Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 6/2021

01-12-2021 | Myocardial Infarction | Original Article

Exendin-4 Attenuates Remodeling in the Remote Myocardium of Rats After an Acute Myocardial Infarction by Activating β-Arrestin-2, Protein Phosphatase 2A, and Glycogen Synthase Kinase-3 and Inhibiting β-Catenin

Authors: Refaat A. Eid, Mohammad Adnan Khalil, Mahmoud A. Alkhateeb, Samy M. Eleawa, Mohamed Samir Ahmed Zaki, Attalla Farag El-kott, Mubarak Al-Shraim, Fahmy El-Sayed, Muhammad Alaa Eldeen, Mashael Mohammed Bin-Meferij, Khalid M. E. Awaji, Abdullah S. Shatoor

Published in: Cardiovascular Drugs and Therapy | Issue 6/2021

Login to get access

Abstract

Purpose

This study tested if the protective anti-remodeling effect of GLP-1 agonist Exendin-4 after an acute myocardial infarction (MI) in rats involves inhibition of the Wnt1/β-catenin signaling pathway.

Methods

Rats were divided into sham, sham + Exendin-4 (10 μg/day, i.p), MI, and MI + Exendin-4. MI was introduced to rats by permanent left anterior descending coronary artery (LAD) ligation.

Results

On day 7 post-infraction, MI rats showed LV dysfunction with higher serum levels of cardiac markers. Their remote myocardia showed increased mRNA and protein levels of collagen I/III with higher levels of reactive oxygen species (ROS) and inflammatory cytokines, as well as protein levels of Wnt1, phospho-Akt, transforming growth factor (TGF-β1), Smad, phospho-Smad3, α-SMA, caspase-3, and Bax. They also showed higher protein levels of phospho-glycogen synthase kinase-3β (p-GSK3β), as well as total, phosphorylated, and nuclear β-catenin with a concomitant decrease in the levels of cyclic adenosine monophosphate (cAMP), mRNA of manganese superoxide dismutase (MnSOD), and protein levels of Bcl-2, β-arrestin-2, and protein phosphatase-2 (PP2A). Administration of Exendin-4 to MI rats reduced the infarct size and reversed the aforementioned signaling molecules without altering protein levels of TGF-1β and Wnt1 or Akt activation. Interestingly, Exendin-4 increased mRNA levels of MnSOD, protein levels of β-arrestin-2 and PP2A, and β-catenin phosphorylation but reduced the phosphorylation of GSK3β and Smad3, and total β-catenin levels in the LV of control rats.

