Skip to main content
Top
Published in: neurogenetics 1/2006

01-03-2006 | Original Article

Mutations and novel polymorphisms in coding regions and UTRs of CDK5R1 and OMG genes in patients with non-syndromic mental retardation

Authors: Marco Venturin, Silvia Moncini, Valentina Villa, Silvia Russo, Maria Teresa Bonati, Lidia Larizza, Paola Riva

Published in: Neurogenetics | Issue 1/2006

Login to get access

Abstract

Mental retardation (MR) is displayed by 57% of NF1 patients with microdeletion syndrome as a result of 17q11.2 region haploinsufficiency. We considered the cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) and oligodendrocyte-myelin glycoprotein (OMG) genes, mapping in the NF1 microdeleted region, as candidate genes for MR susceptibility. CDK5R1 encodes for a neurone-specific activator of cyclin-dependent kinase 5 (CDK5) involved in neuronal migration during central nervous system development. OMG encodes for an inhibitor of neurite outgrowth by the binding to the Nogo-66 receptor (RTN4R). CDK5R1 and OMG genes are characterized by large 3′ and 5′ untranslated regions (UTRs), where we predict the presence of several transcription/translation regulatory elements. We screened 100 unrelated Italian patients affected by unspecific MR for mutations in CDK5R1 and OMG coding regions and in their 3′ or 5′ UTRs. Four novel mutations and two novel polymorphisms for CDK5R1 and three novel mutations for OMG were detected, including two missense changes (c.323C>T; A108V in CDK5R1 and c.1222A>G; T408A in OMG), one synonymous codon variant (c.532C>T; L178L in CDK5R1), four variants in CDK5R1 3′UTR and two changes in OMG 5′UTR. All the mutations were absent in 370 chromosomes from normal subjects. The allelic frequencies of the two novel polymorphisms in CDK5R1 3′UTR were established in both 185 normal and 100 mentally retarded subjects. Prediction of mRNA and protein secondary structures revealed that two changes lead to putative structural alterations in the mutated c.2254C>G CDK5R1 3′UTR and in OMG T408A gene product.
Literature
1.
go back to reference Molinari F, Rio M, Meskenaite V, Encha-Razavi F, Auge J, Bacq D, Briault S, Vekemans M, Munnich A, Attie-Bitach T, Sonderegger P, Colleaux L (2002) Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science 298:1779–1781CrossRefPubMed Molinari F, Rio M, Meskenaite V, Encha-Razavi F, Auge J, Bacq D, Briault S, Vekemans M, Munnich A, Attie-Bitach T, Sonderegger P, Colleaux L (2002) Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science 298:1779–1781CrossRefPubMed
2.
go back to reference Higgins JJ, Pucilowska J, Lombardi RQ, Rooney JP (2004) A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation. Neurology 63:1927–1931PubMed Higgins JJ, Pucilowska J, Lombardi RQ, Rooney JP (2004) A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation. Neurology 63:1927–1931PubMed
3.
go back to reference Venturin M, Guarnieri P, Natacci F, Stabile M, Tenconi R, Clementi M, Hernandez C, Thompson P, Upadhyaya M, Larizza L, Riva P (2004) Mental retardation and cardiovascular malformations in NF1 microdeleted patients point to candidate genes in 17q11.2. J Med Genet 41:35–41CrossRefPubMed Venturin M, Guarnieri P, Natacci F, Stabile M, Tenconi R, Clementi M, Hernandez C, Thompson P, Upadhyaya M, Larizza L, Riva P (2004) Mental retardation and cardiovascular malformations in NF1 microdeleted patients point to candidate genes in 17q11.2. J Med Genet 41:35–41CrossRefPubMed
4.
go back to reference Gupta A, Tsai LH (2003) Cyclin-dependent kinase 5 and neuronal migration in the neocortex. Neurosignals 12:173–179CrossRefPubMed Gupta A, Tsai LH (2003) Cyclin-dependent kinase 5 and neuronal migration in the neocortex. Neurosignals 12:173–179CrossRefPubMed
5.
go back to reference Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH (1997) Mice lacking p35, a neuronal specific activator of Cdk5, displays cortical lamination defects, seizures, and adult lethality. Neuron 18:29–42CrossRefPubMed Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH (1997) Mice lacking p35, a neuronal specific activator of Cdk5, displays cortical lamination defects, seizures, and adult lethality. Neuron 18:29–42CrossRefPubMed
6.
go back to reference Kwon YT, Tsai LH (1998) A novel disruption of cortical development in p35(–/–) mice distinct from reeler. J Comp Neurol 395:510–522CrossRefPubMed Kwon YT, Tsai LH (1998) A novel disruption of cortical development in p35(–/–) mice distinct from reeler. J Comp Neurol 395:510–522CrossRefPubMed
7.
go back to reference Ko J, Humbert S, Bronson RT, Takahashi S, Kulkarni AB, Li E, Tsai LH (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21:6758–6771PubMed Ko J, Humbert S, Bronson RT, Takahashi S, Kulkarni AB, Li E, Tsai LH (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21:6758–6771PubMed
8.
go back to reference Namgung U, Choi BH, Park S, Lee JU, Seo HS, Suh BC, Kim KT (2004) Activation of cyclin-dependent kinase 5 is involved in axonal regeneration. Mol Cell Neurosci 25:422–432CrossRefPubMed Namgung U, Choi BH, Park S, Lee JU, Seo HS, Suh BC, Kim KT (2004) Activation of cyclin-dependent kinase 5 is involved in axonal regeneration. Mol Cell Neurosci 25:422–432CrossRefPubMed
9.
go back to reference Li BS, Zhang L, Takahashi S, Ma W, Jaffe H, Kulkarni AB, Pant HC (2002) Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J 21:324–333CrossRefPubMed Li BS, Zhang L, Takahashi S, Ma W, Jaffe H, Kulkarni AB, Pant HC (2002) Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J 21:324–333CrossRefPubMed
10.
go back to reference Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J (2002) Cyclin-dependent kinase 5 is required for associative learning. J Neurosci 22:700–707 Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J (2002) Cyclin-dependent kinase 5 is required for associative learning. J Neurosci 22:700–707
11.
go back to reference Cheng K, Ip NY (2003) Cdk5: a new player at synapses. Neurosignals 4–5:180–190CrossRef Cheng K, Ip NY (2003) Cdk5: a new player at synapses. Neurosignals 4–5:180–190CrossRef
12.
go back to reference Paglini G, Peris L, Diez-Guerra J, Quiroga S, Caceres A (2001) The Cdk5–p35 kinase associates with the Golgi apparatus and regulates membrane traffic. EMBO Rep 2:1139–1144CrossRefPubMed Paglini G, Peris L, Diez-Guerra J, Quiroga S, Caceres A (2001) The Cdk5–p35 kinase associates with the Golgi apparatus and regulates membrane traffic. EMBO Rep 2:1139–1144CrossRefPubMed
13.
go back to reference Lau LF, Ahlijanian MK (2003) Role of cdk5 in the pathogenesis of Alzheimer’s disease. Neurosignals 12:209–214CrossRefPubMed Lau LF, Ahlijanian MK (2003) Role of cdk5 in the pathogenesis of Alzheimer’s disease. Neurosignals 12:209–214CrossRefPubMed
14.
go back to reference Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S, MountMP, O’Hare MJ, Callaghan S, Slack RS, Przedborski S, Anisman H, Park DS (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 100:13650–13655CrossRefPubMed Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S, MountMP, O’Hare MJ, Callaghan S, Slack RS, Przedborski S, Anisman H, Park DS (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 100:13650–13655CrossRefPubMed
15.
go back to reference Nguyen MD, Julien JP (2003) Cyclin-dependent kinase 5 in amyotrophic lateral sclerosis. Neurosignals 12:215–220CrossRefPubMed Nguyen MD, Julien JP (2003) Cyclin-dependent kinase 5 in amyotrophic lateral sclerosis. Neurosignals 12:215–220CrossRefPubMed
16.
go back to reference Ruggiero T, Olivero M, Follenzi A, Naldini L, Calogero R, Di Renzo MF (2003) Deletion in a (T)8 microsatellite abrogates expression regulation by 3′-UTR. Nucleic Acids Res 31:6561–6569CrossRefPubMed Ruggiero T, Olivero M, Follenzi A, Naldini L, Calogero R, Di Renzo MF (2003) Deletion in a (T)8 microsatellite abrogates expression regulation by 3′-UTR. Nucleic Acids Res 31:6561–6569CrossRefPubMed
17.
go back to reference van der Velden AW, Thomas AA (1999) The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 31:87–106CrossRefPubMed van der Velden AW, Thomas AA (1999) The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 31:87–106CrossRefPubMed
18.
19.
go back to reference Bashirullah A, Cooperstock RL, Lipshitz HD (2001) Spatial and temporal control of RNA stability. Proc Natl Acad Sci U S A 98:7025–7028CrossRefPubMed Bashirullah A, Cooperstock RL, Lipshitz HD (2001) Spatial and temporal control of RNA stability. Proc Natl Acad Sci U S A 98:7025–7028CrossRefPubMed
20.
go back to reference Conne B, Stutz A, Vassalli JD (2000) The 3′ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nat Med 6:637–641CrossRefPubMed Conne B, Stutz A, Vassalli JD (2000) The 3′ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nat Med 6:637–641CrossRefPubMed
21.
go back to reference Mazumder B, Seshadri V, Fox PL (2003) Translational control by the 3′-UTR: the ends specify the means. Trends Biochem Sci 28:91–98CrossRefPubMed Mazumder B, Seshadri V, Fox PL (2003) Translational control by the 3′-UTR: the ends specify the means. Trends Biochem Sci 28:91–98CrossRefPubMed
22.
go back to reference Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417:941–944CrossRefPubMed Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417:941–944CrossRefPubMed
23.
go back to reference Sinibaldi L, De Luca A, Bellacchio E, Conti E, Pasini A, Paloscia C, Spalletta G, Caltagirone C, Pizzuti A, Dallapiccola B (2004) Mutations of the Nogo-66 receptor (RTN4R) gene in schizophrenia. Hum Mutat 24:534–535CrossRefPubMed Sinibaldi L, De Luca A, Bellacchio E, Conti E, Pasini A, Paloscia C, Spalletta G, Caltagirone C, Pizzuti A, Dallapiccola B (2004) Mutations of the Nogo-66 receptor (RTN4R) gene in schizophrenia. Hum Mutat 24:534–535CrossRefPubMed
24.
go back to reference Vourc’h P, Dessay S, Mbarek O, Marouillat Vedrine S, Muh JP, Andres C (2003) The oligodendrocyte-myelin glycoprotein gene is highly expressed during the late stages of myelination in the rat central nervous system. Brain Res Dev Brain Res 144:159–168CrossRefPubMed Vourc’h P, Dessay S, Mbarek O, Marouillat Vedrine S, Muh JP, Andres C (2003) The oligodendrocyte-myelin glycoprotein gene is highly expressed during the late stages of myelination in the rat central nervous system. Brain Res Dev Brain Res 144:159–168CrossRefPubMed
25.
go back to reference Morris DR, Geballe AP (2000) Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 20:8635–8642CrossRefPubMed Morris DR, Geballe AP (2000) Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 20:8635–8642CrossRefPubMed
26.
go back to reference Luckasson R, Coulter DL, Polloway EA, Reiss S, Schalock RL, Snell ME, Spitalnik DM, Stark JA (1992) Mental retardation: definition, classification and systems of supports, 9th edn. American Association on Mental Retardation, Washington, DC Luckasson R, Coulter DL, Polloway EA, Reiss S, Schalock RL, Snell ME, Spitalnik DM, Stark JA (1992) Mental retardation: definition, classification and systems of supports, 9th edn. American Association on Mental Retardation, Washington, DC
27.
go back to reference American Psychiatric Association (2000) Diagnostic and Statistical Manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC American Psychiatric Association (2000) Diagnostic and Statistical Manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC
28.
go back to reference Williams CA, Lossie A, Driscoll D (2001) Angelman syndrome: mimicking conditions and phenotypes. Am J Med Genet 101:59–64CrossRefPubMed Williams CA, Lossie A, Driscoll D (2001) Angelman syndrome: mimicking conditions and phenotypes. Am J Med Genet 101:59–64CrossRefPubMed
29.
go back to reference Tompa P, Buzder-Lantos P, Tantos A, Farkas A, Szilagyi A, Banoczi Z, Hudecz F, Friedrich P (2004) On the sequential determinants of calpain cleavage. J Biol Chem 279:20775–20785CrossRefPubMed Tompa P, Buzder-Lantos P, Tantos A, Farkas A, Szilagyi A, Banoczi Z, Hudecz F, Friedrich P (2004) On the sequential determinants of calpain cleavage. J Biol Chem 279:20775–20785CrossRefPubMed
30.
go back to reference Kam R, Chen J, Blumcke I, Normann S, Fassunke J, Elger CE, Schramm J, Wiestler OD, Becker AJ (2004) The reelin pathway components disabled-1 and p35 in gangliogliomas—a mutation and expression analysis. Neuropathol Appl Neurobiol 30:225–232CrossRefPubMed Kam R, Chen J, Blumcke I, Normann S, Fassunke J, Elger CE, Schramm J, Wiestler OD, Becker AJ (2004) The reelin pathway components disabled-1 and p35 in gangliogliomas—a mutation and expression analysis. Neuropathol Appl Neurobiol 30:225–232CrossRefPubMed
31.
go back to reference Bevilacqua A, Ceriani MC, Capaccioli S, Nicolin A (2003) Post-transcriptional regulation of gene expression by degradation of messengerRNAs. J Cell Physiol 195:356–372CrossRefPubMed Bevilacqua A, Ceriani MC, Capaccioli S, Nicolin A (2003) Post-transcriptional regulation of gene expression by degradation of messengerRNAs. J Cell Physiol 195:356–372CrossRefPubMed
32.
go back to reference Lai EC, Posanoky JW (1997) The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development 124:4847–4856PubMed Lai EC, Posanoky JW (1997) The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development 124:4847–4856PubMed
33.
go back to reference Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila MicroRNA targets. PLoS Biol 1:E60CrossRefPubMed Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila MicroRNA targets. PLoS Biol 1:E60CrossRefPubMed
34.
go back to reference Lai EC, Tam B, Rubin GM (2005) Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19:1067–1080CrossRefPubMed Lai EC, Tam B, Rubin GM (2005) Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19:1067–1080CrossRefPubMed
35.
go back to reference Vourc’h P, Moreau T, Arbion F, Marouillat-Vedrine S, Muh JP, Andres C (2003a) Oligodendrocyte myelin glycoprotein growth inhibition function requires its conserved leucine-rich repeat domain, not its glycosylphosphatidyl-inositolanchor. J Neurochem 85:889–897PubMedCrossRef Vourc’h P, Moreau T, Arbion F, Marouillat-Vedrine S, Muh JP, Andres C (2003a) Oligodendrocyte myelin glycoprotein growth inhibition function requires its conserved leucine-rich repeat domain, not its glycosylphosphatidyl-inositolanchor. J Neurochem 85:889–897PubMedCrossRef
36.
go back to reference Vourc’h P, Martin I, Marouillat S, Adrien JL, Barthelemy C, Moraine C, Muh JP, Andres C (2003b) Molecular analysis of the oligodendrocyte myelin glycoprotein gene in autistic disorder. Neurosci Lett 338:115–118CrossRefPubMed Vourc’h P, Martin I, Marouillat S, Adrien JL, Barthelemy C, Moraine C, Muh JP, Andres C (2003b) Molecular analysis of the oligodendrocyte myelin glycoprotein gene in autistic disorder. Neurosci Lett 338:115–118CrossRefPubMed
37.
go back to reference Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC (2004) Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta 1697:143–153PubMed Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC (2004) Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta 1697:143–153PubMed
Metadata
Title
Mutations and novel polymorphisms in coding regions and UTRs of CDK5R1 and OMG genes in patients with non-syndromic mental retardation
Authors
Marco Venturin
Silvia Moncini
Valentina Villa
Silvia Russo
Maria Teresa Bonati
Lidia Larizza
Paola Riva
Publication date
01-03-2006
Publisher
Springer-Verlag
Published in
Neurogenetics / Issue 1/2006
Print ISSN: 1364-6745
Electronic ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-005-0026-9

Other articles of this Issue 1/2006

neurogenetics 1/2006 Go to the issue