMedCentral Lauriol J, Cabrera JR, Roy A, Keith K, Hough SM, Damilano F, Wang B, Segarra GC, Flessa ME, Miller LE, Das S, Bronson R, Lee KH, Kontaridis MI (2016) Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines. J Clin Invest 126(8):2989–3005PubMedPubMedCentral
68.
69.
go back to reference Mangge H, Almer G (2019) Immune-mediated inflammation in vulnerable atherosclerotic plaques. Molecules 24(17):E3072PubMed Mangge H, Almer G (2019) Immune-mediated inflammation in vulnerable atherosclerotic plaques. Molecules 24(17):E3072PubMed
70.
go back to reference Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721PubMedPubMedCentral Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721PubMedPubMedCentral
71.
go back to reference Lavine KJ, Pinto AR, Epelman S, Kopecky BJ, Clemente-Casares X, Godwin J, Rosenthal N, Kovacic JC (2018) The macrophage in cardiac homeostasis and disease JACC macrophage in CVD series. J Am Coll Cardiol 72(18):2213–2230PubMedPubMedCentral Lavine KJ, Pinto AR, Epelman S, Kopecky BJ, Clemente-Casares X, Godwin J, Rosenthal N, Kovacic JC (2018) The macrophage in cardiac homeostasis and disease JACC macrophage in CVD series. J Am Coll Cardiol 72(18):2213–2230PubMedPubMedCentral
72.
go back to reference An N, Gao Y, Si Z, Zhang H, Wang L, Tian C, Yuan M, Yang X, Li X, Shang H, Xiong X, Xing Y (2019) Regulatory mechanisms of the NLRP3 inflammasome, a novel immune-inflammatory marker in cardiovascular. Front Immunol 10:1592PubMedPubMedCentral An N, Gao Y, Si Z, Zhang H, Wang L, Tian C, Yuan M, Yang X, Li X, Shang H, Xiong X, Xing Y (2019) Regulatory mechanisms of the NLRP3 inflammasome, a novel immune-inflammatory marker in cardiovascular. Front Immunol 10:1592PubMedPubMedCentral
73.
go back to reference Castillo-Díaz SA, Garay-Sevilla ME, Hernández-González MA, Solís-Martínez MO, Zaina S (2010) Extensive demethylation of normally hypermethylated CpG islands occurs in human atherosclerotic arteries. Int J Mol Med 26(5):691–700PubMed Castillo-Díaz SA, Garay-Sevilla ME, Hernández-González MA, Solís-Martínez MO, Zaina S (2010) Extensive demethylation of normally hypermethylated CpG islands occurs in human atherosclerotic arteries. Int J Mol Med 26(5):691–700PubMed
74.
go back to reference Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R (2013) Update on acute coronary syndromes: the pathologists' view. Eur Heart J 34(10):719–728PubMed Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R (2013) Update on acute coronary syndromes: the pathologists' view. Eur Heart J 34(10):719–728PubMed
75.
go back to reference Jackson CL, Bennett MR, Biessen EA, Johnson JL, Krams R (2007) Assessment of unstable atherosclerosis in mice. Arterioscler Thromb Vasc Biol 27(4):714–720PubMed Jackson CL, Bennett MR, Biessen EA, Johnson JL, Krams R (2007) Assessment of unstable atherosclerosis in mice. Arterioscler Thromb Vasc Biol 27(4):714–720PubMed
76.
go back to reference Yang M, Song JJ, Liu XY, Zhao L, Wang J, Zuo K et al (2020) Inhibition of miRNA-122-5p counterregulates against angiotensin II-mediated loss of autophagy and promotion of apoptosis in rat cardiofibroblasts by modulation of the APLN-AMPK-mTOR signaling. Artif Cells Nanomed Biotechnol 49(1):LABB-2019–LABB-2082 Yang M, Song JJ, Liu XY, Zhao L, Wang J, Zuo K et al (2020) Inhibition of miRNA-122-5p counterregulates against angiotensin II-mediated loss of autophagy and promotion of apoptosis in rat cardiofibroblasts by modulation of the APLN-AMPK-mTOR signaling. Artif Cells Nanomed Biotechnol 49(1):LABB-2019–LABB-2082
78.
go back to reference Gheblawi M, Wang K, Viveiros A, Nguyen O, Zhong J, Turner AJ et al (2020) Angiotensin converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system--celebrating the 20th anniversary of the discovery of ACE2. Circ Res 126:1457–1475 Gheblawi M, Wang K, Viveiros A, Nguyen O, Zhong J, Turner AJ et al (2020) Angiotensin converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system--celebrating the 20th anniversary of the discovery of ACE2. Circ Res 126:1457–1475
79.
go back to reference Nattel S (1999) Atrial electrophysiological remodeling caused by rapid atrial activation: underlying mechanisms and clinical relevance to atrial fibrillation. Cardiovasc Res 42(2):298–308PubMed Nattel S (1999) Atrial electrophysiological remodeling caused by rapid atrial activation: underlying mechanisms and clinical relevance to atrial fibrillation. Cardiovasc Res 42(2):298–308PubMed
80.
go back to reference Laforest B, Dai W, Tyan L, Lazarevic S, Shen KM, Gadek M, Broman MT, Weber CR, Moskowitz IP (2019) Atrial fibrillation risk loci interact to modulate Ca2+-dependent atrial rhythm homeostasis. J Clin Invest 129(11):4937–4950PubMedPubMedCentral Laforest B, Dai W, Tyan L, Lazarevic S, Shen KM, Gadek M, Broman MT, Weber CR, Moskowitz IP (2019) Atrial fibrillation risk loci interact to modulate Ca2+-dependent atrial rhythm homeostasis. J Clin Invest 129(11):4937–4950PubMedPubMedCentral
81.
go back to reference Mulla W, Hajaj B, Elyagon S, Mor M, Gillis R, Murninkas M, Klapper-Goldstein H, Plaschkes I, Chalifa-Caspi V, Etzion S, Etzion Y (2019) Rapid atrial pacing promotes atrial fibrillation substrate in unanesthetized instrumented rats. Front Physiol 10:1218PubMedPubMedCentral Mulla W, Hajaj B, Elyagon S, Mor M, Gillis R, Murninkas M, Klapper-Goldstein H, Plaschkes I, Chalifa-Caspi V, Etzion S, Etzion Y (2019) Rapid atrial pacing promotes atrial fibrillation substrate in unanesthetized instrumented rats. Front Physiol 10:1218PubMedPubMedCentral
82.
go back to reference van Duijvenboden K, de Bakker DEM, Man JCK, Janssen R, Günthel M, Hill MC, Hooijkaas IB, van der Made I, van der Kraak PH, Vink A, Creemers EE, Martin JF, Barnett P, Bakkers J, Christoffels VM (2019) Conserved NPPB+ border zone switches from MEF2 to AP-1-driven gene program. Circulation 140(10):864–879PubMed van Duijvenboden K, de Bakker DEM, Man JCK, Janssen R, Günthel M, Hill MC, Hooijkaas IB, van der Made I, van der Kraak PH, Vink A, Creemers EE, Martin JF, Barnett P, Bakkers J, Christoffels VM (2019) Conserved NPPB+ border zone switches from MEF2 to AP-1-driven gene program. Circulation 140(10):864–879PubMed
83.
go back to reference Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, Libby P, Pittet M, Weissleder R, Nahrendorf M (2010) Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol 55(15):1629–1638PubMedPubMedCentral Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, Libby P, Pittet M, Weissleder R, Nahrendorf M (2010) Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol 55(15):1629–1638PubMedPubMedCentral
84.
go back to reference Ridker PM, Libby P, MacFadyen JG, Thuren T, Ballantyne C, Fonseca F et al (2018) Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the canakinumab anti-inflammatory thrombosis outcomes study (CANTOS). Eur Heart J 39(38):3499–3507PubMed Ridker PM, Libby P, MacFadyen JG, Thuren T, Ballantyne C, Fonseca F et al (2018) Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the canakinumab anti-inflammatory thrombosis outcomes study (CANTOS). Eur Heart J 39(38):3499–3507PubMed
85.
go back to reference Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z et al (2018) Myocardial cell signaling during the transition to heart failure: cellular signaling and therapeutic approaches. Compr Physiol 9(1):75–125PubMed Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z et al (2018) Myocardial cell signaling during the transition to heart failure: cellular signaling and therapeutic approaches. Compr Physiol 9(1):75–125PubMed
86.
go back to reference Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN (2019) Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 99(4):1765–1817PubMedPubMedCentral Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN (2019) Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 99(4):1765–1817PubMedPubMedCentral
Metadata
Title
Targeting the forkhead box protein P1 pathway as a novel therapeutic approach for cardiovascular diseases
Authors
Xin-Ming Liu
Sheng-Li Du
Ran Miao
Le-Feng Wang
Jiu-Chang Zhong
Publication date
01-01-2022
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 1/2022
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-020-09992-2

Other articles of this Issue 1/2022

Heart Failure Reviews 1/2022 Go to the issue