Conclusion

Exendin-4 inhibits the remodeling in the remote myocardium of rats following acute MI by attenuating β-catenin activation and activating β-arrestin-2, PP2A, and GSK3β.
Appendix
Available only for authorised users
Literature
1.
go back to reference Suthahar N, Meijers WC, Silljé HH, et al. From inflammation to fibrosis—molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017;14:235–50.PubMedPubMedCentral Suthahar N, Meijers WC, Silljé HH, et al. From inflammation to fibrosis—molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017;14:235–50.PubMedPubMedCentral
2.
go back to reference Kurose H, Mangmool S. Myofibroblasts and inflammatory cells as players of cardiac fibrosis. Arch Pharm Res. 2016;39:1100–13.PubMed Kurose H, Mangmool S. Myofibroblasts and inflammatory cells as players of cardiac fibrosis. Arch Pharm Res. 2016;39:1100–13.PubMed
3.
go back to reference Volders PG, Willems IE, Cleutjens JP, et al. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol. 1993;25:1317–23.PubMed Volders PG, Willems IE, Cleutjens JP, et al. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol. 1993;25:1317–23.PubMed
4.
go back to reference Zornoff LA, Paiva SA, Minicucci MF, et al. Experimental myocardium infarction in rats: analysis of the model. Arq Bras Cardiol. 2009;93:434–2.PubMed Zornoff LA, Paiva SA, Minicucci MF, et al. Experimental myocardium infarction in rats: analysis of the model. Arq Bras Cardiol. 2009;93:434–2.PubMed
5.
go back to reference Sun Y, Weber KT. Infarct scar: a dynamic process. Cardiovasc Res. 2000;46:250–6.PubMed Sun Y, Weber KT. Infarct scar: a dynamic process. Cardiovasc Res. 2000;46:250–6.PubMed
6.
go back to reference Palojoki E, Saraste A, Eriksson A, Pulkki K, Kallajoki M, Voipio-Pulkki LM, et al. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Phys Heart Circ Phys. 2001;280:H2726–31. Palojoki E, Saraste A, Eriksson A, Pulkki K, Kallajoki M, Voipio-Pulkki LM, et al. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Phys Heart Circ Phys. 2001;280:H2726–31.
7.
go back to reference Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res. 1996;79:949–56.PubMed Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res. 1996;79:949–56.PubMed
8.
go back to reference Riad A, Jäger S, Sobirey M, Escher F, Yaulema-Riss A, Westermann D, et al. Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J Immunol. 2008;180:6954–61.PubMed Riad A, Jäger S, Sobirey M, Escher F, Yaulema-Riss A, Westermann D, et al. Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J Immunol. 2008;180:6954–61.PubMed
9.
go back to reference Weisman HF, Bush DE, Mannisi JA, Bulkley BH. Global cardiac remodeling after acute myocardial infarction: a study in the rat model. J Am Coll Cardiol. 1985;5:1355–62.PubMed Weisman HF, Bush DE, Mannisi JA, Bulkley BH. Global cardiac remodeling after acute myocardial infarction: a study in the rat model. J Am Coll Cardiol. 1985;5:1355–62.PubMed
10.
go back to reference van Krimpen C, Smits JF, Cleutjens JP, et al. DNA synthesis in the non-infarcted cardiac interstitium after left coronary artery ligation in the rat: effects of captopril. J Mol Cell Cardiol. 1991;23:1245–53.PubMed van Krimpen C, Smits JF, Cleutjens JP, et al. DNA synthesis in the non-infarcted cardiac interstitium after left coronary artery ligation in the rat: effects of captopril. J Mol Cell Cardiol. 1991;23:1245–53.PubMed
11.
go back to reference Richards P, Parker HE, Adriaenssens AE, Hodgson JM, Cork SC, Trapp S, et al. Identification and characterization of a glucagon like peptide-1 receptor-expressing cells using a new transgenic mouse model. Diabetes. 2014;63:1224–33.PubMed Richards P, Parker HE, Adriaenssens AE, Hodgson JM, Cork SC, Trapp S, et al. Identification and characterization of a glucagon like peptide-1 receptor-expressing cells using a new transgenic mouse model. Diabetes. 2014;63:1224–33.PubMed
12.
go back to reference Cleutjens JP, Verluyten MJ, Smiths JF, Daemen MJ. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol. 1995;147:325–38.PubMedPubMedCentral Cleutjens JP, Verluyten MJ, Smiths JF, Daemen MJ. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol. 1995;147:325–38.PubMedPubMedCentral
