Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Myelodysplastic Syndrome | Research

Sequential gene expression analysis of myelodysplastic syndrome transformation identifies HOXB3 and HOXB7 as the novel targets for mesenchymal cells in disease

Authors: Chunlai Yin, Yanqi Li, Cheng Zhang, Shizhu Zang, Zilong Wang, Xue Yan, Tonghui Ma, Xia Li, Weiping Li

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Myelodysplastic syndrome (MDS) is known to arise through the pathogenic bone marrow mesenchymal stem cells (MSC) by interacting with hematopoietic stem cells (HSC). However, due to the strong heterogeneity of MDS patients, it is difficult to find common targets in studies with limited sample sizes. This study aimed to describe sequential molecular changes and identify biomarkers in MSC of MDS transformation.

Methods

Multidimensional data from three publicly available microarray and TCGA datasets were analyzed. MDS-MSC was further isolated and cultured in vitro to determine the potential diagnostic and prognostic value of the identified biomarkers.

Results

We demonstrated that normal MSCs presented greater molecular homogeneity than MDS-MSC. Biological process (embryonic skeletal system morphogenesis and angiogenesis) and pathways (p53 and MAPK) were enriched according to the differential gene expression. Furthermore, we identified HOXB3 and HOXB7 as potential causative genes gradually upregulated during the normal-MDS-AML transition. Blocking the HOXB3 and HOXB7 in MSCs could enhance the cell proliferation and differentiation, inhibit cell apoptosis and restore the function that supports hematopoietic differentiation in HSCs.

Conclusion

Our comprehensive study of gene expression profiling has identified dysregulated genes and biological processes in MSCs during MDS. HOXB3 and HOXB7 are proposed as novel surrogate targets for therapeutic and diagnostic applications in MDS.
Literature
1.
go back to reference Alvarez-Larran A, Lopez-Guerra M, Rozman M, Correa JG, Hernandez-Boluda JC, Tormo M, Martinez D, Martin I, Colomer D, Esteve J, et al. Genomic characterization in triple-negative primary myelofibrosis and other myeloid neoplasms with bone marrow fibrosis. Ann Hematol. 2019;98(10):2319–28.CrossRefPubMed Alvarez-Larran A, Lopez-Guerra M, Rozman M, Correa JG, Hernandez-Boluda JC, Tormo M, Martinez D, Martin I, Colomer D, Esteve J, et al. Genomic characterization in triple-negative primary myelofibrosis and other myeloid neoplasms with bone marrow fibrosis. Ann Hematol. 2019;98(10):2319–28.CrossRefPubMed
3.
go back to reference Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, Grauman PV, Hu ZH, Spellman SR, Lee SJ, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376(6):536–47.CrossRefPubMedPubMedCentral Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, Grauman PV, Hu ZH, Spellman SR, Lee SJ, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376(6):536–47.CrossRefPubMedPubMedCentral
4.
go back to reference Platzbecker U, Kubasch AS, Homer-Bouthiette C, Prebet T. Current challenges and unmet medical needs in myelodysplastic syndromes. Leukemia. 2021;35(8):2182–98.CrossRefPubMedPubMedCentral Platzbecker U, Kubasch AS, Homer-Bouthiette C, Prebet T. Current challenges and unmet medical needs in myelodysplastic syndromes. Leukemia. 2021;35(8):2182–98.CrossRefPubMedPubMedCentral
5.
go back to reference Veryaskina YA, Titov SE, Kovynev IB, Fedorova SS, Pospelova TI, Zhimulev IF. MicroRNAs in the Myelodysplastic Syndrome. Acta Naturae. 2021;13(2):4–15.CrossRefPubMedPubMedCentral Veryaskina YA, Titov SE, Kovynev IB, Fedorova SS, Pospelova TI, Zhimulev IF. MicroRNAs in the Myelodysplastic Syndrome. Acta Naturae. 2021;13(2):4–15.CrossRefPubMedPubMedCentral
7.
go back to reference Gupta VA, Matulis SM, Conage-Pough JE, Nooka AK, Kaufman JL, Lonial S, Boise LH. Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma. Blood. 2017;129(14):1969–79.CrossRefPubMedPubMedCentral Gupta VA, Matulis SM, Conage-Pough JE, Nooka AK, Kaufman JL, Lonial S, Boise LH. Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma. Blood. 2017;129(14):1969–79.CrossRefPubMedPubMedCentral
8.
go back to reference Uder C, Bruckner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: features and applications. Cytometry A. 2018;93(1):32–49.CrossRefPubMed Uder C, Bruckner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: features and applications. Cytometry A. 2018;93(1):32–49.CrossRefPubMed
10.
go back to reference Jiang B, Yao G, Tang X, Yang X, Feng X. MSCs relieve SLE by modulation of Th17 cells through MMPs–CCL2–CCR2–IL-17 pathway. 2021, 1(1):30–9. Jiang B, Yao G, Tang X, Yang X, Feng X. MSCs relieve SLE by modulation of Th17 cells through MMPs–CCL2–CCR2–IL-17 pathway. 2021, 1(1):30–9.
11.
go back to reference Huang JC, Basu SK, Zhao X, Chien S, Fang M, Oehler VG, Appelbaum FR, Becker PS. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J. 2015;5:e302.CrossRefPubMedPubMedCentral Huang JC, Basu SK, Zhao X, Chien S, Fang M, Oehler VG, Appelbaum FR, Becker PS. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J. 2015;5:e302.CrossRefPubMedPubMedCentral
12.
go back to reference Rathnayake AJ, Goonasekera HW, Dissanayake VH. Phenotypic and Cytogenetic Characterization of Mesenchymal Stromal Cells in De Novo Myelodysplastic Syndromes. Anal Cell Pathol (Amst) 2016, 2016:8012716. Rathnayake AJ, Goonasekera HW, Dissanayake VH. Phenotypic and Cytogenetic Characterization of Mesenchymal Stromal Cells in De Novo Myelodysplastic Syndromes. Anal Cell Pathol (Amst) 2016, 2016:8012716.
13.
go back to reference Abbas S, Kumar S, Srivastava VM, Therese MM, Nair SC, Abraham A, Mathews V, George B, Srivastava A. Heterogeneity of mesenchymal stromal cells in Myelodysplastic Syndrome-with Multilineage Dysplasia (MDS-MLD). Indian J Hematol Blood Transfus. 2019;35(2):223–32.CrossRefPubMedPubMedCentral Abbas S, Kumar S, Srivastava VM, Therese MM, Nair SC, Abraham A, Mathews V, George B, Srivastava A. Heterogeneity of mesenchymal stromal cells in Myelodysplastic Syndrome-with Multilineage Dysplasia (MDS-MLD). Indian J Hematol Blood Transfus. 2019;35(2):223–32.CrossRefPubMedPubMedCentral
14.
go back to reference Corradi G, Baldazzi C, Ocadlikova D, Marconi G, Parisi S, Testoni N, Finelli C, Cavo M, Curti A, Ciciarello M. Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival. Stem Cell Res Ther. 2018;9(1):271.CrossRefPubMedPubMedCentral Corradi G, Baldazzi C, Ocadlikova D, Marconi G, Parisi S, Testoni N, Finelli C, Cavo M, Curti A, Ciciarello M. Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival. Stem Cell Res Ther. 2018;9(1):271.CrossRefPubMedPubMedCentral
15.
go back to reference Sarhan D, Wang J, Sunil Arvindam U, Hallstrom C, Verneris MR, Grzywacz B, Warlick E, Blazar BR, Miller JS. Mesenchymal stromal cells shape the MDS microenvironment by inducing suppressive monocytes that dampen NK cell function. JCI Insight 2020, 5(5). Sarhan D, Wang J, Sunil Arvindam U, Hallstrom C, Verneris MR, Grzywacz B, Warlick E, Blazar BR, Miller JS. Mesenchymal stromal cells shape the MDS microenvironment by inducing suppressive monocytes that dampen NK cell function. JCI Insight 2020, 5(5).
16.
go back to reference Kim M, Hwang S, Park K, Kim SY, Lee YK, Lee DS. Increased expression of interferon signaling genes in the bone marrow microenvironment of myelodysplastic syndromes. PLoS ONE. 2015;10(3):e0120602.CrossRefPubMedPubMedCentral Kim M, Hwang S, Park K, Kim SY, Lee YK, Lee DS. Increased expression of interferon signaling genes in the bone marrow microenvironment of myelodysplastic syndromes. PLoS ONE. 2015;10(3):e0120602.CrossRefPubMedPubMedCentral
17.
go back to reference Geyh S, Rodriguez-Paredes M, Jager P, Koch A, Bormann F, Gutekunst J, Zilkens C, Germing U, Kobbe G, Lyko F, et al. Transforming growth factor beta1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia. Haematologica. 2018;103(9):1462–71.CrossRefPubMedPubMedCentral Geyh S, Rodriguez-Paredes M, Jager P, Koch A, Bormann F, Gutekunst J, Zilkens C, Germing U, Kobbe G, Lyko F, et al. Transforming growth factor beta1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia. Haematologica. 2018;103(9):1462–71.CrossRefPubMedPubMedCentral
18.
go back to reference Chen W, Yu Y, Zheng SG, Lin J. Human gingival tissue-derived mesenchymal stem cells inhibit proliferation and invasion of rheumatoid fibroblast-like synoviocytes via the CD39/CD73 signaling pathway. 2023, 3(2):90–9. Chen W, Yu Y, Zheng SG, Lin J. Human gingival tissue-derived mesenchymal stem cells inhibit proliferation and invasion of rheumatoid fibroblast-like synoviocytes via the CD39/CD73 signaling pathway. 2023, 3(2):90–9.
19.
go back to reference Zhao ZG, Xu W, Yu HP, Fang BL, Wu SH, Li F, Li WM, Li QB, Chen ZC, Zou P. Functional characteristics of mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes. Cancer Lett. 2012;317(2):136–43.CrossRefPubMed Zhao ZG, Xu W, Yu HP, Fang BL, Wu SH, Li F, Li WM, Li QB, Chen ZC, Zou P. Functional characteristics of mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes. Cancer Lett. 2012;317(2):136–43.CrossRefPubMed
20.
go back to reference Miao R, Lim VY, Kothapalli N, Ma Y, Fossati J, Zehentmeier S, Sun R, Pereira JP. Hematopoietic stem cell niches and signals Controlling Immune Cell Development and maintenance of immunological memory. Front Immunol. 2020;11:600127.CrossRefPubMedPubMedCentral Miao R, Lim VY, Kothapalli N, Ma Y, Fossati J, Zehentmeier S, Sun R, Pereira JP. Hematopoietic stem cell niches and signals Controlling Immune Cell Development and maintenance of immunological memory. Front Immunol. 2020;11:600127.CrossRefPubMedPubMedCentral
21.
go back to reference Poon Z, Dighe N, Venkatesan SS, Cheung AMS, Fan X, Bari S, Hota M, Ghosh S, Hwang WYK. Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy. Leukemia. 2019;33(6):1487–500.CrossRefPubMed Poon Z, Dighe N, Venkatesan SS, Cheung AMS, Fan X, Bari S, Hota M, Ghosh S, Hwang WYK. Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy. Leukemia. 2019;33(6):1487–500.CrossRefPubMed
22.
23.
go back to reference Scalzulli E, Pepe S, Colafigli G, Breccia M. Therapeutic strategies in low and high-risk MDS: what does the future have to offer? Blood Rev. 2021;45:100689.CrossRefPubMed Scalzulli E, Pepe S, Colafigli G, Breccia M. Therapeutic strategies in low and high-risk MDS: what does the future have to offer? Blood Rev. 2021;45:100689.CrossRefPubMed
24.
go back to reference Pang YB, Li WW, Luo JM, Ji J, Du X. [Senescent mesenchymal stem cells contribute to progression of myelodysplastic Syndromes-Review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018;26(3):942–6.PubMed Pang YB, Li WW, Luo JM, Ji J, Du X. [Senescent mesenchymal stem cells contribute to progression of myelodysplastic Syndromes-Review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018;26(3):942–6.PubMed
25.
go back to reference Wei Y, Huang YH, Skopelitis DS, Iyer SV, Costa ASH, Yang Z, Kramer M, Adelman ER, Klingbeil O, Demerdash OE, et al. SLC5A3-Dependent Myo-Inositol Auxotrophy in Acute myeloid leukemia. Cancer Discov. 2022;12(2):450–67.CrossRefPubMed Wei Y, Huang YH, Skopelitis DS, Iyer SV, Costa ASH, Yang Z, Kramer M, Adelman ER, Klingbeil O, Demerdash OE, et al. SLC5A3-Dependent Myo-Inositol Auxotrophy in Acute myeloid leukemia. Cancer Discov. 2022;12(2):450–67.CrossRefPubMed
26.
go back to reference Tejeda-Mora H, Leon LG, Demmers J, Baan CC, Reinders MEJ, Bleck B, Lombardo E, Merino A, Hoogduijn MJ. Proteomic analysis of mesenchymal stromal cell-derived extracellular vesicles and reconstructed membrane particles. Int J Mol Sci 2021, 22(23). Tejeda-Mora H, Leon LG, Demmers J, Baan CC, Reinders MEJ, Bleck B, Lombardo E, Merino A, Hoogduijn MJ. Proteomic analysis of mesenchymal stromal cell-derived extracellular vesicles and reconstructed membrane particles. Int J Mol Sci 2021, 22(23).
27.
go back to reference Geyh S, Oz S, Cadeddu RP, Frobel J, Bruckner B, Kundgen A, Fenk R, Bruns I, Zilkens C, Hermsen D, et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia. 2013;27(9):1841–51.CrossRefPubMed Geyh S, Oz S, Cadeddu RP, Frobel J, Bruckner B, Kundgen A, Fenk R, Bruns I, Zilkens C, Hermsen D, et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia. 2013;27(9):1841–51.CrossRefPubMed
28.
go back to reference Inamura N, Araki T, Enokido Y, Nishio C, Aizawa S, Hatanaka H. Role of p53 in DNA strand break-induced apoptosis in organotypic slice culture from the mouse cerebellum. J Neurosci Res. 2000;60(4):450–7.CrossRefPubMed Inamura N, Araki T, Enokido Y, Nishio C, Aizawa S, Hatanaka H. Role of p53 in DNA strand break-induced apoptosis in organotypic slice culture from the mouse cerebellum. J Neurosci Res. 2000;60(4):450–7.CrossRefPubMed
29.
go back to reference Chen SX, Zhao F, Huang XJ. [MAPK signaling pathway and erectile dysfunction]. Zhonghua Nan Ke Xue. 2018;24(5):442–6.PubMed Chen SX, Zhao F, Huang XJ. [MAPK signaling pathway and erectile dysfunction]. Zhonghua Nan Ke Xue. 2018;24(5):442–6.PubMed
30.
go back to reference Calkoen FG, Vervat C, van Pel M, de Haas V, Vijfhuizen LS, Eising E, Kroes WG, t Hoen PA, van den Heuvel-Eibrink MM, Egeler RM, et al. Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro. Stem Cell Res. 2015;14(2):198–210.CrossRefPubMed Calkoen FG, Vervat C, van Pel M, de Haas V, Vijfhuizen LS, Eising E, Kroes WG, t Hoen PA, van den Heuvel-Eibrink MM, Egeler RM, et al. Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro. Stem Cell Res. 2015;14(2):198–210.CrossRefPubMed
31.
go back to reference Zhu L, Yu S, Jiang S, Ge G, Yan Y, Zhou Y, Niu L, He J, Ren Y, Wang B. Loss of HOXB3 correlates with the development of hormone receptor negative breast cancer. PeerJ. 2020;8:e10421.CrossRefPubMedPubMedCentral Zhu L, Yu S, Jiang S, Ge G, Yan Y, Zhou Y, Niu L, He J, Ren Y, Wang B. Loss of HOXB3 correlates with the development of hormone receptor negative breast cancer. PeerJ. 2020;8:e10421.CrossRefPubMedPubMedCentral
32.
go back to reference Mallo M. Reassessing the role of hox genes during Vertebrate Development and Evolution. Trends Genet. 2018;34(3):209–17.CrossRefPubMed Mallo M. Reassessing the role of hox genes during Vertebrate Development and Evolution. Trends Genet. 2018;34(3):209–17.CrossRefPubMed
33.
go back to reference Lindblad O, Chougule RA, Moharram SA, Kabir NN, Sun J, Kazi JU, Ronnstrand L. The role of HOXB2 and HOXB3 in acute myeloid leukemia. Biochem Biophys Res Commun. 2015;467(4):742–7.CrossRefPubMed Lindblad O, Chougule RA, Moharram SA, Kabir NN, Sun J, Kazi JU, Ronnstrand L. The role of HOXB2 and HOXB3 in acute myeloid leukemia. Biochem Biophys Res Commun. 2015;467(4):742–7.CrossRefPubMed
34.
go back to reference Bi L, Zhou B, Li H, He L, Wang C, Wang Z, Zhu L, Chen M, Gao S. A novel miR-375-HOXB3-CDCA3/DNMT3B regulatory circuitry contributes to leukemogenesis in acute myeloid leukemia. BMC Cancer. 2018;18(1):182.CrossRefPubMedPubMedCentral Bi L, Zhou B, Li H, He L, Wang C, Wang Z, Zhu L, Chen M, Gao S. A novel miR-375-HOXB3-CDCA3/DNMT3B regulatory circuitry contributes to leukemogenesis in acute myeloid leukemia. BMC Cancer. 2018;18(1):182.CrossRefPubMedPubMedCentral
35.
go back to reference Zhang J, Zhang S, Li X, Zhang F, Zhao L. HOXB5 promotes the progression of breast cancer through wnt/beta-catenin pathway. Pathol Res Pract. 2021;224:153117.CrossRefPubMed Zhang J, Zhang S, Li X, Zhang F, Zhao L. HOXB5 promotes the progression of breast cancer through wnt/beta-catenin pathway. Pathol Res Pract. 2021;224:153117.CrossRefPubMed
36.
go back to reference Sakamaki T, Kao KS, Nishi K, Chen JY, Sadaoka K, Fujii M, Takaori-Kondo A, Weissman IL, Miyanishi M. Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochem Biophys Res Commun. 2021;539:34–41.CrossRefPubMed Sakamaki T, Kao KS, Nishi K, Chen JY, Sadaoka K, Fujii M, Takaori-Kondo A, Weissman IL, Miyanishi M. Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochem Biophys Res Commun. 2021;539:34–41.CrossRefPubMed
38.
go back to reference Giampaolo A, Felli N, Diverio D, Morsilli O, Samoggia P, Breccia M, Lo Coco F, Peschle C, Testa U. Expression pattern of HOXB6 homeobox gene in myelomonocytic differentiation and acute myeloid leukemia. Leukemia. 2002;16(7):1293–301.CrossRefPubMed Giampaolo A, Felli N, Diverio D, Morsilli O, Samoggia P, Breccia M, Lo Coco F, Peschle C, Testa U. Expression pattern of HOXB6 homeobox gene in myelomonocytic differentiation and acute myeloid leukemia. Leukemia. 2002;16(7):1293–301.CrossRefPubMed
39.
go back to reference Fischbach NA, Rozenfeld S, Shen W, Fong S, Chrobak D, Ginzinger D, Kogan SC, Radhakrishnan A, Le Beau MM, Largman C, et al. HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood. 2005;105(4):1456–66.CrossRefPubMed Fischbach NA, Rozenfeld S, Shen W, Fong S, Chrobak D, Ginzinger D, Kogan SC, Radhakrishnan A, Le Beau MM, Largman C, et al. HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood. 2005;105(4):1456–66.CrossRefPubMed
40.
go back to reference Dai L, Hu W, Yang Z, Chen D, He B, Chen Y, Zhou L, Xie H, Wu J, Zheng S. Upregulated expression of HOXB7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis. Lab Invest. 2019;99(6):736–48.CrossRefPubMedPubMedCentral Dai L, Hu W, Yang Z, Chen D, He B, Chen Y, Zhou L, Xie H, Wu J, Zheng S. Upregulated expression of HOXB7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis. Lab Invest. 2019;99(6):736–48.CrossRefPubMedPubMedCentral
41.
go back to reference Jann JC, Mossner M, Riabov V, Altrock E, Schmitt N, Flach J, Xu Q, Nowak V, Oblander J, Palme I, et al. Bone marrow derived stromal cells from myelodysplastic syndromes are altered but not clonally mutated in vivo. Nat Commun. 2021;12(1):6170.CrossRefPubMedPubMedCentral Jann JC, Mossner M, Riabov V, Altrock E, Schmitt N, Flach J, Xu Q, Nowak V, Oblander J, Palme I, et al. Bone marrow derived stromal cells from myelodysplastic syndromes are altered but not clonally mutated in vivo. Nat Commun. 2021;12(1):6170.CrossRefPubMedPubMedCentral
Metadata
Title
Sequential gene expression analysis of myelodysplastic syndrome transformation identifies HOXB3 and HOXB7 as the novel targets for mesenchymal cells in disease
Authors
Chunlai Yin
Yanqi Li
Cheng Zhang
Shizhu Zang
Zilong Wang
Xue Yan
Tonghui Ma
Xia Li
Weiping Li
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-11859-w

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine