Skip to main content
Top
Published in: Journal of Neurology 8/2014

01-08-2014 | Review

Myelin damage due to local quantitative abnormalities in normal prion levels: evidence from subacute combined degeneration and multiple sclerosis

Authors: Giuseppe Scalabrino, Daniela Veber

Published in: Journal of Neurology | Issue 8/2014

Login to get access

Abstract

Cobalamin (Cbl) deficiency causes an imbalance in some cytokines and growth factors in the central nervous system and peripheral nervous system (PNS) of the rat, and in the serum and cerebrospinal fluid (CSF) of adult Cbl-deficient (Cbl-D) patients. It is conceivable that this imbalance triggers subsequent cellular events. We hypothesized that an imbalance in normal prion (PrPC) levels and/or synthesis might be involved in the pathogenesis of Cbl-D neuropathy, and demonstrated that: (1) Cbl deficiency induces excess PrPC in rat spinal cord (SC) and PNS, concomitantly with myelin damage and PNS electrophysiological abnormalities; (2) the SC increase is mediated by a local Cbl deficiency-induced excess of tumor necrosis factor-α; (3) myelinotrophic Cbl and epidermal growth factor upregulate PrPC-mRNA levels in rat SC; (4) treatment with anti-PrPC octapeptide repeat region antibodies normalizes the ultrastructure of the Cbl-D rat SC and PNS myelins, and the PNS electrophysiological abnormalities, without modifying their Cbl-D status; (5) PrPC administration to otherwise normal rats causes SC and PNS myelin lesions and PNS electrophysiological abnormalities, similar to those of Cbl-D neuropathy; (6) CSF and serum PrPC concentrations in Cbl-D patients are significantly higher than in controls; and (7) these concentrations significantly correlate with their CSF and serum Cbl concentrations. CSF PrPC concentrations are significantly lower in patients with multiple sclerosis (MS) than neurological controls, but serum PrPC concentrations in patients with non-Cbl-D anemias and CSF PrPC concentrations in patients with non-myelin-damaging neurological diseases are normal.
Literature
1.
go back to reference Scalabrino G (2001) Subacute combined degeneration one century later. The neurotrophic action of cobalamin (vitamin B12) revisited. J Neuropathol Exp Neurol 60:109–120PubMed Scalabrino G (2001) Subacute combined degeneration one century later. The neurotrophic action of cobalamin (vitamin B12) revisited. J Neuropathol Exp Neurol 60:109–120PubMed
2.
go back to reference Scalabrino G (2009) The multi-faceted basis of vitamin B12 (cobalamin) neurotrophism in adult central nervous system: lessons learned from its deficiency. Prog Neurobiol 88:203–220CrossRefPubMed Scalabrino G (2009) The multi-faceted basis of vitamin B12 (cobalamin) neurotrophism in adult central nervous system: lessons learned from its deficiency. Prog Neurobiol 88:203–220CrossRefPubMed
3.
go back to reference Scalabrino G, Veber D, Mutti E (2008) Experimental and clinical evidence of the role of cytokines and growth factors in the pathogenesis of acquired cobalamin-deficient leukoneuropathy. Brain Res Rev 59:42–54CrossRefPubMed Scalabrino G, Veber D, Mutti E (2008) Experimental and clinical evidence of the role of cytokines and growth factors in the pathogenesis of acquired cobalamin-deficient leukoneuropathy. Brain Res Rev 59:42–54CrossRefPubMed
4.
go back to reference Scalabrino G, Peracchi M (2006) New insights into the pathophysiology of cobalamin deficiency. Trends Mol Med 12:247–254CrossRefPubMed Scalabrino G, Peracchi M (2006) New insights into the pathophysiology of cobalamin deficiency. Trends Mol Med 12:247–254CrossRefPubMed
6.
go back to reference Scalabrino G, Nicolini G, Buccellato FR et al (1999) Epidermal growth factor as a local mediator of the neurotrophic action of vitamin B12 (cobalamin) in the rat central nervous system. FASEB J 13:2083–2090PubMed Scalabrino G, Nicolini G, Buccellato FR et al (1999) Epidermal growth factor as a local mediator of the neurotrophic action of vitamin B12 (cobalamin) in the rat central nervous system. FASEB J 13:2083–2090PubMed
7.
go back to reference Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440CrossRefPubMed Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440CrossRefPubMed
8.
go back to reference Seifert G, Schilling K, Steinhäuser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206CrossRefPubMed Seifert G, Schilling K, Steinhäuser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206CrossRefPubMed
9.
go back to reference De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16CrossRefPubMed De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16CrossRefPubMed
12.
go back to reference Liedtke W, Edelmann W, Bieri PL et al (1996) GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17:607–615CrossRefPubMed Liedtke W, Edelmann W, Bieri PL et al (1996) GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17:607–615CrossRefPubMed
13.
go back to reference Solomon LR (2007) Disorders of cobalamin (vitamin B12) metabolism: emerging concepts in pathophysiology, diagnosis and treatment. Blood Rev 21:113–130CrossRefPubMed Solomon LR (2007) Disorders of cobalamin (vitamin B12) metabolism: emerging concepts in pathophysiology, diagnosis and treatment. Blood Rev 21:113–130CrossRefPubMed
15.
go back to reference Hathout L, El-Saden S (2011) Nitrous oxide-induced B12 deficiency myelopathy: perspectives on the clinical biochemistry of vitamin B12. J Neurol Sci 301:1–8CrossRefPubMed Hathout L, El-Saden S (2011) Nitrous oxide-induced B12 deficiency myelopathy: perspectives on the clinical biochemistry of vitamin B12. J Neurol Sci 301:1–8CrossRefPubMed
16.
go back to reference Green R, Jacobsen DW, Van Tonder SV et al (1982) Absorption of biliary cobalamin in baboons following total gastrectomy. J Lab Clin Med 100:771–777PubMed Green R, Jacobsen DW, Van Tonder SV et al (1982) Absorption of biliary cobalamin in baboons following total gastrectomy. J Lab Clin Med 100:771–777PubMed
17.
go back to reference Scalabrino G (2005) Cobalamin (vitamin B12) in subacute combined degeneration and beyond: traditional interpretations and novel theories. Exp Neurol 192:463–479CrossRefPubMed Scalabrino G (2005) Cobalamin (vitamin B12) in subacute combined degeneration and beyond: traditional interpretations and novel theories. Exp Neurol 192:463–479CrossRefPubMed
18.
go back to reference Scalabrino G (2009) Vitamin-regulated cytokines and growth factors in the CNS and elsewhere. J Neurochem 111:1309–1326CrossRefPubMed Scalabrino G (2009) Vitamin-regulated cytokines and growth factors in the CNS and elsewhere. J Neurochem 111:1309–1326CrossRefPubMed
19.
go back to reference Kaput J, Rodriguez RL (2004) Nutritional genomics: the next frontier in the postgenomic era. Physiol Genom 16:166–177CrossRef Kaput J, Rodriguez RL (2004) Nutritional genomics: the next frontier in the postgenomic era. Physiol Genom 16:166–177CrossRef
20.
go back to reference Burdge GC, Lillycrop KA (2010) Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 30:315–339CrossRefPubMed Burdge GC, Lillycrop KA (2010) Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 30:315–339CrossRefPubMed
21.
go back to reference Stover PJ, Caudill MA (2008) Genetic and epigenetic contributions to human nutrition and health: managing genome-diet interactions. J Am Diet Assoc 108:1480–1487CrossRefPubMed Stover PJ, Caudill MA (2008) Genetic and epigenetic contributions to human nutrition and health: managing genome-diet interactions. J Am Diet Assoc 108:1480–1487CrossRefPubMed
22.
go back to reference Chawla RK, Watson WH, Eastin CE et al (1998) S-adenosylmethionine deficiency and TNF-α in lypopolysaccharide-induced hepatic injury. Am J Physiol 275:G125–G129PubMed Chawla RK, Watson WH, Eastin CE et al (1998) S-adenosylmethionine deficiency and TNF-α in lypopolysaccharide-induced hepatic injury. Am J Physiol 275:G125–G129PubMed
23.
go back to reference Watson WH, Zhao Y, Chawla RK (1999) S-Adenosylmethionine attenuates the lipopolysaccharide-induced expression of gene for tumor necrosis factor α. Biochem J 342:21–25PubMedCentralCrossRefPubMed Watson WH, Zhao Y, Chawla RK (1999) S-Adenosylmethionine attenuates the lipopolysaccharide-induced expression of gene for tumor necrosis factor α. Biochem J 342:21–25PubMedCentralCrossRefPubMed