13.
go back to reference Yang F, Liu YH, Yang XP, Xu J, Kapke A, Carretero OA. Myocardial infarction and cardiac remodeling in mice. Exp Physiol. 2002;87:547–55.PubMed Yang F, Liu YH, Yang XP, Xu J, Kapke A, Carretero OA. Myocardial infarction and cardiac remodeling in mice. Exp Physiol. 2002;87:547–55.PubMed
14.
go back to reference Hermans KC, Daskalopoulos EP, Blankesteijn W. Interventions in Wnt signaling as a novel therapeutic approach to improve myocardial infarct healing. Fibrogenesis Tissue Repair. 2012;5:16.PubMedPubMedCentral Hermans KC, Daskalopoulos EP, Blankesteijn W. Interventions in Wnt signaling as a novel therapeutic approach to improve myocardial infarct healing. Fibrogenesis Tissue Repair. 2012;5:16.PubMedPubMedCentral
15.
go back to reference Oerlemans MI, Goumans MJ, van Middelaar B, et al. Active Wnt signaling in response to cardiac injury. Basic Res Cardiol. 2010;105:631–41.PubMedPubMedCentral Oerlemans MI, Goumans MJ, van Middelaar B, et al. Active Wnt signaling in response to cardiac injury. Basic Res Cardiol. 2010;105:631–41.PubMedPubMedCentral
16.
go back to reference Zhou Y, Zhao X, Hua Y, Chen H, et al. Aldehyde dehydrogenase-2 protects against myocardial infarction-related cardiac fibrosis through modulation of the Wnt/β-catenin signaling pathway. Ther Clin Risk Manag. 2015;11:1371–81.PubMedPubMedCentral Zhou Y, Zhao X, Hua Y, Chen H, et al. Aldehyde dehydrogenase-2 protects against myocardial infarction-related cardiac fibrosis through modulation of the Wnt/β-catenin signaling pathway. Ther Clin Risk Manag. 2015;11:1371–81.PubMedPubMedCentral
17.
go back to reference Działo E, Tkacz K, Błyszczuk P. Crosstalk between TGF-β and WNT signaling pathways during cardiac fibrogenesis. Acta Biochim Pol. 2018;65:341–9.PubMed Działo E, Tkacz K, Błyszczuk P. Crosstalk between TGF-β and WNT signaling pathways during cardiac fibrogenesis. Acta Biochim Pol. 2018;65:341–9.PubMed
18.
go back to reference Fu W-B, Wang WE, Zeng C-Y. Wnt signaling pathways in myocardial infarction and the therapeutic effects of Wnt pathway inhibitors. Acta Pharmacol Sin. 2018;40:9–12.PubMedPubMedCentral Fu W-B, Wang WE, Zeng C-Y. Wnt signaling pathways in myocardial infarction and the therapeutic effects of Wnt pathway inhibitors. Acta Pharmacol Sin. 2018;40:9–12.PubMedPubMedCentral
19.
go back to reference Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G, Grieskamp T, et al. Secreted frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol. 2008;11:46–55.PubMedPubMedCentral Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G, Grieskamp T, et al. Secreted frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol. 2008;11:46–55.PubMedPubMedCentral
20.
go back to reference Matsushima K, Suyama T, Takenaka C, Nishishita N, Ikeda K, Ikada Y, et al. Secreted frizzled related protein 4 reduces fibrosis scar size and ameliorates cardiac function after ischemic injury. Tissue Eng A. 2010;16:3329–41. Matsushima K, Suyama T, Takenaka C, Nishishita N, Ikeda K, Ikada Y, et al. Secreted frizzled related protein 4 reduces fibrosis scar size and ameliorates cardiac function after ischemic injury. Tissue Eng A. 2010;16:3329–41.
21.
go back to reference Ma B, Hottiger MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol. 2016;7:378.PubMedPubMedCentral Ma B, Hottiger MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol. 2016;7:378.PubMedPubMedCentral
22.
go back to reference Moon RT, Kohn AD, Ferrari GVD, et al. WNT and β-catenin signaling: diseases and therapies. Nat Rev Genet. 2004;5:691701. Moon RT, Kohn AD, Ferrari GVD, et al. WNT and β-catenin signaling: diseases and therapies. Nat Rev Genet. 2004;5:691701.
23.
go back to reference Sklepkiewicz P, Shiomi T, Kaur R, Sun J, Kwon S, Mercer B, et al. Loss of secreted frizzled-related protein-1 leads to deterioration of cardiac function in mice and plays a role in human cardiomyopathy. Circ Heart Fail. 2015;8:362–72.PubMedPubMedCentral Sklepkiewicz P, Shiomi T, Kaur R, Sun J, Kwon S, Mercer B, et al. Loss of secreted frizzled-related protein-1 leads to deterioration of cardiac function in mice and plays a role in human cardiomyopathy. Circ Heart Fail. 2015;8:362–72.PubMedPubMedCentral
