Skip to main content
Top
Published in: Clinical and Translational Oncology 2/2013

01-02-2013 | Educational Series – Blue Series

MYC oncogene in myeloid neoplasias

Authors: M. Dolores Delgado, Marta Albajar, M. Teresa Gomez-Casares, Ana Batlle, Javier León

Published in: Clinical and Translational Oncology | Issue 2/2013

Login to get access

Abstract

MYC is a transcription factor that regulates many critical genes for cell proliferation, differentiation, and biomass accumulation. MYC is one of the most prevalent oncogenes found to be altered in human cancer, being deregulated in about 50 % of tumors. Although MYC deregulation has been more frequently associated to lymphoma and lymphoblastic leukemia than to myeloid malignancies, a body of evidence has been gathered showing that MYC plays a relevant role in malignancies derived from the myeloid compartment. The myeloid leukemogenic activity of MYC has been demonstrated in different murine models. Not surprisingly, MYC has been found to be amplified or/and deregulated in the three major types of myeloid neoplasms: acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms, including chronic myeloid leukemia. Here, we review the recent literature describing the involvement of MYC in myeloid tumors.
Literature
1.
go back to reference Iwasaki H, Akashi K (2007) Myeloid lineage commitment from the hematopoietic stem cell. Immunity 26:726–740CrossRefPubMed Iwasaki H, Akashi K (2007) Myeloid lineage commitment from the hematopoietic stem cell. Immunity 26:726–740CrossRefPubMed
2.
go back to reference Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644CrossRefPubMed Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644CrossRefPubMed
3.
go back to reference Tsiftsoglou AS, Bonovolias ID, Tsiftsoglou SA (2009) Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol Ther 122:264–280CrossRefPubMed Tsiftsoglou AS, Bonovolias ID, Tsiftsoglou SA (2009) Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol Ther 122:264–280CrossRefPubMed
4.
go back to reference Miranda-Saavedra D, Gottgens B (2008) Transcriptional regulatory networks in haematopoiesis. Curr Opin Genet Dev 18:530–535CrossRefPubMed Miranda-Saavedra D, Gottgens B (2008) Transcriptional regulatory networks in haematopoiesis. Curr Opin Genet Dev 18:530–535CrossRefPubMed
5.
go back to reference Kim SI, Bresnick EH (2007) Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 26:6777–6794CrossRefPubMed Kim SI, Bresnick EH (2007) Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 26:6777–6794CrossRefPubMed
6.
go back to reference Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC et al (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264CrossRefPubMed Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC et al (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264CrossRefPubMed
7.
go back to reference Oster SK, Ho CS, Soucie EL, Penn LZ (2002) The myc oncogene: marvelouslY complex. Adv Cancer Res 84:81–154CrossRefPubMed Oster SK, Ho CS, Soucie EL, Penn LZ (2002) The myc oncogene: marvelouslY complex. Adv Cancer Res 84:81–154CrossRefPubMed
9.
go back to reference Leon J, Ferrandiz N, Acosta JC, Delgado MD (2009) Inhibition of cell differentiation: a critical mechanism for MYC-mediated carcinogenesis? Cell Cycle 8:1148–1157CrossRefPubMed Leon J, Ferrandiz N, Acosta JC, Delgado MD (2009) Inhibition of cell differentiation: a critical mechanism for MYC-mediated carcinogenesis? Cell Cycle 8:1148–1157CrossRefPubMed
10.
go back to reference Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18:3004–3016CrossRefPubMed Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18:3004–3016CrossRefPubMed
11.
go back to reference Vita M, Henriksson M (2006) The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16:318–330CrossRefPubMed Vita M, Henriksson M (2006) The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16:318–330CrossRefPubMed
12.
13.
go back to reference Sanchez-Beato M, Sanchez-Aguilera A, Piris MA (2003) Cell cycle deregulation in B-cell lymphomas. Blood 101:1220–1235CrossRefPubMed Sanchez-Beato M, Sanchez-Aguilera A, Piris MA (2003) Cell cycle deregulation in B-cell lymphomas. Blood 101:1220–1235CrossRefPubMed
14.
15.
go back to reference Sheiness D, Bishop JM (1979) DNA and RNA from uninfected vertebrate cells contain nucleotide sequences related to the putative transforming gene of avian myelocytomatosis virus. J Virol 31:514–521PubMed Sheiness D, Bishop JM (1979) DNA and RNA from uninfected vertebrate cells contain nucleotide sequences related to the putative transforming gene of avian myelocytomatosis virus. J Virol 31:514–521PubMed
16.
go back to reference Coppola JA, Cole MD (1986) Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature 320:760–763CrossRefPubMed Coppola JA, Cole MD (1986) Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature 320:760–763CrossRefPubMed
17.
go back to reference Prochownik EV, Kukowska J (1986) Deregulated expression of c-myc by murine erythroleukaemia cells prevents differentiation. Nature 322:848–850CrossRefPubMed Prochownik EV, Kukowska J (1986) Deregulated expression of c-myc by murine erythroleukaemia cells prevents differentiation. Nature 322:848–850CrossRefPubMed
18.