24.
go back to reference McClain CJ, Hill DB, Song Z et al (2002) S-Adenosylmethionine, cytokines, and alcoholic liver disease. Alcohol 27:185–192CrossRefPubMed McClain CJ, Hill DB, Song Z et al (2002) S-Adenosylmethionine, cytokines, and alcoholic liver disease. Alcohol 27:185–192CrossRefPubMed
25.
go back to reference Veal N, Hsieh C-L, Xiong S et al (2004) Inhibition of lipopolysaccharide-stimulated TNF-α promoter activity by S-adenosylmethionine and 5′-methylthioadenosine. Am J Physiol 287:G352–G362 Veal N, Hsieh C-L, Xiong S et al (2004) Inhibition of lipopolysaccharide-stimulated TNF-α promoter activity by S-adenosylmethionine and 5′-methylthioadenosine. Am J Physiol 287:G352–G362
26.
go back to reference Song Z, Uriarte S, Sahoo R et al (2005) S-adenosylmethionine (SAMe) modulates interleukin-10 and interleukin-6, but not TNF, production via the adenosine (A2) receptor. Biochim Biophys Acta 1743:205–213CrossRefPubMed Song Z, Uriarte S, Sahoo R et al (2005) S-adenosylmethionine (SAMe) modulates interleukin-10 and interleukin-6, but not TNF, production via the adenosine (A2) receptor. Biochim Biophys Acta 1743:205–213CrossRefPubMed
27.
go back to reference Veber D, Mutti E, Galmozzi E et al (2006) Increased levels of the CD40:CD40 ligand dyad in the cerebrospinal fluid of rats with vitamin B12(cobalamin)-deficient central neuropathy. J Neuroimmunol 176:24–33CrossRefPubMed Veber D, Mutti E, Galmozzi E et al (2006) Increased levels of the CD40:CD40 ligand dyad in the cerebrospinal fluid of rats with vitamin B12(cobalamin)-deficient central neuropathy. J Neuroimmunol 176:24–33CrossRefPubMed
28.
go back to reference Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477CrossRefPubMed Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477CrossRefPubMed
29.
go back to reference Linden R, Martins VR, Prado MA et al (2008) Physiology of the prion protein. Physiol Rev 88:673–728CrossRefPubMed Linden R, Martins VR, Prado MA et al (2008) Physiology of the prion protein. Physiol Rev 88:673–728CrossRefPubMed
30.
go back to reference Nishida N, Tremblay P, Sugimoto T et al (1999) A mouse prion protein transgene rescues mice deficient for the prion protein gene from Purkinje cell degeneration and demyelination. Lab Invest 79:689–697PubMed Nishida N, Tremblay P, Sugimoto T et al (1999) A mouse prion protein transgene rescues mice deficient for the prion protein gene from Purkinje cell degeneration and demyelination. Lab Invest 79:689–697PubMed
31.
go back to reference Bremer J, Baumann F, Tiberi C et al (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13:310–318CrossRefPubMed Bremer J, Baumann F, Tiberi C et al (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13:310–318CrossRefPubMed
32.
go back to reference Nazor KE, Seward T, Telling GC (2007) Motor behavioral and neuropathological deficits in mice deficient for normal prion protein expression. Biochim Biophys Acta 1772:645–653PubMedCentralCrossRefPubMed Nazor KE, Seward T, Telling GC (2007) Motor behavioral and neuropathological deficits in mice deficient for normal prion protein expression. Biochim Biophys Acta 1772:645–653PubMedCentralCrossRefPubMed
33.
go back to reference Westaway D, DeArmond SJ, Cayetano-Canlas J et al (1994) Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 76:117–129CrossRefPubMed Westaway D, DeArmond SJ, Cayetano-Canlas J et al (1994) Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 76:117–129CrossRefPubMed
34.
go back to reference Radovanovic I, Braun N, Giger OT et al (2005) Truncated prion protein and Doppel are myelinotoxic in the absence of oligodendrocytic PrPC. J Neurosci 25:4879–4888CrossRefPubMed Radovanovic I, Braun N, Giger OT et al (2005) Truncated prion protein and Doppel are myelinotoxic in the absence of oligodendrocytic PrPC. J Neurosci 25:4879–4888CrossRefPubMed
35.
go back to reference Li A, Christensen HM, Stewart LR et al (2007) Neonatal lethality in transgenic mice expressing prion protein with a deletion of residues 105–125. EMBO J 26:548–558PubMedCentralCrossRefPubMed Li A, Christensen HM, Stewart LR et al (2007) Neonatal lethality in transgenic mice expressing prion protein with a deletion of residues 105–125. EMBO J 26:548–558PubMedCentralCrossRefPubMed
37.
38.
go back to reference Mitteregger G, Vosko M, Krebs B et al (2007) The role of the octarepeat region in neuroprotective function of the cellular prion protein. Brain Pathol 17:174–183PubMedCentralCrossRefPubMed Mitteregger G, Vosko M, Krebs B et al (2007) The role of the octarepeat region in neuroprotective function of the cellular prion protein. Brain Pathol 17:174–183PubMedCentralCrossRefPubMed
39.
go back to reference Li A, Piccardo P, Barmada SJ et al (2007) Prion protein with an octapeptide insertion has impaired neuroprotective activity in transgenic mice. EMBO J 26:2777–2785PubMedCentralCrossRefPubMed Li A, Piccardo P, Barmada SJ et al (2007) Prion protein with an octapeptide insertion has impaired neuroprotective activity in transgenic mice. EMBO J 26:2777–2785PubMedCentralCrossRefPubMed
40.
go back to reference Flechsig E, Shmerling D, Hegyi I et al (2000) Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron 27:399–408CrossRefPubMed Flechsig E, Shmerling D, Hegyi I et al (2000) Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron 27:399–408CrossRefPubMed
41.
go back to reference Chiesa R, Piccardo P, Ghetti B, Harris DA (1998) Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron 21:1339–1351CrossRefPubMed Chiesa R, Piccardo P, Ghetti B, Harris DA (1998) Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron 21:1339–1351CrossRefPubMed
42.
go back to reference Chiesa R, Drisaldi B, Quaglio E et al (2000) Accumulation of protease-resistant prion protein (PrP) and apoptosis of cerebellar granule cells in transgenic mice expressing a PrP insertional mutation. Proc Natl Acad Sci USA 97:5574–5579PubMedCentralCrossRefPubMed Chiesa R, Drisaldi B, Quaglio E et al (2000) Accumulation of protease-resistant prion protein (PrP) and apoptosis of cerebellar granule cells in transgenic mice expressing a PrP insertional mutation. Proc Natl Acad Sci USA 97:5574–5579PubMedCentralCrossRefPubMed
44.
go back to reference Mead S, Webb TE, Campbell TA et al (2007) Inherited prion disease with 5-OPRI: phenotype modification by repeat length and codon 129. Neurology 69:730–738CrossRefPubMed Mead S, Webb TE, Campbell TA et al (2007) Inherited prion disease with 5-OPRI: phenotype modification by repeat length and codon 129. Neurology 69:730–738CrossRefPubMed
45.
go back to reference Kaski DN, Pennington C, Beck J et al (2011) Inherited prion disease with 4-octapeptide repeat insertion: disease requires the interaction of multiple genetic risk factors. Brain 134:1829–1838CrossRefPubMed Kaski DN, Pennington C, Beck J et al (2011) Inherited prion disease with 4-octapeptide repeat insertion: disease requires the interaction of multiple genetic risk factors. Brain 134:1829–1838CrossRefPubMed
46.
go back to reference Solomon IH, Schepker JA, Harris DA (2010) Prion neurotoxicity: insights from prion protein mutants. Curr Issues Mol Biol 12:51–61PubMed Solomon IH, Schepker JA, Harris DA (2010) Prion neurotoxicity: insights from prion protein mutants. Curr Issues Mol Biol 12:51–61PubMed
47.
go back to reference Martins VR, Beraldo FH, Hajj GN et al (2010) Prion protein: orchestrating neurotrophic activities. Curr Issues Mol Biol 12:63–86PubMed Martins VR, Beraldo FH, Hajj GN et al (2010) Prion protein: orchestrating neurotrophic activities. Curr Issues Mol Biol 12:63–86PubMed
48.
go back to reference Wadsworth JD, Asante EA, Collinge J (2010) Contribution of transgenic models to understanding human prion disease. Neuropathol Appl Neurobiol 36:576–597PubMedCentralCrossRefPubMed Wadsworth JD, Asante EA, Collinge J (2010) Contribution of transgenic models to understanding human prion disease. Neuropathol Appl Neurobiol 36:576–597PubMedCentralCrossRefPubMed
49.
go back to reference Chiesa R, Harris DA (2001) Prion diseases: what is the neurotoxic molecule? Neurobiol Dis 8:743–763CrossRefPubMed Chiesa R, Harris DA (2001) Prion diseases: what is the neurotoxic molecule? Neurobiol Dis 8:743–763CrossRefPubMed
50.
go back to reference Veber D, Mutti E, Tacchini L et al (2008) Indirect down-regulation of nuclear NF-κB levels by cobalamin in the spinal cord and liver of the rat. J Neurosci Res 86:1380–1387CrossRefPubMed Veber D, Mutti E, Tacchini L et al (2008) Indirect down-regulation of nuclear NF-κB levels by cobalamin in the spinal cord and liver of the rat. J Neurosci Res 86:1380–1387CrossRefPubMed
51.
go back to reference Moser M, Colello RJ, Pott U, Oesch B (1995) Developmental expression of the prion protein gene in glial cells. Neuron 14:509–517CrossRefPubMed Moser M, Colello RJ, Pott U, Oesch B (1995) Developmental expression of the prion protein gene in glial cells. Neuron 14:509–517CrossRefPubMed
52.
go back to reference Follet J, Lemaire-Vieille C, Blanquet-Grossard F et al (2002) PrP expression and replication by Schwann cells: implications in prion spreading. J Virol 76:2434–2439PubMedCentralCrossRefPubMed Follet J, Lemaire-Vieille C, Blanquet-Grossard F et al (2002) PrP expression and replication by Schwann cells: implications in prion spreading. J Virol 76:2434–2439PubMedCentralCrossRefPubMed
53.
go back to reference Sauer H, Wefer K, Vetrugno V et al (2003) Regulation of intrinsic prion protein by growth factors and TNF-α: the role of intracellular reactive oxygen species. Free Radic Biol Med 35:586–594CrossRefPubMed Sauer H, Wefer K, Vetrugno V et al (2003) Regulation of intrinsic prion protein by growth factors and TNF-α: the role of intracellular reactive oxygen species. Free Radic Biol Med 35:586–594CrossRefPubMed
54.
go back to reference Kuwahara C, Kubosaki A, Nishimura T et al (2000) Enhanced expression of cellular prion protein gene by insulin or nerve growth factor in immortalized mouse neuronal precursor cell lines. Biochem Biophys Res Commun 268:763–766CrossRefPubMed Kuwahara C, Kubosaki A, Nishimura T et al (2000) Enhanced expression of cellular prion protein gene by insulin or nerve growth factor in immortalized mouse neuronal precursor cell lines. Biochem Biophys Res Commun 268:763–766CrossRefPubMed
55.
go back to reference Williams AE, van Dam A-M, Man-A-Hing WKH et al (1994) Cytokines, prostaglandins and lipocortin-1 are present in the brains of scrapie-infected mice. Brain Res 654:200–206CrossRefPubMed Williams AE, van Dam A-M, Man-A-Hing WKH et al (1994) Cytokines, prostaglandins and lipocortin-1 are present in the brains of scrapie-infected mice. Brain Res 654:200–206CrossRefPubMed
56.
go back to reference Campbell IL, Eddleston M, Kemper P et al (1994) Activation of cerebral cytokine gene expression and its correlation with onset of reactive astrocyte and acute-phase response gene expression in scrapie. J Virol 68:2383–2387PubMedCentralPubMed Campbell IL, Eddleston M, Kemper P et al (1994) Activation of cerebral cytokine gene expression and its correlation with onset of reactive astrocyte and acute-phase response gene expression in scrapie. J Virol 68:2383–2387PubMedCentralPubMed
59.
go back to reference Glatzel M, Stoeck K, Seeger H et al (2005) Human prion diseases. Molecular and clinical aspects. Arch Neurol 62:545–552CrossRefPubMed Glatzel M, Stoeck K, Seeger H et al (2005) Human prion diseases. Molecular and clinical aspects. Arch Neurol 62:545–552CrossRefPubMed
60.
go back to reference Scalabrino G, Veber D, Mutti E et al (2012) Cobalamin (vitamin B12) regulation of PrPC, PrPC-mRNA and copper levels in rat central nervous system. Exp Neurol 233:380–390CrossRefPubMed Scalabrino G, Veber D, Mutti E et al (2012) Cobalamin (vitamin B12) regulation of PrPC, PrPC-mRNA and copper levels in rat central nervous system. Exp Neurol 233:380–390CrossRefPubMed
61.
go back to reference Scalabrino G, Mutti E, Veber D et al (2011) The octapeptide repeat PrPC region and cobalamin-deficient polyneuropathy of the rat. Muscle Nerve 44:957–967CrossRefPubMed Scalabrino G, Mutti E, Veber D et al (2011) The octapeptide repeat PrPC region and cobalamin-deficient polyneuropathy of the rat. Muscle Nerve 44:957–967CrossRefPubMed
62.
go back to reference Oltean S, Banerjee R (2003) Nutritional modulation of gene expression and homocysteine utilization by vitamin B12. J Biol Chem 278:20778–20784CrossRefPubMed Oltean S, Banerjee R (2003) Nutritional modulation of gene expression and homocysteine utilization by vitamin B12. J Biol Chem 278:20778–20784CrossRefPubMed
63.
go back to reference Marguerite V, Beri-Dexheimer M, Ortiou S et al (2007) Cobalamin potentiates vinblastine cytotoxicity through downregulation of mdr-1 gene expression in HepG2 cells. Cell Physiol Biochem 20:967–976CrossRefPubMed Marguerite V, Beri-Dexheimer M, Ortiou S et al (2007) Cobalamin potentiates vinblastine cytotoxicity through downregulation of mdr-1 gene expression in HepG2 cells. Cell Physiol Biochem 20:967–976CrossRefPubMed
64.
go back to reference Nahvi A, Barrick JE, Breaker RR (2004) Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 32:143–150PubMedCentralCrossRefPubMed Nahvi A, Barrick JE, Breaker RR (2004) Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 32:143–150PubMedCentralCrossRefPubMed
66.
go back to reference Miller A, Korem M, Almog R, Galboiz Y (2005) Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J Neurol Sci 233:93–97CrossRefPubMed Miller A, Korem M, Almog R, Galboiz Y (2005) Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J Neurol Sci 233:93–97CrossRefPubMed
67.
68.
go back to reference Scalabrino G, Galimberti D, Mutti E et al (2010) Loss of epidermal growth factor regulation by cobalamin in multiple sclerosis. Brain Res 1333:64–71CrossRefPubMed Scalabrino G, Galimberti D, Mutti E et al (2010) Loss of epidermal growth factor regulation by cobalamin in multiple sclerosis. Brain Res 1333:64–71CrossRefPubMed
70.
go back to reference Imitola J, Chitnis T, Khoury SJ (2005) Cytokines in multiple sclerosis: from bench to bedside. Pharmacol Ther 106:163–177CrossRefPubMed Imitola J, Chitnis T, Khoury SJ (2005) Cytokines in multiple sclerosis: from bench to bedside. Pharmacol Ther 106:163–177CrossRefPubMed
71.
go back to reference Baranzini SE, Elfstrom C, Chang SY et al (2000) Transcriptional analysis of multiple sclerosis brain lesions reveals a complex pattern of cytokine expression. J Immunol 165:6576–6582CrossRefPubMed Baranzini SE, Elfstrom C, Chang SY et al (2000) Transcriptional analysis of multiple sclerosis brain lesions reveals a complex pattern of cytokine expression. J Immunol 165:6576–6582CrossRefPubMed
72.
go back to reference Loeb JA (2007) Neuroprotection and repair by neurotrophic and gliotrophic factors in multiple sclerosis. Neurology 68(Suppl 3):S38–S42CrossRefPubMed Loeb JA (2007) Neuroprotection and repair by neurotrophic and gliotrophic factors in multiple sclerosis. Neurology 68(Suppl 3):S38–S42CrossRefPubMed
73.
go back to reference Scalabrino G, Veber D, Briani C et al (2013) Cobalamin as a regulator of serum and cerebrospinal fluid levels of normal prions. J Clin Neurosci 20:134–138CrossRefPubMed Scalabrino G, Veber D, Briani C et al (2013) Cobalamin as a regulator of serum and cerebrospinal fluid levels of normal prions. J Clin Neurosci 20:134–138CrossRefPubMed
74.
go back to reference Roucou X, Gains M, LeBlanc AC (2004) Neuroprotective functions of prion protein. J Neurosci Res 75:153–161CrossRefPubMed Roucou X, Gains M, LeBlanc AC (2004) Neuroprotective functions of prion protein. J Neurosci Res 75:153–161CrossRefPubMed
75.
go back to reference Steinacker P, Hawlik A, Lehnert S et al (2010) Neuroprotective function of cellular prion protein in a mouse model of amyotrophic lateral sclerosis. Am J Pathol 176:1409–1420PubMedCentralCrossRefPubMed Steinacker P, Hawlik A, Lehnert S et al (2010) Neuroprotective function of cellular prion protein in a mouse model of amyotrophic lateral sclerosis. Am J Pathol 176:1409–1420PubMedCentralCrossRefPubMed
76.
go back to reference Dupuis L, Mbebi C, Gonzalez de Aguilar JL et al (2002) Loss of prion protein in a transgenic model of amyotrophic lateral sclerosis. Mol Cell Neurosci 19:216–224CrossRefPubMed Dupuis L, Mbebi C, Gonzalez de Aguilar JL et al (2002) Loss of prion protein in a transgenic model of amyotrophic lateral sclerosis. Mol Cell Neurosci 19:216–224CrossRefPubMed
77.
go back to reference Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14:248–264CrossRefPubMed Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14:248–264CrossRefPubMed
81.
go back to reference Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect. Biol 3:a006833 Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect. Biol 3:a006833
82.
83.
84.
85.
go back to reference Kang SH, Li Y, Fukaya M et al (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16:571–579PubMedCentralCrossRefPubMed Kang SH, Li Y, Fukaya M et al (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16:571–579PubMedCentralCrossRefPubMed
87.
go back to reference Meyne F, Gloeckner S, Ciesielczyk B et al (2009) Total prion protein levels in the cerebrospinal fluid are reduced in patients with various neurological disorders. J Alzheimers Dis 17:863–873PubMed Meyne F, Gloeckner S, Ciesielczyk B et al (2009) Total prion protein levels in the cerebrospinal fluid are reduced in patients with various neurological disorders. J Alzheimers Dis 17:863–873PubMed
88.
go back to reference Benarroch EE (2009) Oligodendrocytes. Susceptibility to injury and involvement in neurologic disease. Neurology 72:1779–1785CrossRefPubMed Benarroch EE (2009) Oligodendrocytes. Susceptibility to injury and involvement in neurologic disease. Neurology 72:1779–1785CrossRefPubMed
89.
go back to reference Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468CrossRefPubMed Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468CrossRefPubMed
90.
go back to reference Okada K, Tanaka H, Temporin K et al (2010) Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol 222:191–203CrossRefPubMed Okada K, Tanaka H, Temporin K et al (2010) Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol 222:191–203CrossRefPubMed
91.
92.
go back to reference Buccellato FR, Foi L, Veber D et al (2004) Different uptake of cobalamin (vitamin B12) by astrocytes and oligodendrocytes isolated from rat spinal cord. Glia 45:406–411CrossRefPubMed Buccellato FR, Foi L, Veber D et al (2004) Different uptake of cobalamin (vitamin B12) by astrocytes and oligodendrocytes isolated from rat spinal cord. Glia 45:406–411CrossRefPubMed
93.
go back to reference Knapp PE, Adams MH (2004) Epidermal growth factor promotes oligodendrocyte process formation and regrowth after injury. Exp Cell Res 296:135–144CrossRefPubMed Knapp PE, Adams MH (2004) Epidermal growth factor promotes oligodendrocyte process formation and regrowth after injury. Exp Cell Res 296:135–144CrossRefPubMed
94.
95.
go back to reference Yamada M, Ikeuchi T, Hatanaka H (1997) The neurotrophic action and signalling of epidermal growth factor. Prog Neurobiol 51:19–37CrossRefPubMed Yamada M, Ikeuchi T, Hatanaka H (1997) The neurotrophic action and signalling of epidermal growth factor. Prog Neurobiol 51:19–37CrossRefPubMed
96.
go back to reference Moore CS, Abdullah SL, Brown A et al (2011) How factors secreted from astrocytes impact myelin repair. J Neurosci Res 89:13–21CrossRefPubMed Moore CS, Abdullah SL, Brown A et al (2011) How factors secreted from astrocytes impact myelin repair. J Neurosci Res 89:13–21CrossRefPubMed
Metadata
Title
Myelin damage due to local quantitative abnormalities in normal prion levels: evidence from subacute combined degeneration and multiple sclerosis
Authors
Giuseppe Scalabrino
Daniela Veber
Publication date
01-08-2014
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 8/2014
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-013-7152-3

Other articles of this Issue 8/2014

Journal of Neurology 8/2014 Go to the issue

Original Communication

Stroke in sports: a case series

Pioneers in Neurology

Robert Bartholow (1831–1904)