24.
go back to reference Barandon L, Couffinhal T, Ezan J, Dufourcq P, Costet P, Alzieu P, et al. Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation. 2003;108:2282–9.PubMed Barandon L, Couffinhal T, Ezan J, Dufourcq P, Costet P, Alzieu P, et al. Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation. 2003;108:2282–9.PubMed
25.
go back to reference Blyszczuk P, Müller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, et al. Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 2017;38:1413–25.PubMed Blyszczuk P, Müller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, et al. Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 2017;38:1413–25.PubMed
26.
go back to reference Blankesteijn WM, Essers-Janssen YP, et al. A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat Med. 1997;3:541–4.PubMed Blankesteijn WM, Essers-Janssen YP, et al. A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat Med. 1997;3:541–4.PubMed
27.
go back to reference Chen L, Wu Q, Guo F, Xia B, Zuo J. Expression of Dishevelled-1 in wound healing after acute myocardial infarction: possible involvement in myofibroblast proliferation and migration. J Cell Mol Med. 2004;8:257–64.PubMedPubMedCentral Chen L, Wu Q, Guo F, Xia B, Zuo J. Expression of Dishevelled-1 in wound healing after acute myocardial infarction: possible involvement in myofibroblast proliferation and migration. J Cell Mol Med. 2004;8:257–64.PubMedPubMedCentral
28.
go back to reference Saraswati S, Alfaro MP, Thorne CA, Atkinson J, Lee E, Young PP. Pyrvinium, a potent small-molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PLoS One. 2010;5:e15521.PubMedPubMedCentral Saraswati S, Alfaro MP, Thorne CA, Atkinson J, Lee E, Young PP. Pyrvinium, a potent small-molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PLoS One. 2010;5:e15521.PubMedPubMedCentral
29.
go back to reference Verge D, Lopez X. Impact of GLP-1 and GLP-1 receptor agonists on cardiovascular risk factors in type 2 diabetes. Curr Diabetes Rev. 2010;999:1–10. Verge D, Lopez X. Impact of GLP-1 and GLP-1 receptor agonists on cardiovascular risk factors in type 2 diabetes. Curr Diabetes Rev. 2010;999:1–10.
30.
go back to reference Li J, Zheng J, Wang S, et al. Cardiovascular benefits of native GLP-1 and its metabolites: an Indicator for GLP-1-therapy strategies. Front Physiol. 2017;8:15.PubMedPubMedCentral Li J, Zheng J, Wang S, et al. Cardiovascular benefits of native GLP-1 and its metabolites: an Indicator for GLP-1-therapy strategies. Front Physiol. 2017;8:15.PubMedPubMedCentral
31.
go back to reference Chen J, Wang D, Wang F, Shi S, Chen Y, Yang B, et al. Exendin-4 inhibits structural remodeling and improves Ca2+ homeostasis in rats with heart failure via the GLP-1 receptor through the eNOS/cGMP/PKG pathway. Peptides. 2017;90:69–77.PubMed Chen J, Wang D, Wang F, Shi S, Chen Y, Yang B, et al. Exendin-4 inhibits structural remodeling and improves Ca2+ homeostasis in rats with heart failure via the GLP-1 receptor through the eNOS/cGMP/PKG pathway. Peptides. 2017;90:69–77.PubMed
32.
go back to reference Eid RA, Zaki MSA, Al-Shraim M, et al. Subacute ghrelin administration inhibits apoptosis and improves ultrastructural abnormalities in remote myocardium post-myocardial infarction. Biomed Pharmacother. 2018;101:920–8.PubMed Eid RA, Zaki MSA, Al-Shraim M, et al. Subacute ghrelin administration inhibits apoptosis and improves ultrastructural abnormalities in remote myocardium post-myocardial infarction. Biomed Pharmacother. 2018;101:920–8.PubMed
33.
go back to reference Eid RA, Alkhateeb MA, Eleawa S, al-Hashem FH, al-Shraim M, el-kott AF, et al. Cardioprotective effect of ghrelin against myocardial infarction-induced left ventricular injury via inhibition of SOCS3 and activation of JAK2/STAT3 signaling. Basic Res Cardiol. 2018;113:13.PubMed Eid RA, Alkhateeb MA, Eleawa S, al-Hashem FH, al-Shraim M, el-kott AF, et al. Cardioprotective effect of ghrelin against myocardial infarction-induced left ventricular injury via inhibition of SOCS3 and activation of JAK2/STAT3 signaling. Basic Res Cardiol. 2018;113:13.PubMed