go back to reference Dmitrovsky E, Kuehl WM, Hollis GF, Kirsch IR, Bender TP et al (1986) Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature 322:748–750CrossRefPubMed Dmitrovsky E, Kuehl WM, Hollis GF, Kirsch IR, Bender TP et al (1986) Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature 322:748–750CrossRefPubMed
19.
go back to reference Delgado MD, Lerga A, Canelles M, Gomez-Casares MT, Leon J (1995) Differential regulation of Max and role of c-Myc during erythroid and myelomonocytic differentiation of K562 cells. Oncogene 10:1659–1665PubMed Delgado MD, Lerga A, Canelles M, Gomez-Casares MT, Leon J (1995) Differential regulation of Max and role of c-Myc during erythroid and myelomonocytic differentiation of K562 cells. Oncogene 10:1659–1665PubMed
20.
go back to reference Acosta JC, Ferrandiz N, Bretones G, Torrano V, Blanco R et al (2008) Myc inhibits p27-induced erythroid differentiation of leukemia cells by repressing erythroid master genes without reversing p27-mediated cell cycle arrest. Mol Cell Biol 28:7286–7295CrossRefPubMed Acosta JC, Ferrandiz N, Bretones G, Torrano V, Blanco R et al (2008) Myc inhibits p27-induced erythroid differentiation of leukemia cells by repressing erythroid master genes without reversing p27-mediated cell cycle arrest. Mol Cell Biol 28:7286–7295CrossRefPubMed
21.
go back to reference Ryan KM, Birnie GD (1997) Cell-cycle progression is not essential for c-Myc to block differentiation. Oncogene 14:2835–2843CrossRefPubMed Ryan KM, Birnie GD (1997) Cell-cycle progression is not essential for c-Myc to block differentiation. Oncogene 14:2835–2843CrossRefPubMed
22.
go back to reference Gomez-Casares MT, Delgado MD, Lerga A, Crespo P, Quincoces AF et al (1993) Down-regulation of c-myc gene is not obligatory for growth inhibition and differentiation of human myeloid leukemia cells. Leukemia 7:1824–1833PubMed Gomez-Casares MT, Delgado MD, Lerga A, Crespo P, Quincoces AF et al (1993) Down-regulation of c-myc gene is not obligatory for growth inhibition and differentiation of human myeloid leukemia cells. Leukemia 7:1824–1833PubMed
23.
go back to reference Bahram F, Wu S, Oberg F, Luscher B, Larsson LG (1999) Posttranslational regulation of Myc function in response to phorbol ester/interferon-gamma-induced differentiation of v-Myc-transformed U-937 monoblasts. Blood 93:3900–3912PubMed Bahram F, Wu S, Oberg F, Luscher B, Larsson LG (1999) Posttranslational regulation of Myc function in response to phorbol ester/interferon-gamma-induced differentiation of v-Myc-transformed U-937 monoblasts. Blood 93:3900–3912PubMed
24.
go back to reference Uribesalgo I, Buschbeck M, Gutierrez A, Teichmann S, Demajo S et al (2011) E-box-independent regulation of transcription and differentiation by MYC. Nat Cell Biol 13:1443–1449CrossRefPubMed Uribesalgo I, Buschbeck M, Gutierrez A, Teichmann S, Demajo S et al (2011) E-box-independent regulation of transcription and differentiation by MYC. Nat Cell Biol 13:1443–1449CrossRefPubMed
25.
go back to reference Guo Y, Niu C, Breslin P, Tang M, Zhang S et al (2009) c-Myc-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Blood 114:2097–2106CrossRefPubMed Guo Y, Niu C, Breslin P, Tang M, Zhang S et al (2009) c-Myc-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Blood 114:2097–2106CrossRefPubMed
26.
go back to reference Thompson A, Zhang Y, Kamen D, Jackson CW, Cardiff RD et al (1996) Deregulated expression of c-myc in megakaryocytes of transgenic mice increases megakaryopoiesis and decreases polyploidization. J Biol Chem 271:22976–22982CrossRefPubMed Thompson A, Zhang Y, Kamen D, Jackson CW, Cardiff RD et al (1996) Deregulated expression of c-myc in megakaryocytes of transgenic mice increases megakaryopoiesis and decreases polyploidization. J Biol Chem 271:22976–22982CrossRefPubMed
27.
go back to reference Luo H, Li Q, O’Neal J, Kreisel F, Le Beau MM et al (2005) c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. Blood 106:2452–2461CrossRefPubMed Luo H, Li Q, O’Neal J, Kreisel F, Le Beau MM et al (2005) c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. Blood 106:2452–2461CrossRefPubMed
28.
go back to reference Xiang Z, Luo H, Payton JE, Cain J, Ley TJ et al (2010) Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia. J Clin Invest 120:2109–2118CrossRefPubMed Xiang Z, Luo H, Payton JE, Cain J, Ley TJ et al (2010) Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia. J Clin Invest 120:2109–2118CrossRefPubMed
29.
go back to reference Beverly LJ, Varmus HE (2009) MYC-induced myeloid leukemogenesis is accelerated by all six members of the antiapoptotic BCL family. Oncogene 28:1274–1279CrossRefPubMed Beverly LJ, Varmus HE (2009) MYC-induced myeloid leukemogenesis is accelerated by all six members of the antiapoptotic BCL family. Oncogene 28:1274–1279CrossRefPubMed
30.
go back to reference Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA et al (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–811CrossRefPubMed Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA et al (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–811CrossRefPubMed
31.
go back to reference Yu D, Thomas-Tikhonenko A (2002) A non-transgenic mouse model for B-cell lymphoma: in vivo infection of p53-null bone marrow progenitors by a Myc retrovirus is sufficient for tumorigenesis. Oncogene 21:1922–1927CrossRefPubMed Yu D, Thomas-Tikhonenko A (2002) A non-transgenic mouse model for B-cell lymphoma: in vivo infection of p53-null bone marrow progenitors by a Myc retrovirus is sufficient for tumorigenesis. Oncogene 21:1922–1927CrossRefPubMed
32.
go back to reference Yu D, Allman D, Goldschmidt MH, Atchison ML, Monroe JG et al (2003) Oscillation between B-lymphoid and myeloid lineages in Myc-induced hematopoietic tumors following spontaneous silencing/reactivation of the EBF/Pax5 pathway. Blood 101:1950–1955CrossRefPubMed Yu D, Allman D, Goldschmidt MH, Atchison ML, Monroe JG et al (2003) Oscillation between B-lymphoid and myeloid lineages in Myc-induced hematopoietic tumors following spontaneous silencing/reactivation of the EBF/Pax5 pathway. Blood 101:1950–1955CrossRefPubMed
33.
go back to reference Kawagoe H, Kandilci A, Kranenburg TA, Grosveld GC (2007) Overexpression of N-Myc rapidly causes acute myeloid leukemia in mice. Cancer Res 67:10677–10685CrossRefPubMed Kawagoe H, Kandilci A, Kranenburg TA, Grosveld GC (2007) Overexpression of N-Myc rapidly causes acute myeloid leukemia in mice. Cancer Res 67:10677–10685CrossRefPubMed
34.
go back to reference Hogstrand K, Hejll E, Sander B, Rozell B, Larsson LG et al (2012) Inhibition of the intrinsic but not the extrinsic apoptosis pathway accelerates and drives MYC-driven tumorigenesis towards acute myeloid leukemia. PLoS ONE 7:e31366CrossRefPubMed Hogstrand K, Hejll E, Sander B, Rozell B, Larsson LG et al (2012) Inhibition of the intrinsic but not the extrinsic apoptosis pathway accelerates and drives MYC-driven tumorigenesis towards acute myeloid leukemia. PLoS ONE 7:e31366CrossRefPubMed
35.
go back to reference Skoda RC, Tsai SF, Orkin SH, Leder P (1995) Expression of c-MYC under the control of GATA-1 regulatory sequences causes erythroleukemia in transgenic mice. J Exp Med 181:1603–1613CrossRefPubMed Skoda RC, Tsai SF, Orkin SH, Leder P (1995) Expression of c-MYC under the control of GATA-1 regulatory sequences causes erythroleukemia in transgenic mice. J Exp Med 181:1603–1613CrossRefPubMed
36.
go back to reference Smith DP, Bath ML, Harris AW, Cory S (2005) T-cell lymphomas mask slower developing B-lymphoid and myeloid tumours in transgenic mice with broad haematopoietic expression of MYC. Oncogene 24:3544–3553CrossRefPubMed Smith DP, Bath ML, Harris AW, Cory S (2005) T-cell lymphomas mask slower developing B-lymphoid and myeloid tumours in transgenic mice with broad haematopoietic expression of MYC. Oncogene 24:3544–3553CrossRefPubMed
37.
go back to reference Smith DP, Bath ML, Metcalf D, Harris AW, Cory S (2006) MYC levels govern hematopoietic tumor type and latency in transgenic mice. Blood 108:653–661CrossRefPubMed Smith DP, Bath ML, Metcalf D, Harris AW, Cory S (2006) MYC levels govern hematopoietic tumor type and latency in transgenic mice. Blood 108:653–661CrossRefPubMed
38.
go back to reference Vardiman JW, Brunning RD, Arber DA, LeBeau MM, Porwit A et al (2008) Introduction and overview of the classification of the myeloid neoplasms. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. International Agency for Research on Cancer, Lyon, pp 18–37 Vardiman JW, Brunning RD, Arber DA, LeBeau MM, Porwit A et al (2008) Introduction and overview of the classification of the myeloid neoplasms. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. International Agency for Research on Cancer, Lyon, pp 18–37
39.
go back to reference Melo JV, Barnes DJ (2007) Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 7:441–453CrossRefPubMed Melo JV, Barnes DJ (2007) Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 7:441–453CrossRefPubMed
40.
