Skip to main content
Top
Published in: NeuroMolecular Medicine 4/2008

01-12-2008 | Original Paper

Mutual Stimulation of Beta-Amyloid Fibrillogenesis by Clioquinol and Divalent Metals

Authors: Silvia Bolognin, Paolo Zatta, Denise Drago, Pier Paolo Parnigotto, Fernanda Ricchelli, Giuseppe Tognon

Published in: NeuroMolecular Medicine | Issue 4/2008

Login to get access

Abstract

As reported by some authors, clioquinol (CQ), a 8-hydroxyquinoline derivative, has produced very encouraging results in the treatment of Alzheimer’s disease (AD). Its biological effects are most likely ascribed to complexation of specific metal ions, such as copper (II) and zinc (II), critically associated with β-amyloid (Aβ) aggregation/fibrillogenesis and degeneration processes in the brain. The present study was aimed at assessing the in vitro effects of CQ on the aggregation/fibrillogenesis properties of human Aβ either alone or complexed with Cu2+ and Zn2+. Surprisingly, our data indicated that CQ promoted rather than inhibited the formation of Aβ fibrillar aggregates when added metal ions were present. To understand whether the latter effects were related to the peptide amino acid sequence, we also investigated the aggregational profile of rat Aβ, which differs from the human homologous for three amino acidic substitutions. Such a sequence alteration drastically reduced the tendency of the peptide to undergo spontaneous aggregation/fibrillization. In the presence of CQ and metals, however, also rat Aβ showed a strong propensity to generate fibrillar aggregates. In agreement with the pro-aggregation effects observed in solution, studies with neuroblastoma cells demonstrated an impairment of cell functioning only in the presence of CQ + Aβ–metals. Based on the present findings, the literature data on the potential effectiveness of CQ-based chelation therapy in AD should be re-interpreted.
Literature
go back to reference Atwood, C. S., Moir, R. D., Huang, X., Scarpa, R. C., Bacarra, N. M., Romano, D. M., et al. (1998). Dramatic aggregation of Alzheimer A beta by Cu(II) is induced by conditions representing physiological acidosis. Journal of Biological Chemistry, 273, 12817–12826. doi:10.1074/jbc.273.21.12817.PubMedCrossRef Atwood, C. S., Moir, R. D., Huang, X., Scarpa, R. C., Bacarra, N. M., Romano, D. M., et al. (1998). Dramatic aggregation of Alzheimer A beta by Cu(II) is induced by conditions representing physiological acidosis. Journal of Biological Chemistry, 273, 12817–12826. doi:10.​1074/​jbc.​273.​21.​12817.PubMedCrossRef
go back to reference Atwood, C. S., Scarpa, R. C., Huang, X., Moir, R. D., Jones, W. D., Fairlie, D. P., et al. (2000). Characterization of copper interactions with Alzheimer amyloid beta peptides: Identifications of an attomolar-affinity copper binding site on amyloid beta 1–42. Journal of Neurochemistry, 75, 1219–1233. doi:10.1046/j.1471-4159.2000.0751219.x.PubMedCrossRef Atwood, C. S., Scarpa, R. C., Huang, X., Moir, R. D., Jones, W. D., Fairlie, D. P., et al. (2000). Characterization of copper interactions with Alzheimer amyloid beta peptides: Identifications of an attomolar-affinity copper binding site on amyloid beta 1–42. Journal of Neurochemistry, 75, 1219–1233. doi:10.​1046/​j.​1471-4159.​2000.​0751219.​x.PubMedCrossRef
go back to reference Benvenisti-Zarom, L., Chen, J., & Regan, R. (2005). The oxidative neurotoxicity of clioquinol. Neuropharmacology, 49, 687–694.PubMed Benvenisti-Zarom, L., Chen, J., & Regan, R. (2005). The oxidative neurotoxicity of clioquinol. Neuropharmacology, 49, 687–694.PubMed
go back to reference Bocharova, O. V., Breydo, L., Salnikov, V. V., & Baskakov, I. (2005). Copper (II) inhibits in vitro conversion of prion protein into amyloid fibrils. Biochemistry, 44, 6776–6787. doi:10.1021/bi050251q.PubMedCrossRef Bocharova, O. V., Breydo, L., Salnikov, V. V., & Baskakov, I. (2005). Copper (II) inhibits in vitro conversion of prion protein into amyloid fibrils. Biochemistry, 44, 6776–6787. doi:10.​1021/​bi050251q.PubMedCrossRef
go back to reference Boyd-Kimball, D., Sultana, R., Mohmmad-Abdul, H., & Butterfield, A. (2004). Rodent Abeta(1–42) exhibits oxidative stress properties similar to those of human Abeta(1–42): Implications for proposed mechanisms of toxicity. Journal of Alzheimers Disease, 6, 515–525. Boyd-Kimball, D., Sultana, R., Mohmmad-Abdul, H., & Butterfield, A. (2004). Rodent Abeta(1–42) exhibits oxidative stress properties similar to those of human Abeta(1–42): Implications for proposed mechanisms of toxicity. Journal of Alzheimers Disease, 6, 515–525.
go back to reference Bush, A. I., Masters, C. L., & Tanzi, R. E. (2003). Copper, Beta amyloid, and Alzheimer’s disease: Tapping a sensitive connection. Proceedings of the National Academy of Sciences of the United Sciences of America, 100, 11193–11194. doi:10.1073/pnas.2135061100.CrossRef Bush, A. I., Masters, C. L., & Tanzi, R. E. (2003). Copper, Beta amyloid, and Alzheimer’s disease: Tapping a sensitive connection. Proceedings of the National Academy of Sciences of the United Sciences of America, 100, 11193–11194. doi:10.​1073/​pnas.​2135061100.CrossRef
go back to reference Butterfield, D. A., & Boyd-Kimball, D. (2005). The critical role of methionine 35 in Alzheimer’s amyloid β-peptide(1–42)-induced oxidative stress and neurotoxicity. Biochimica et Biophysica Acta, 1073, 149–156. Butterfield, D. A., & Boyd-Kimball, D. (2005). The critical role of methionine 35 in Alzheimer’s amyloid β-peptide(1–42)-induced oxidative stress and neurotoxicity. Biochimica et Biophysica Acta, 1073, 149–156.
go back to reference Cherny, R. A., Atwood, C. S., Xilinas, M. E., Gray, D. N., Jones, W. D., Mclean, C. A., et al. (2001). Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron, 30, 665–676. doi:10.1016/S0896-6273(01)00317-8.PubMedCrossRef Cherny, R. A., Atwood, C. S., Xilinas, M. E., Gray, D. N., Jones, W. D., Mclean, C. A., et al. (2001). Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron, 30, 665–676. doi:10.​1016/​S0896-6273(01)00317-8.PubMedCrossRef
go back to reference Cherny, R. A., Legg, T. J., McLean, C. A., Fairlie, D. P., Huang, X., Atwood, C. S., et al. (1999). Aqueous dissolution of Alzheimer’s disease Aβ amyloids deposits by biometal depletion. Journal of Biological Chemistry, 274, 23223–23228. doi:10.1074/jbc.274.33.23223.PubMedCrossRef Cherny, R. A., Legg, T. J., McLean, C. A., Fairlie, D. P., Huang, X., Atwood, C. S., et al. (1999). Aqueous dissolution of Alzheimer’s disease Aβ amyloids deposits by biometal depletion. Journal of Biological Chemistry, 274, 23223–23228. doi:10.​1074/​jbc.​274.​33.​23223.PubMedCrossRef
go back to reference Cuajungco, M. P., Faget, K. Y., Huang, X., Tanzi, R. E., & Bush, A. I. (2000). Metal chelation as a potential therapy for Alzheimer’s disease. Annals of the New York Academy of Sciences of USA, 920, 292–304. Cuajungco, M. P., Faget, K. Y., Huang, X., Tanzi, R. E., & Bush, A. I. (2000). Metal chelation as a potential therapy for Alzheimer’s disease. Annals of the New York Academy of Sciences of USA, 920, 292–304.
go back to reference Dahlgren, K. N., Manelli, A. M., Stine, W. B., Jr., Baker, L. K., Krafft, G. A., & Ladu, M. J. (2002). Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. Journal of Biological Chemistry, 277, 32046–32053. doi:10.1074/jbc.M201750200.PubMedCrossRef Dahlgren, K. N., Manelli, A. M., Stine, W. B., Jr., Baker, L. K., Krafft, G. A., & Ladu, M. J. (2002). Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. Journal of Biological Chemistry, 277, 32046–32053. doi:10.​1074/​jbc.​M201750200.PubMedCrossRef
go back to reference Daniel, K. G., Chen, D., Orlu, S., Cui, Q. C., Miller, F. R., & Dou, Q. P. (2005). Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Research, 7, 897–908. doi:10.1186/bcr1322.CrossRef Daniel, K. G., Chen, D., Orlu, S., Cui, Q. C., Miller, F. R., & Dou, Q. P. (2005). Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Research, 7, 897–908. doi:10.​1186/​bcr1322.CrossRef
go back to reference Deshpande, A., Mina, E., Glabe, C., & Busciglio, J. (2006). Different conformations of amyloid β induce neurotoxicity by distinct mechanism in human cortical neurons. Journal of Neurosciences, 26, 6011–6018. doi:10.1523/JNEUROSCI.1189-06.2006. Deshpande, A., Mina, E., Glabe, C., & Busciglio, J. (2006). Different conformations of amyloid β induce neurotoxicity by distinct mechanism in human cortical neurons. Journal of Neurosciences, 26, 6011–6018. doi:10.​1523/​JNEUROSCI.​1189-06.​2006.
go back to reference Di Varia, M., Bazzicalupi, C., Oriolo, P., Messori, L., Bruni, B., & Zatta, P. (2004). Clioquinol, a drug for Alzheimer’s disease specifically interfering with brain metal metabolism: Structural characterization of its Zn(II) and copper(II) complexes. Inorganic Chemistry, 43, 3795–3797. doi:10.1021/ic0494051.CrossRef Di Varia, M., Bazzicalupi, C., Oriolo, P., Messori, L., Bruni, B., & Zatta, P. (2004). Clioquinol, a drug for Alzheimer’s disease specifically interfering with brain metal metabolism: Structural characterization of its Zn(II) and copper(II) complexes. Inorganic Chemistry, 43, 3795–3797. doi:10.​1021/​ic0494051.CrossRef
go back to reference Domingo, J. L. (2006). Aluminium and other metals in Alzheimer’s disease: A review of potential therapy with chelating agents. Journal of Alzheimers Diseases, 10, 331–341. Domingo, J. L. (2006). Aluminium and other metals in Alzheimer’s disease: A review of potential therapy with chelating agents. Journal of Alzheimers Diseases, 10, 331–341.
go back to reference Drago, D., Bettella, M., Bolognin, S., Cendron, L., Scancar, J., Milacic, R., et al. (2007). Potential pathogenic role of b-Amyloid-aluminum complex in Alzheimer’s disease. International Journal of Biochemistry and Cell Biology, 40, 731–746. doi:10.1016/j.biocel.2007.10.014.PubMedCrossRef Drago, D., Bettella, M., Bolognin, S., Cendron, L., Scancar, J., Milacic, R., et al. (2007). Potential pathogenic role of b-Amyloid-aluminum complex in Alzheimer’s disease. International Journal of Biochemistry and Cell Biology, 40, 731–746. doi:10.​1016/​j.​biocel.​2007.​10.​014.PubMedCrossRef
go back to reference Ferrada, E., Aranciba, V., Loeb, B., Norambuena, E., Olea-azar, E., & Huidobro-toto, J. P. (2007). Stechiometry and conditional stability constants of Cu (II) or Zn (II) clioquinol complexes; implications for Alzheimer’s and Hungtington’s disease therapy. Neurotoxicology, 28, 445–449. doi:10.1016/j.neuro.2007.02.004.PubMedCrossRef Ferrada, E., Aranciba, V., Loeb, B., Norambuena, E., Olea-azar, E., & Huidobro-toto, J. P. (2007). Stechiometry and conditional stability constants of Cu (II) or Zn (II) clioquinol complexes; implications for Alzheimer’s and Hungtington’s disease therapy. Neurotoxicology, 28, 445–449. doi:10.​1016/​j.​neuro.​2007.​02.​004.PubMedCrossRef
go back to reference Filiz, G., Caragounis, A., Bica, L., Du, T., Masters, C. L., Crouch, P. J., & White, A. R. (2008). Clioquinol inhibits peroxide-mediated toxicity through up-regulation of phosphoinositol-3-kinase and inhibition of p53 activity. International Journal of Biochemistry & Cell Biology, 40(5), 1030–1042. Filiz, G., Caragounis, A., Bica, L., Du, T., Masters, C. L., Crouch, P. J., & White, A. R. (2008). Clioquinol inhibits peroxide-mediated toxicity through up-regulation of phosphoinositol-3-kinase and inhibition of p53 activity. International Journal of Biochemistry & Cell Biology, 40(5), 1030–1042.
go back to reference Glabe, C. G. (2005). Amyloid accumulation and pathogensis of Alzheimer’s disease: Significance of monomeric, oligomeric and fibrillar Abeta. Sub-Cellular Biochemistry, 38, 167–177.PubMedCrossRef Glabe, C. G. (2005). Amyloid accumulation and pathogensis of Alzheimer’s disease: Significance of monomeric, oligomeric and fibrillar Abeta. Sub-Cellular Biochemistry, 38, 167–177.PubMedCrossRef
go back to reference House, E., Collingwod, J., Khan, A., Korchazkina, O., Berthon, G., & Exley, C. (2004). Aluminium, iron, zinc and copper influence the in vitro formation of Aβ42 in a manner which may have consequences for metal chelation therapy in Alzheimer disease. Journal of Alzheimers Diseases, 6, 291–301. House, E., Collingwod, J., Khan, A., Korchazkina, O., Berthon, G., & Exley, C. (2004). Aluminium, iron, zinc and copper influence the in vitro formation of Aβ42 in a manner which may have consequences for metal chelation therapy in Alzheimer disease. Journal of Alzheimers Diseases, 6, 291–301.
go back to reference Jenagaratnam, L., McShane, R. (2006). Clioquinol for the treatment of Alzheimer’s disease. Cochrane Database of Systematic Reviews, Issue 1 Art N: CD00538. Jenagaratnam, L., McShane, R. (2006). Clioquinol for the treatment of Alzheimer’s disease. Cochrane Database of Systematic Reviews, Issue 1 Art N: CD00538.
go back to reference Kaur, D., Yantiri, F., Rajagopalan, S., Kumar, J., Mo, J. Q., Boonplueang, R., et al. (2003). Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: A novel therapy for Parkinson’s disease. Neuron, 37, 899–909. doi:10.1016/S0896-6273(03)00126-0.PubMedCrossRef Kaur, D., Yantiri, F., Rajagopalan, S., Kumar, J., Mo, J. Q., Boonplueang, R., et al. (2003). Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: A novel therapy for Parkinson’s disease. Neuron, 37, 899–909. doi:10.​1016/​S0896-6273(03)00126-0.PubMedCrossRef
go back to reference LeVine, H., 3rd. (1993). Thioflavine T interaction with syntethic Alzheimer’s disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Science, 2, 404–410.PubMed LeVine, H., 3rd. (1993). Thioflavine T interaction with syntethic Alzheimer’s disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Science, 2, 404–410.PubMed
go back to reference Masuda, T., Hida, H., Kanda, Y., Aihara, N., Ohta, K., Yamada, K., et al. (2007). Oral administration of metal chelator ameliorates motor dysfunction after a small hemorrhage near the internal capsule in rat. Journal of Neuroscience Research, 1112, 1–15.CrossRef Masuda, T., Hida, H., Kanda, Y., Aihara, N., Ohta, K., Yamada, K., et al. (2007). Oral administration of metal chelator ameliorates motor dysfunction after a small hemorrhage near the internal capsule in rat. Journal of Neuroscience Research, 1112, 1–15.CrossRef
go back to reference Miura, T., Suzuki, K., Kohata, N., & Takeuchi, H. (2000). Metal binding modes of Alzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes. Biochemistry, 39, 7024–7031. doi:10.1021/bi0002479.PubMedCrossRef Miura, T., Suzuki, K., Kohata, N., & Takeuchi, H. (2000). Metal binding modes of Alzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes. Biochemistry, 39, 7024–7031. doi:10.​1021/​bi0002479.PubMedCrossRef
go back to reference Nguyen, T., Hamby, A., & Massa, S. M. (2005). Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’s disease mouse model. Proceedings of the National Academy of Sciences of the United States of America, 102, 11840–11845. doi:10.1073/pnas.0502177102.PubMedCrossRef Nguyen, T., Hamby, A., & Massa, S. M. (2005). Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’s disease mouse model. Proceedings of the National Academy of Sciences of the United States of America, 102, 11840–11845. doi:10.​1073/​pnas.​0502177102.PubMedCrossRef
go back to reference Perry, G., Nunomura, A., Hirai, K., Zhu, X., Perez, M., Avila, J., et al. (2002). Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s disease and other neurodegenerative diseases? Free Radic. Biology and Medicine, 22, 1475–1479. doi:10.1016/S0891-5849(02)01113-9.CrossRef Perry, G., Nunomura, A., Hirai, K., Zhu, X., Perez, M., Avila, J., et al. (2002). Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s disease and other neurodegenerative diseases? Free Radic. Biology and Medicine, 22, 1475–1479. doi:10.​1016/​S0891-5849(02)01113-9.CrossRef
go back to reference Raman, B., Ban, T., Yamaguchi, K., Sakai, M., Kawai, T., Naiki, H., et al. (2005). Metal ion-dependent effect of clioquinol on the fibril growth of an amyloid beta-peptide. Journal of Biological Chemistry, 280, 16157–16162. doi:10.1074/jbc.M500309200.PubMedCrossRef Raman, B., Ban, T., Yamaguchi, K., Sakai, M., Kawai, T., Naiki, H., et al. (2005). Metal ion-dependent effect of clioquinol on the fibril growth of an amyloid beta-peptide. Journal of Biological Chemistry, 280, 16157–16162. doi:10.​1074/​jbc.​M500309200.PubMedCrossRef
go back to reference Ricchelli, F., Buggio, R., Drago, D., Salmona, M., Forloni, G., Negro, A., et al. (2006). Aggregation/fibrillogenesis of recombinant human prion protein and Gerstmann-Sträussler-Scheinker disease peptides in the presence of metal ions. Biochemistry, 45, 6724–6732. doi:10.1021/bi0601454.PubMedCrossRef Ricchelli, F., Buggio, R., Drago, D., Salmona, M., Forloni, G., Negro, A., et al. (2006). Aggregation/fibrillogenesis of recombinant human prion protein and Gerstmann-Sträussler-Scheinker disease peptides in the presence of metal ions. Biochemistry, 45, 6724–6732. doi:10.​1021/​bi0601454.PubMedCrossRef
go back to reference Ritchie, C. W., Bush, A. I., Mackinnon, A., Macfarlane, S., Mastwyk, M., MacGregor, L., et al. (2003). Metal-protein attenuation with clioquinol targeting Abeta amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial. Archives of Neurology, 60, 1685–1691. doi:10.1001/archneur.60.12.1685.PubMedCrossRef Ritchie, C. W., Bush, A. I., Mackinnon, A., Macfarlane, S., Mastwyk, M., MacGregor, L., et al. (2003). Metal-protein attenuation with clioquinol targeting Abeta amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial. Archives of Neurology, 60, 1685–1691. doi:10.​1001/​archneur.​60.​12.​1685.PubMedCrossRef
go back to reference Sampson, E., Jenagaratnam, L., & McShane, R. (2008). Metal protein attenuating compounds for the treatment of Alzheimer’s disease. Cochrane Database of Systematic Reviews, 23, CD005380. Sampson, E., Jenagaratnam, L., & McShane, R. (2008). Metal protein attenuating compounds for the treatment of Alzheimer’s disease. Cochrane Database of Systematic Reviews, 23, CD005380.
go back to reference Shäfer, S., Pajonk, F. G., Multhaup, G., & Bayer, T. A. (2007). Copper and clioquinol treatment in young APP transgenic and wild-type transgenic mice: Effects on the life expectancy, body weight, and metal-ion levels. Journal of Molecular Medicine, 85, 405–413. doi:10.1007/s00109-006-0140-7.CrossRef Shäfer, S., Pajonk, F. G., Multhaup, G., & Bayer, T. A. (2007). Copper and clioquinol treatment in young APP transgenic and wild-type transgenic mice: Effects on the life expectancy, body weight, and metal-ion levels. Journal of Molecular Medicine, 85, 405–413. doi:10.​1007/​s00109-006-0140-7.CrossRef
go back to reference Shearman, M. S., Hawtin, S. R., & Tailor, V. J. (1995). The intracellular component of cellular 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction is specifically inhibited by beta-amyloid peptides. Journal of Neurochemistry, 65, 218–227.PubMedCrossRef Shearman, M. S., Hawtin, S. R., & Tailor, V. J. (1995). The intracellular component of cellular 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction is specifically inhibited by beta-amyloid peptides. Journal of Neurochemistry, 65, 218–227.PubMedCrossRef
go back to reference Treiber, C., Simons, A., Strauss, M., Hafner, M., Cappai, R., Bayer, T. A., et al. (2004). Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer’s disease. Journal of Biological Chemistry, 279, 51958–51964. doi:10.1074/jbc.M407410200.PubMedCrossRef Treiber, C., Simons, A., Strauss, M., Hafner, M., Cappai, R., Bayer, T. A., et al. (2004). Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer’s disease. Journal of Biological Chemistry, 279, 51958–51964. doi:10.​1074/​jbc.​M407410200.PubMedCrossRef
go back to reference Walsh, D. M., Klyubin, I., Shankart, G. M., Townsend, M., Fadeeva, J. V., Betts, V., et al. (2005). The role of cell-derived oligomers of Abeta in Alzheimer’s disease and avenues for therapeutic intervention. Biochemical Society Transactions, 33, 1087–1090. doi:10.1042/BST20051087.PubMedCrossRef Walsh, D. M., Klyubin, I., Shankart, G. M., Townsend, M., Fadeeva, J. V., Betts, V., et al. (2005). The role of cell-derived oligomers of Abeta in Alzheimer’s disease and avenues for therapeutic intervention. Biochemical Society Transactions, 33, 1087–1090. doi:10.​1042/​BST20051087.PubMedCrossRef
go back to reference Wang, S. S., Becerra-Artega, A., & Good, T. A. (2002). Development of a novel diffusion-based method to estimate the size of the aggregated Aβ species responsible for neurotoxicity. Biotechnology and Bioengineering, 80, 50–59. doi:10.1002/bit.10347.PubMedCrossRef Wang, S. S., Becerra-Artega, A., & Good, T. A. (2002). Development of a novel diffusion-based method to estimate the size of the aggregated Aβ species responsible for neurotoxicity. Biotechnology and Bioengineering, 80, 50–59. doi:10.​1002/​bit.​10347.PubMedCrossRef
go back to reference White, A. R., Du, T., Laughton, K. M., Volitakis, I., Sharples, R. A., Xilinas, M. E., et al. (2006). Degradation of the Alzheimer disease amyloid beta-peptide by metal-dependent up-regulation of metalloprotease activity. Journal of Biological Chemistry, 281, 17670–17680. doi:10.1074/jbc.M602487200.PubMedCrossRef White, A. R., Du, T., Laughton, K. M., Volitakis, I., Sharples, R. A., Xilinas, M. E., et al. (2006). Degradation of the Alzheimer disease amyloid beta-peptide by metal-dependent up-regulation of metalloprotease activity. Journal of Biological Chemistry, 281, 17670–17680. doi:10.​1074/​jbc.​M602487200.PubMedCrossRef
go back to reference Yassin, M. S., Ekblom, J., Xilinias, M., Gottfries, C. G., & Orleand, L. (2000). Changes in uptake of vitamin B12 and trace metals in brains of mice treated with clioquinol. Journal of Neurological Sciences, 173, 40–44. doi:10.1016/S0022-510X(99)00297-X.CrossRef Yassin, M. S., Ekblom, J., Xilinias, M., Gottfries, C. G., & Orleand, L. (2000). Changes in uptake of vitamin B12 and trace metals in brains of mice treated with clioquinol. Journal of Neurological Sciences, 173, 40–44. doi:10.​1016/​S0022-510X(99)00297-X.CrossRef
go back to reference Zatta, P. (Ed.). (2003). Metal ions and neurodegenerative disorders (pp. 1–511). Singapore, London: World Scientific. Zatta, P. (Ed.). (2003). Metal ions and neurodegenerative disorders (pp. 1–511). Singapore, London: World Scientific.
Metadata
Title
Mutual Stimulation of Beta-Amyloid Fibrillogenesis by Clioquinol and Divalent Metals
Authors
Silvia Bolognin
Paolo Zatta
Denise Drago
Pier Paolo Parnigotto
Fernanda Ricchelli
Giuseppe Tognon
Publication date
01-12-2008
Publisher
Humana Press Inc
Published in
NeuroMolecular Medicine / Issue 4/2008
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-008-8046-x

Other articles of this Issue 4/2008

NeuroMolecular Medicine 4/2008 Go to the issue