34.
go back to reference Timmers L, Henriques JP, Kleijn DPD, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53:501–10.PubMed Timmers L, Henriques JP, Kleijn DPD, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53:501–10.PubMed
35.
go back to reference Robinson E, Cassidy RS, Tate M, et al. Exendin-4 protects against post-myocardial infarction remodeling via specific actions on inflammation and the extracellular matrix. Basic Res Cardiol. 2015;110:20.PubMedPubMedCentral Robinson E, Cassidy RS, Tate M, et al. Exendin-4 protects against post-myocardial infarction remodeling via specific actions on inflammation and the extracellular matrix. Basic Res Cardiol. 2015;110:20.PubMedPubMedCentral
36.
go back to reference Woo JS, Kim W, Ha SJ, et al. Cardioprotective effects of exenatide in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention; results of exenatide myocardial protection in revascularization (EMPIRE) study. Am J Cardiol. 2013;33:2252–60. Woo JS, Kim W, Ha SJ, et al. Cardioprotective effects of exenatide in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention; results of exenatide myocardial protection in revascularization (EMPIRE) study. Am J Cardiol. 2013;33:2252–60.
37.
go back to reference Sonne DP, Engstrøm T, Treiman M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia-reperfusion injury in rat heart. Regul Pept. 2008;146:243–9.PubMed Sonne DP, Engstrøm T, Treiman M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia-reperfusion injury in rat heart. Regul Pept. 2008;146:243–9.PubMed
38.
go back to reference Du J, Zhang L, Wang Z, et al. Exendin-4 induces myocardial protection through MKK3 and Akt-1 in infarcted hearts. Am J Phys Cell Phys. 2016;310:C270–83. Du J, Zhang L, Wang Z, et al. Exendin-4 induces myocardial protection through MKK3 and Akt-1 in infarcted hearts. Am J Phys Cell Phys. 2016;310:C270–83.
39.
go back to reference Wang D, Jiang L, Feng B, He N, Zhang Y, Ye H. Protective effects of glucagon-like peptide-1 on cardiac remodeling by inhibiting oxidative stress through mammalian target of rapamycin complex 1/p70 ribosomal protein S6 kinase pathway in diabetes mellitus. J Diabetes Investig. 2020;11:39–51.PubMed Wang D, Jiang L, Feng B, He N, Zhang Y, Ye H. Protective effects of glucagon-like peptide-1 on cardiac remodeling by inhibiting oxidative stress through mammalian target of rapamycin complex 1/p70 ribosomal protein S6 kinase pathway in diabetes mellitus. J Diabetes Investig. 2020;11:39–51.PubMed
40.
go back to reference Lønborg J, Vejlstrup N, Kelbæk H, Bøtker HE, Kim WY, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33:1491–9.PubMed Lønborg J, Vejlstrup N, Kelbæk H, Bøtker HE, Kim WY, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33:1491–9.PubMed
41.
go back to reference Chang YC, Hsu SY, Yang CC, et al. Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model. Exp Biol Med (Maywood). 2016;241:1588–602. Chang YC, Hsu SY, Yang CC, et al. Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model. Exp Biol Med (Maywood). 2016;241:1588–602.
42.
go back to reference Eid RA, Zaki MSA, Alaa Eldeen M, Alshehri MM, Shati AA, el-kott AF. Exendin-4 protects the hearts of rats from ischemia/reperfusion injury by boosting antioxidant levels and inhibition of JNK/p66 Shc/NADPH axis. Clin Exp Pharmacol Physiol. 2020a. Eid RA, Zaki MSA, Alaa Eldeen M, Alshehri MM, Shati AA, el-kott AF. Exendin-4 protects the hearts of rats from ischemia/reperfusion injury by boosting antioxidant levels and inhibition of JNK/p66 Shc/NADPH axis. Clin Exp Pharmacol Physiol. 2020a.
43.
go back to reference Eid RA, Alharbi SA, El-Kott AF, et al. Exendin-4 ameliorates cardiac remodeling in experimentally induced myocardial infarction in rats by inhibiting PARP1/NF-κB Axis in A SIRT1-dependent mechanism. Cardiovasc Toxicol. 2020. Eid RA, Alharbi SA, El-Kott AF, et al. Exendin-4 ameliorates cardiac remodeling in experimentally induced myocardial infarction in rats by inhibiting PARP1/NF-κB Axis in A SIRT1-dependent mechanism. Cardiovasc Toxicol. 2020.
44.
go back to reference Eid RA, Bin-Meferij MM, El-Kott AF, et al. Exendin-4 protects against myocardial ischemia-reperfusion injury by upregulation of SIRT1 and SIRT3 and activation of AMPK and subsequent deacylation of P53, PGC-1α, and FOXO1. J Cardiovasc Transl Res. 2020c. Eid RA, Bin-Meferij MM, El-Kott AF, et al. Exendin-4 protects against myocardial ischemia-reperfusion injury by upregulation of SIRT1 and SIRT3 and activation of AMPK and subsequent deacylation of P53, PGC-1α, and FOXO1. J Cardiovasc Transl Res. 2020c.
45.
go back to reference Bai J, Zhang N, Hua Y, Wang B, Ling L, Ferro A, et al. Metformin inhibits angiotensin ii-induced differentiation of cardiac fibroblasts into myofibroblasts. PLoS One. 2013;8:e72120.PubMedPubMedCentral Bai J, Zhang N, Hua Y, Wang B, Ling L, Ferro A, et al. Metformin inhibits angiotensin ii-induced differentiation of cardiac fibroblasts into myofibroblasts. PLoS One. 2013;8:e72120.PubMedPubMedCentral
46.
go back to reference Sun L, Liu C, Xu X, Ying Z, Maiseyeu A, Wang A, et al. Ambient fine particulate matter and ozone exposures induce inflammation in epicardial and perirenal adipose tissues in rats fed a high fructose diet. Part Fibre Toxicol. 2013;10:43.PubMedPubMedCentral Sun L, Liu C, Xu X, Ying Z, Maiseyeu A, Wang A, et al. Ambient fine particulate matter and ozone exposures induce inflammation in epicardial and perirenal adipose tissues in rats fed a high fructose diet. Part Fibre Toxicol. 2013;10:43.PubMedPubMedCentral
47.
go back to reference Seo S, Lee M-S, Chang E, Shin Y, Oh S, Kim IH, et al. Rutin increases muscle mitochondrial biogenesis with AMPK activation in high-fat diet-induced obese rats. Nutrients. 2015;7:8152–69.PubMedPubMedCentral Seo S, Lee M-S, Chang E, Shin Y, Oh S, Kim IH, et al. Rutin increases muscle mitochondrial biogenesis with AMPK activation in high-fat diet-induced obese rats. Nutrients. 2015;7:8152–69.PubMedPubMedCentral
48.
go back to reference Yan N, Liu Y, Liu S, et al. Fluoride-induced neuron apoptosis and expressions of inflammatory factors by activating microglia in rat brain. Mol Neurobiol. 2015;53:4449–60.PubMed Yan N, Liu Y, Liu S, et al. Fluoride-induced neuron apoptosis and expressions of inflammatory factors by activating microglia in rat brain. Mol Neurobiol. 2015;53:4449–60.PubMed
49.
go back to reference Tate M, Robinson E, Green BD, McDermott BJ, Grieve DJ. Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Res Cardiol. 2016;111:1.PubMed Tate M, Robinson E, Green BD, McDermott BJ, Grieve DJ. Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Res Cardiol. 2016;111:1.PubMed
50.
go back to reference Lee KH, Cho H, Lee S, Woo JS, Cho BH, Kang JH, et al. Enhanced-autophagy by exenatide mitigates doxorubicin-induced cardiotoxicity. Int J Cardiol. 2017;232:40–7.PubMed Lee KH, Cho H, Lee S, Woo JS, Cho BH, Kang JH, et al. Enhanced-autophagy by exenatide mitigates doxorubicin-induced cardiotoxicity. Int J Cardiol. 2017;232:40–7.PubMed
51.
go back to reference Heikkinen PT, Nummela M, Leivonen S-K, et al. Hypoxia-activated Smad3-specific dephosphorylation by PP2A. J Biol Chem. 2009;285:3740–9.PubMedPubMedCentral Heikkinen PT, Nummela M, Leivonen S-K, et al. Hypoxia-activated Smad3-specific dephosphorylation by PP2A. J Biol Chem. 2009;285:3740–9.PubMedPubMedCentral
52.
go back to reference Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, et al. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging. 2015;36:188–200.PubMed Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, et al. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging. 2015;36:188–200.PubMed
53.
go back to reference Chu D, Tan J, Xie S, Jin N, Yin X, Gong CX, et al. GSK-3β is dephosphorylated by PP2A in a Leu309 methylation-independent manner. J Alzheimers Dis. 2016;49:365–75.PubMed Chu D, Tan J, Xie S, Jin N, Yin X, Gong CX, et al. GSK-3β is dephosphorylated by PP2A in a Leu309 methylation-independent manner. J Alzheimers Dis. 2016;49:365–75.PubMed
54.
go back to reference Li L, Fang C, Xu D, Xu Y, Fu H, Li J. Cardiomyocyte specific deletion of PP2A causes cardiac hypertrophy. Am J Transl Res. 2016;8:1769–79.PubMedPubMedCentral Li L, Fang C, Xu D, Xu Y, Fu H, Li J. Cardiomyocyte specific deletion of PP2A causes cardiac hypertrophy. Am J Transl Res. 2016;8:1769–79.PubMedPubMedCentral
55.
go back to reference DeGrande ST, Little SC, Nixon DJ, et al. Molecular mechanisms underlying cardiac protein phosphatase 2A regulation in heart. J Biol Chem. 2013;288:1032–46.PubMed DeGrande ST, Little SC, Nixon DJ, et al. Molecular mechanisms underlying cardiac protein phosphatase 2A regulation in heart. J Biol Chem. 2013;288:1032–46.PubMed
56.
go back to reference Hund TJ, Wright PJ, Dun W, Snyder JS, Boyden PA, Mohler PJ. Regulation of the ankyrin-B-based targeting pathway following myocardial infarction. Cardiovasc Res. 2008;81:742–9.PubMedPubMedCentral Hund TJ, Wright PJ, Dun W, Snyder JS, Boyden PA, Mohler PJ. Regulation of the ankyrin-B-based targeting pathway following myocardial infarction. Cardiovasc Res. 2008;81:742–9.PubMedPubMedCentral
57.
go back to reference Baggio LL, Yusta B, Mulvihill EE, et al. GLP-1 receptor expression within the human heart. Endocrinology. 2018;159:1570–84.PubMedPubMedCentral Baggio LL, Yusta B, Mulvihill EE, et al. GLP-1 receptor expression within the human heart. Endocrinology. 2018;159:1570–84.PubMedPubMedCentral
58.
go back to reference Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev. 2012;33:187–215.PubMed Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev. 2012;33:187–215.PubMed
59.
go back to reference Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res. 2014;114:1788–803.PubMed Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res. 2014;114:1788–803.PubMed
60.
go back to reference Pyke C, Knudsen LB. The glucagon-like peptide-1 receptor–or not? Endocrinology. 2013;154:4–8.PubMed Pyke C, Knudsen LB. The glucagon-like peptide-1 receptor–or not? Endocrinology. 2013;154:4–8.PubMed
61.
go back to reference Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013;19:567–75.PubMed Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013;19:567–75.PubMed
62.
go back to reference Moore-Morris T, Varrault A, Mangoni ME, le Digarcher A, Negre V, Dantec C, et al. Identification of potential pharmacological targets by analysis of the comprehensive G protein-coupled receptor repertoire in the four cardiac chambers. Mol Pharmacol. 2009;75:1108–16.PubMed Moore-Morris T, Varrault A, Mangoni ME, le Digarcher A, Negre V, Dantec C, et al. Identification of potential pharmacological targets by analysis of the comprehensive G protein-coupled receptor repertoire in the four cardiac chambers. Mol Pharmacol. 2009;75:1108–16.PubMed
63.
go back to reference Ang R, Mastitskaya S, Hosford PS, et al. Modulation of cardiac ventricular excitability by GLP-1 (glucagon-like peptide-1). Circ Arrhythm Electrophysiol. 2018;11:e006740.PubMedPubMedCentral Ang R, Mastitskaya S, Hosford PS, et al. Modulation of cardiac ventricular excitability by GLP-1 (glucagon-like peptide-1). Circ Arrhythm Electrophysiol. 2018;11:e006740.PubMedPubMedCentral
64.
go back to reference Lymperopoulos A, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA. Not all arrestins are created equal: therapeutic implications of the functional diversity of the β-arrestins in the heart. World J Cardiol. 2019;11:47–56.PubMedPubMedCentral Lymperopoulos A, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA. Not all arrestins are created equal: therapeutic implications of the functional diversity of the β-arrestins in the heart. World J Cardiol. 2019;11:47–56.PubMedPubMedCentral
65.
go back to reference Lymperopoulos A. Arrestins in the cardiovascular system: an update. Prog Mol Biol Transl Sci. 2018;159:27–57.PubMed Lymperopoulos A. Arrestins in the cardiovascular system: an update. Prog Mol Biol Transl Sci. 2018;159:27–57.PubMed
66.
67.
go back to reference Lei S, Clydesdale L, Dai A, Cai X, Feng Y, Yang D, et al. Two distinct domains of the glucagon-like peptide-1 receptor control peptide-mediated biased agonism. J Biol Chem. 2018;293(24):9370–87.PubMedPubMedCentral Lei S, Clydesdale L, Dai A, Cai X, Feng Y, Yang D, et al. Two distinct domains of the glucagon-like peptide-1 receptor control peptide-mediated biased agonism. J Biol Chem. 2018;293(24):9370–87.PubMedPubMedCentral
68.
go back to reference Gundry J, Glenn R, Alagesan P, Rajagopal S. A practical guide to approaching biased agonism at g protein coupled receptors. Front Neurosci. 2017;11:17.PubMedPubMedCentral Gundry J, Glenn R, Alagesan P, Rajagopal S. A practical guide to approaching biased agonism at g protein coupled receptors. Front Neurosci. 2017;11:17.PubMedPubMedCentral
69.
go back to reference Preedy MEJ. Cardiac cyclic nucleotide phosphodiesterases: roles and therapeutic potential in heart failure. Cardiovasc Drugs Ther. 2020;34:401–17.PubMedPubMedCentral Preedy MEJ. Cardiac cyclic nucleotide phosphodiesterases: roles and therapeutic potential in heart failure. Cardiovasc Drugs Ther. 2020;34:401–17.PubMedPubMedCentral
70.
go back to reference Leineweber K, Böhm M, Heusch G. Cyclic adenosine monophosphate in acute myocardial infarction with heart failure: slayer or savior? Circulation. 2006;114:365–7.PubMed Leineweber K, Böhm M, Heusch G. Cyclic adenosine monophosphate in acute myocardial infarction with heart failure: slayer or savior? Circulation. 2006;114:365–7.PubMed
71.
go back to reference Bathgate-Siryk A, Dabul S, Pandya K, Walklett K, Rengo G, Cannavo A, et al. Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension. 2014;63:404–12.PubMed Bathgate-Siryk A, Dabul S, Pandya K, Walklett K, Rengo G, Cannavo A, et al. Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension. 2014;63:404–12.PubMed
72.
go back to reference McCrink KA, Maning J, Vu A, et al. β-Arrestin2 improves post-myocardial infarction heart failure via sarco (endo) plasmic reticulum Ca2+-ATPase-dependent positive inotropy in cardiomyocytes. Hypertension. 2017;70:972–81.PubMed McCrink KA, Maning J, Vu A, et al. β-Arrestin2 improves post-myocardial infarction heart failure via sarco (endo) plasmic reticulum Ca2+-ATPase-dependent positive inotropy in cardiomyocytes. Hypertension. 2017;70:972–81.PubMed
73.
go back to reference O’Brien WT, Huang J, Buccafusca R, et al. Glycogen synthase kinase-3 is essential for β-arrestin-2 complex formation and lithium-sensitive behaviors in mice. J Clin Invest. 2011;121:3756–62.PubMedPubMedCentral O’Brien WT, Huang J, Buccafusca R, et al. Glycogen synthase kinase-3 is essential for β-arrestin-2 complex formation and lithium-sensitive behaviors in mice. J Clin Invest. 2011;121:3756–62.PubMedPubMedCentral
74.
go back to reference Ishikawa K, Aguero J, Oh JG, et al. Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. J Am Heart Assoc. 2015;4:e001925.PubMedPubMedCentral Ishikawa K, Aguero J, Oh JG, et al. Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. J Am Heart Assoc. 2015;4:e001925.PubMedPubMedCentral
75.
go back to reference Ishikawa K, Chemaly ER, Tilemann L, Fish K, Ladage D, Aguero J, et al. Assessing left ventricular systolic dysfunction after myocardial infarction: are ejection fraction and dP/dt (max) complementary or redundant? Am J Physiol Heart Circ Physiol. 2012;302:H1423–8.PubMed Ishikawa K, Chemaly ER, Tilemann L, Fish K, Ladage D, Aguero J, et al. Assessing left ventricular systolic dysfunction after myocardial infarction: are ejection fraction and dP/dt (max) complementary or redundant? Am J Physiol Heart Circ Physiol. 2012;302:H1423–8.PubMed
Metadata
Title
Exendin-4 Attenuates Remodeling in the Remote Myocardium of Rats After an Acute Myocardial Infarction by Activating β-Arrestin-2, Protein Phosphatase 2A, and Glycogen Synthase Kinase-3 and Inhibiting β-Catenin
Authors
Refaat A. Eid
Mohammad Adnan Khalil
Mahmoud A. Alkhateeb
Samy M. Eleawa
Mohamed Samir Ahmed Zaki
Attalla Farag El-kott
Mubarak Al-Shraim
Fahmy El-Sayed
Muhammad Alaa Eldeen
Mashael Mohammed Bin-Meferij
Khalid M. E. Awaji
Abdullah S. Shatoor
Publication date
01-12-2021
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 6/2021
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-020-07006-9

Other articles of this Issue 6/2021

Cardiovascular Drugs and Therapy 6/2021 Go to the issue