go back to reference Xie S, Lin H, Sun T, Arlinghaus RB (2002) Jak2 is involved in c-Myc induction by Bcr-Abl. Oncogene 21:7137–7146CrossRefPubMed Xie S, Lin H, Sun T, Arlinghaus RB (2002) Jak2 is involved in c-Myc induction by Bcr-Abl. Oncogene 21:7137–7146CrossRefPubMed
41.
go back to reference Gomez-Casares MT, Vaque JP, Lemes A, Molero T, Delgado MD et al (2004) C-myc expression in cell lines derived from chronic myeloid leukemia. Haematologica 89:241–243PubMed Gomez-Casares MT, Vaque JP, Lemes A, Molero T, Delgado MD et al (2004) C-myc expression in cell lines derived from chronic myeloid leukemia. Haematologica 89:241–243PubMed
42.
go back to reference Lugo TG, Witte ON (1989) The BCR-ABL oncogene transforms Rat-1 cells and cooperates with v-myc. Mol Cell Biol 9:1263–1270PubMed Lugo TG, Witte ON (1989) The BCR-ABL oncogene transforms Rat-1 cells and cooperates with v-myc. Mol Cell Biol 9:1263–1270PubMed
43.
go back to reference Sawyers CL, Callahan W, Witte ON (1992) Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70:901–910CrossRefPubMed Sawyers CL, Callahan W, Witte ON (1992) Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70:901–910CrossRefPubMed
44.
go back to reference Afar DE, Goga A, McLaughlin J, Witte ON, Sawyers CL (1994) Differential complementation of Bcr-Abl point mutants with c-Myc. Science 264:424–426CrossRefPubMed Afar DE, Goga A, McLaughlin J, Witte ON, Sawyers CL (1994) Differential complementation of Bcr-Abl point mutants with c-Myc. Science 264:424–426CrossRefPubMed
45.
go back to reference Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8:2796–2808CrossRefPubMed Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8:2796–2808CrossRefPubMed
46.
go back to reference Handa H, Hegde UP, Kotelnikov VM, Mundle SD, Dong LM et al (1997) Bcl-2 and c-myc expression, cell cycle kinetics and apoptosis during the progression of chronic myelogenous leukemia from diagnosis to blastic phase. Leuk Res 21:479–489CrossRefPubMed Handa H, Hegde UP, Kotelnikov VM, Mundle SD, Dong LM et al (1997) Bcl-2 and c-myc expression, cell cycle kinetics and apoptosis during the progression of chronic myelogenous leukemia from diagnosis to blastic phase. Leuk Res 21:479–489CrossRefPubMed
47.
go back to reference Beck Z, Bacsi A, Kovacs E, Kiss J, Kiss A et al (1998) Changes in oncogene expression implicated in evolution of chronic granulocytic leukemia from its chronic phase to acceleration. Leuk Lymphoma 30:293–306PubMed Beck Z, Bacsi A, Kovacs E, Kiss J, Kiss A et al (1998) Changes in oncogene expression implicated in evolution of chronic granulocytic leukemia from its chronic phase to acceleration. Leuk Lymphoma 30:293–306PubMed
48.
go back to reference Nowicki MO, Pawlowski P, Fischer T, Hess G, Pawlowski T et al (2003) Chronic myelogenous leukemia molecular signature. Oncogene 22:3952–3963CrossRefPubMed Nowicki MO, Pawlowski P, Fischer T, Hess G, Pawlowski T et al (2003) Chronic myelogenous leukemia molecular signature. Oncogene 22:3952–3963CrossRefPubMed
49.
go back to reference Diaz-Blanco E, Bruns I, Neumann F, Fischer JC, Graef T et al (2007) Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 21:494–504CrossRefPubMed Diaz-Blanco E, Bruns I, Neumann F, Fischer JC, Graef T et al (2007) Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 21:494–504CrossRefPubMed
50.
go back to reference Albajar M, Gomez-Casares MT, Llorca J, Mauleon I, Vaque JP et al (2011) MYC in chronic myeloid leukemia: induction of aberrant DNA synthesis and association with poor response to imatinib. Mol Cancer Res 9:564–576CrossRefPubMed Albajar M, Gomez-Casares MT, Llorca J, Mauleon I, Vaque JP et al (2011) MYC in chronic myeloid leukemia: induction of aberrant DNA synthesis and association with poor response to imatinib. Mol Cancer Res 9:564–576CrossRefPubMed
51.
go back to reference Lucas CM, Harris RJ, Giannoudis A, Copland M, Slupsky JR et al (2011) Cancerous inhibitor of PP2A (CIP2A) at diagnosis of chronic myeloid leukemia is a critical determinant of disease progression. Blood 117:6660–6668CrossRefPubMed Lucas CM, Harris RJ, Giannoudis A, Copland M, Slupsky JR et al (2011) Cancerous inhibitor of PP2A (CIP2A) at diagnosis of chronic myeloid leukemia is a critical determinant of disease progression. Blood 117:6660–6668CrossRefPubMed
52.
go back to reference Johansson B, Fioretos T, Mitelman F (2002) Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 107:76–94CrossRefPubMed Johansson B, Fioretos T, Mitelman F (2002) Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 107:76–94CrossRefPubMed
53.
go back to reference Brazma D, Grace C, Howard J, Melo JV, Holyoke T et al (2007) Genomic profile of chronic myelogenous leukemia: imbalances associated with disease progression. Genes Chromosomes Cancer 46:1039–1050CrossRefPubMed Brazma D, Grace C, Howard J, Melo JV, Holyoke T et al (2007) Genomic profile of chronic myelogenous leukemia: imbalances associated with disease progression. Genes Chromosomes Cancer 46:1039–1050CrossRefPubMed
54.
55.
go back to reference Porro A, Iraci N, Soverini S, Diolaiti D, Gherardi S et al (2011) c-MYC oncoprotein dictates transcriptional profiles of ATP-binding cassette transporter genes in chronic myelogenous leukemia CD34 + hematopoietic progenitor cells. Mol Cancer Res 9:1054–1066CrossRefPubMed Porro A, Iraci N, Soverini S, Diolaiti D, Gherardi S et al (2011) c-MYC oncoprotein dictates transcriptional profiles of ATP-binding cassette transporter genes in chronic myelogenous leukemia CD34 + hematopoietic progenitor cells. Mol Cancer Res 9:1054–1066CrossRefPubMed
56.
go back to reference Quintas-Cardama A, Cortes J (2009) Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113:1619–1630CrossRefPubMed Quintas-Cardama A, Cortes J (2009) Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113:1619–1630CrossRefPubMed
57.
go back to reference Gomez-Casares MT, Garcia-Alegria E, Lopez-Jorge CE, Ferrandiz N, Blanco R, et al. (2012) MYC antagonizes the differentiation induced by imatinib in chronic myeloid leukemia cells through downregulation of p27KIP1. Oncogene. doi:10.1038/onc.2012.246 Gomez-Casares MT, Garcia-Alegria E, Lopez-Jorge CE, Ferrandiz N, Blanco R, et al. (2012) MYC antagonizes the differentiation induced by imatinib in chronic myeloid leukemia cells through downregulation of p27KIP1. Oncogene. doi:10.​1038/​onc.​2012.​246
58.
go back to reference Theophile K, Buesche G, Kreipe H, Bock O (2008) The expression levels of telomerase catalytic subunit hTERT and oncogenic MYC in essential thrombocythemia are affected by the molecular subtype. Ann Hematol 87:263–268CrossRefPubMed Theophile K, Buesche G, Kreipe H, Bock O (2008) The expression levels of telomerase catalytic subunit hTERT and oncogenic MYC in essential thrombocythemia are affected by the molecular subtype. Ann Hematol 87:263–268CrossRefPubMed
59.
go back to reference Watanabe S, Itoh T, Arai K (1996) JAK2 is essential for activation of c-fos and c-myc promoters and cell proliferation through the human granulocyte-macrophage colony-stimulating factor receptor in BA/F3 cells. J Biol Chem 271:12681–12686CrossRefPubMed Watanabe S, Itoh T, Arai K (1996) JAK2 is essential for activation of c-fos and c-myc promoters and cell proliferation through the human granulocyte-macrophage colony-stimulating factor receptor in BA/F3 cells. J Biol Chem 271:12681–12686CrossRefPubMed
60.
go back to reference Ferrari S, Narni F, Mars W, Kaczmarek L, Venturelli D et al (1986) Expression of growth-regulated genes in human acute leukemias. Cancer Res 46:5162–5166PubMed Ferrari S, Narni F, Mars W, Kaczmarek L, Venturelli D et al (1986) Expression of growth-regulated genes in human acute leukemias. Cancer Res 46:5162–5166PubMed
61.
go back to reference Calabretta B, Venturelli D, Kaczmarek L, Narni F, Talpaz M et al (1986) Altered expression of G1-specific genes in human malignant myeloid cells. Proc Natl Acad Sci USA 83:1495–1498CrossRefPubMed Calabretta B, Venturelli D, Kaczmarek L, Narni F, Talpaz M et al (1986) Altered expression of G1-specific genes in human malignant myeloid cells. Proc Natl Acad Sci USA 83:1495–1498CrossRefPubMed
62.
go back to reference Hirouchi T, Takabatake T, Yoshida K, Nitta Y, Nakamura M et al (2008) Upregulation of c-myc gene accompanied by PU.1 deficiency in radiation-induced acute myeloid leukemia in mice. Exp Hematol 36:871–885CrossRefPubMed Hirouchi T, Takabatake T, Yoshida K, Nitta Y, Nakamura M et al (2008) Upregulation of c-myc gene accompanied by PU.1 deficiency in radiation-induced acute myeloid leukemia in mice. Exp Hematol 36:871–885CrossRefPubMed
63.
go back to reference Court EL, Smith MA, Avent ND, Hancock JT, Morgan LM et al (2004) DNA microarray screening of differential gene expression in bone marrow samples from AML, non-AML patients and AML cell lines. Leuk Res 28:743–753CrossRefPubMed Court EL, Smith MA, Avent ND, Hancock JT, Morgan LM et al (2004) DNA microarray screening of differential gene expression in bone marrow samples from AML, non-AML patients and AML cell lines. Leuk Res 28:743–753CrossRefPubMed
64.
go back to reference Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S et al (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628CrossRefPubMed Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S et al (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628CrossRefPubMed
65.
go back to reference Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X et al (2004) Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104:3679–3687CrossRefPubMed Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X et al (2004) Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104:3679–3687CrossRefPubMed
66.
go back to reference Stirewalt DL, Meshinchi S, Kopecky KJ, Fan W, Pogosova-Agadjanyan EL et al (2008) Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosomes Cancer 47:8–20CrossRefPubMed Stirewalt DL, Meshinchi S, Kopecky KJ, Fan W, Pogosova-Agadjanyan EL et al (2008) Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosomes Cancer 47:8–20CrossRefPubMed
67.
go back to reference Bazarov AV, Adachi S, Li SF, Mateyak MK, Wei S et al (2001) A modest reduction in c-myc expression has minimal effects on cell growth and apoptosis but dramatically reduces susceptibility to Ras and Raf transformation. Cancer Res 61:1178–1186PubMed Bazarov AV, Adachi S, Li SF, Mateyak MK, Wei S et al (2001) A modest reduction in c-myc expression has minimal effects on cell growth and apoptosis but dramatically reduces susceptibility to Ras and Raf transformation. Cancer Res 61:1178–1186PubMed
68.
go back to reference Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH et al (2002) c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 16:2530–2543CrossRefPubMed Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH et al (2002) c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 16:2530–2543CrossRefPubMed
69.
go back to reference Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K et al (2008) Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 14:447–457CrossRefPubMed Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K et al (2008) Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 14:447–457CrossRefPubMed
70.
go back to reference Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P et al (2004) Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 24:2890–2904CrossRefPubMed Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P et al (2004) Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 24:2890–2904CrossRefPubMed
71.
go back to reference Rice KL, Hormaeche I, Doulatov S, Flatow JM, Grimwade D et al (2009) Comprehensive genomic screens identify a role for PLZF-RARalpha as a positive regulator of cell proliferation via direct regulation of c-MYC. Blood 114:5499–5511CrossRefPubMed Rice KL, Hormaeche I, Doulatov S, Flatow JM, Grimwade D et al (2009) Comprehensive genomic screens identify a role for PLZF-RARalpha as a positive regulator of cell proliferation via direct regulation of c-MYC. Blood 114:5499–5511CrossRefPubMed
72.
go back to reference Schreiner S, Birke M, Garcia-Cuellar MP, Zilles O, Greil J et al (2001) MLL-ENL causes a reversible and myc-dependent block of myelomonocytic cell differentiation. Cancer Res 61:6480–6486PubMed Schreiner S, Birke M, Garcia-Cuellar MP, Zilles O, Greil J et al (2001) MLL-ENL causes a reversible and myc-dependent block of myelomonocytic cell differentiation. Cancer Res 61:6480–6486PubMed
73.
go back to reference Sait SN, Qadir MU, Conroy JM, Matsui S, Nowak NJ et al (2002) Double minute chromosomes in acute myeloid leukemia and myelodysplastic syndrome: identification of new amplification regions by fluorescence in situ hybridization and spectral karyotyping. Genes Chromosomes Cancer 34:42–47CrossRefPubMed Sait SN, Qadir MU, Conroy JM, Matsui S, Nowak NJ et al (2002) Double minute chromosomes in acute myeloid leukemia and myelodysplastic syndrome: identification of new amplification regions by fluorescence in situ hybridization and spectral karyotyping. Genes Chromosomes Cancer 34:42–47CrossRefPubMed
74.
go back to reference Slovak ML, Ho JP, Pettenati MJ, Khan A, Douer D et al (1994) Localization of amplified MYC gene sequences to double minute chromosomes in acute myelogenous leukemia. Genes Chromosomes Cancer 9:62–67CrossRefPubMed Slovak ML, Ho JP, Pettenati MJ, Khan A, Douer D et al (1994) Localization of amplified MYC gene sequences to double minute chromosomes in acute myelogenous leukemia. Genes Chromosomes Cancer 9:62–67CrossRefPubMed
75.
go back to reference Rayeroux KC, Campbell LJ (2009) Gene amplification in myeloid leukemias elucidated by fluorescence in situ hybridization. Cancer Genet Cytogenet 193:44–53CrossRefPubMed Rayeroux KC, Campbell LJ (2009) Gene amplification in myeloid leukemias elucidated by fluorescence in situ hybridization. Cancer Genet Cytogenet 193:44–53CrossRefPubMed
76.
go back to reference O’Malley F, Rayeroux K, Cole-Sinclair M, Tong M, Campbell LJ (1999) MYC amplification in two further cases of acute myeloid leukemia with trisomy 4 and double minute chromosomes. Cancer Genet Cytogenet 109:123–125CrossRefPubMed O’Malley F, Rayeroux K, Cole-Sinclair M, Tong M, Campbell LJ (1999) MYC amplification in two further cases of acute myeloid leukemia with trisomy 4 and double minute chromosomes. Cancer Genet Cytogenet 109:123–125CrossRefPubMed
77.
go back to reference Thomas L, Stamberg J, Gojo I, Ning Y, Rapoport AP (2004) Double minute chromosomes in monoblastic (M5) and myeloblastic (M2) acute myeloid leukemia: two case reports and a review of literature. Am J Hematol 77:55–61CrossRefPubMed Thomas L, Stamberg J, Gojo I, Ning Y, Rapoport AP (2004) Double minute chromosomes in monoblastic (M5) and myeloblastic (M2) acute myeloid leukemia: two case reports and a review of literature. Am J Hematol 77:55–61CrossRefPubMed
78.
go back to reference Mathew S, Lorsbach RB, Shearer P, Sandlund JT, Raimondi SC (2000) Double minute chromosomes and c-MYC amplification in a child with secondary myelodysplastic syndrome after treatment for acute lymphoblastic leukemia. Leukemia 14:1314–1315CrossRefPubMed Mathew S, Lorsbach RB, Shearer P, Sandlund JT, Raimondi SC (2000) Double minute chromosomes and c-MYC amplification in a child with secondary myelodysplastic syndrome after treatment for acute lymphoblastic leukemia. Leukemia 14:1314–1315CrossRefPubMed
79.
go back to reference Storlazzi CT, Fioretos T, Surace C, Lonoce A, Mastrorilli A et al (2006) MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene. Hum Mol Genet 15:933–942CrossRefPubMed Storlazzi CT, Fioretos T, Surace C, Lonoce A, Mastrorilli A et al (2006) MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene. Hum Mol Genet 15:933–942CrossRefPubMed
80.
go back to reference Bruyere H, Sutherland H, Chipperfield K, Hudoba M (2010) Concomitant and successive amplifications of MYC in APL-like leukemia. Cancer Genet Cytogenet 197:75–80CrossRefPubMed Bruyere H, Sutherland H, Chipperfield K, Hudoba M (2010) Concomitant and successive amplifications of MYC in APL-like leukemia. Cancer Genet Cytogenet 197:75–80CrossRefPubMed
81.
go back to reference Bajaj R, Xu F, Xiang B, Wilcox K, Diadamo AJ et al (2011) Evidence-based genomic diagnosis characterized chromosomal and cryptic imbalances in 30 elderly patients with myelodysplastic syndrome and acute myeloid leukemia. Mol Cytogenet 4:3CrossRefPubMed Bajaj R, Xu F, Xiang B, Wilcox K, Diadamo AJ et al (2011) Evidence-based genomic diagnosis characterized chromosomal and cryptic imbalances in 30 elderly patients with myelodysplastic syndrome and acute myeloid leukemia. Mol Cytogenet 4:3CrossRefPubMed
82.
go back to reference Micale L, Augello B, Daniele G, Macchia G, L’Abbate A et al (2011) Amplification of the G allele at SNP rs6983267 in 8q24 amplicons in myeloid malignancies as cause of the lack of MYC overexpression? Blood Cells Mol Dis 47:259–261CrossRefPubMed Micale L, Augello B, Daniele G, Macchia G, L’Abbate A et al (2011) Amplification of the G allele at SNP rs6983267 in 8q24 amplicons in myeloid malignancies as cause of the lack of MYC overexpression? Blood Cells Mol Dis 47:259–261CrossRefPubMed
83.
go back to reference Paulsson K, Lassen C, Kuric N, Billstrom R, Fioretos T et al (2003) MYC is not overexpressed in a case of chronic myelomonocytic leukemia with MYC-containing double minutes. Leukemia 17:813–815CrossRefPubMed Paulsson K, Lassen C, Kuric N, Billstrom R, Fioretos T et al (2003) MYC is not overexpressed in a case of chronic myelomonocytic leukemia with MYC-containing double minutes. Leukemia 17:813–815CrossRefPubMed
84.
go back to reference Sloand EM, Pfannes L, Chen G, Shah S, Solomou EE et al (2007) CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) express early apoptotic markers but avoid programmed cell death by up-regulation of antiapoptotic proteins. Blood 109:2399–2405CrossRefPubMed Sloand EM, Pfannes L, Chen G, Shah S, Solomou EE et al (2007) CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) express early apoptotic markers but avoid programmed cell death by up-regulation of antiapoptotic proteins. Blood 109:2399–2405CrossRefPubMed
85.
go back to reference Stasik CJ, Nitta H, Zhang W, Mosher CH, Cook JR et al (2010) Increased MYC gene copy number correlates with increased mRNA levels in diffuse large B-cell lymphoma. Haematologica 95:597–603CrossRefPubMed Stasik CJ, Nitta H, Zhang W, Mosher CH, Cook JR et al (2010) Increased MYC gene copy number correlates with increased mRNA levels in diffuse large B-cell lymphoma. Haematologica 95:597–603CrossRefPubMed
86.
go back to reference Vasikova A, Belickova M, Budinska E, Cermak J (2010) A distinct expression of various gene subsets in CD34 + cells from patients with early and advanced myelodysplastic syndrome. Leuk Res 34:1566–1572CrossRefPubMed Vasikova A, Belickova M, Budinska E, Cermak J (2010) A distinct expression of various gene subsets in CD34 + cells from patients with early and advanced myelodysplastic syndrome. Leuk Res 34:1566–1572CrossRefPubMed
87.
go back to reference Soucek L, Nasi S, Evan GI (2004) Omomyc expression in skin prevents Myc-induced papillomatosis. Cell Death Differ 11:1038–1045CrossRefPubMed Soucek L, Nasi S, Evan GI (2004) Omomyc expression in skin prevents Myc-induced papillomatosis. Cell Death Differ 11:1038–1045CrossRefPubMed
88.
go back to reference Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ et al (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683CrossRefPubMed Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ et al (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683CrossRefPubMed
89.
go back to reference Fukazawa T, Maeda Y, Matsuoka J, Yamatsuji T, Shigemitsu K et al (2010) Inhibition of Myc effectively targets KRAS mutation-positive lung cancer expressing high levels of Myc. Anticancer Res 30:4193–4200PubMed Fukazawa T, Maeda Y, Matsuoka J, Yamatsuji T, Shigemitsu K et al (2010) Inhibition of Myc effectively targets KRAS mutation-positive lung cancer expressing high levels of Myc. Anticancer Res 30:4193–4200PubMed
90.
go back to reference Sodir NM, Swigart LB, Karnezis AN, Hanahan D, Evan GI et al (2011) Endogenous Myc maintains the tumor microenvironment. Genes Dev 25:907–916CrossRefPubMed Sodir NM, Swigart LB, Karnezis AN, Hanahan D, Evan GI et al (2011) Endogenous Myc maintains the tumor microenvironment. Genes Dev 25:907–916CrossRefPubMed
92.
go back to reference Cole MD, Cowling VH (2008) Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol 9:810–815CrossRefPubMed Cole MD, Cowling VH (2008) Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol 9:810–815CrossRefPubMed
93.
go back to reference Moser R, Toyoshima M, Robinson K, Gurley KE, Howie HL et al (2012) MYC-driven tumorigenesis is inhibited by WRN syndrome gene deficiency. Mol Cancer Res 10:535–545CrossRefPubMed Moser R, Toyoshima M, Robinson K, Gurley KE, Howie HL et al (2012) MYC-driven tumorigenesis is inhibited by WRN syndrome gene deficiency. Mol Cancer Res 10:535–545CrossRefPubMed
94.
go back to reference Yang D, Liu H, Goga A, Kim S, Yuneva M et al (2010) Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci USA 107:13836–13841CrossRefPubMed Yang D, Liu H, Goga A, Kim S, Yuneva M et al (2010) Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci USA 107:13836–13841CrossRefPubMed
95.
go back to reference Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montaña MF, D'Artista L, Schleker T, Guerra C, Garcia E, Barbacid M, Hidalgo M, Amati B, Fernandez-Capetillo O (2011) Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 18:1331–1335CrossRefPubMed Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montaña MF, D'Artista L, Schleker T, Guerra C, Garcia E, Barbacid M, Hidalgo M, Amati B, Fernandez-Capetillo O (2011) Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 18:1331–1335CrossRefPubMed
96.
go back to reference Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE et al (2012) Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA 109:9545–9550CrossRefPubMed Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE et al (2012) Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA 109:9545–9550CrossRefPubMed
97.
go back to reference Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J et al (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:904–917CrossRefPubMed Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J et al (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:904–917CrossRefPubMed
98.
go back to reference Larramendy ML, Niini T, Elonen E, Nagy B, Ollila J et al (2002) Overexpression of translocation-associated fusion genes of FGFRI, MYC, NPMI, and DEK, but absence of the translocations in acute myeloid leukemia. A microarray analysis. Haematologica 87:569–577PubMed Larramendy ML, Niini T, Elonen E, Nagy B, Ollila J et al (2002) Overexpression of translocation-associated fusion genes of FGFRI, MYC, NPMI, and DEK, but absence of the translocations in acute myeloid leukemia. A microarray analysis. Haematologica 87:569–577PubMed
99.
go back to reference Qian Z, Fernald AA, Godley LA, Larson RA, Le Beau MM (2002) Expression profiling of CD34+ hematopoietic stem/progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci USA 99:14925–14930CrossRefPubMed Qian Z, Fernald AA, Godley LA, Larson RA, Le Beau MM (2002) Expression profiling of CD34+ hematopoietic stem/progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci USA 99:14925–14930CrossRefPubMed
Metadata
Title
MYC oncogene in myeloid neoplasias
Authors
M. Dolores Delgado
Marta Albajar
M. Teresa Gomez-Casares
Ana Batlle
Javier León
Publication date
01-02-2013
Publisher
Springer Milan
Published in
Clinical and Translational Oncology / Issue 2/2013
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-012-0926-8

Other articles of this Issue 2/2013

Clinical and Translational Oncology 2/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine