Skip to main content
Top
Published in: Familial Cancer 1/2017

01-01-2017 | Original Article

Mutational analysis of TP53 gene in Tunisian familial hematological malignancies and sporadic acute leukemia cases

Authors: Walid Sabri Hamadou, Sawsen Besbes, Violaine Bourdon, Yosra Ben Youssef, Mohamed Adnène Laatiri, Testsuro Noguchi, Abderrahim Khélif, Hagay Sobol, Zohra Soua

Published in: Familial Cancer | Issue 1/2017

Login to get access

Abstract

Mutations are responsible for familial cancer syndromes which account for approximately 5–10 % of all types of cancers. Familial cancers are often caused by genetic alterations occurring either in tumor suppressor or genomic stability genes such as TP53. In this study, we have analyzed the TP53 gene by direct sequencing approach, in a panel of 18 Tunisian familial hematological malignancies cases including several forms of leukemia, lymphoma and myeloid syndrome and 22 cases of sporadic acute leukemia. In one familial case diagnosed with acute lymphoblastic leukemia, we reported an intronic substitution 559+1 G>A which may disrupt the splice site and impact the normal protein function. Most of the deleterious mutations (Arg158His; Pro282Trp; Thr312Ser) as classified by IARC data base, were commonly reported in ALL cases studied here. The cosegregation of the two variants rs1042522 and rs1642785 was observed in most patients which may be in favor of the presence of linkage disequilibrium. The most defined TP53 mutations found here were identified in acute lymphoblastic leukemia context whereas only 3 % of mutations have been in previous studies. The cosegregation of the two recurrent variant rs1042522 and rs1642785 should be further confirmed.
Literature
1.
go back to reference Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–635CrossRefPubMed Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–635CrossRefPubMed
2.
go back to reference Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–418CrossRefPubMed Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–418CrossRefPubMed
3.
go back to reference Soussi T, Dehouche K, Beroud C (2000) P53 website and analysis of p53 gene mutations in human cancer: forging a link between epidemiology and carcinogenesis. Hum Mutat 15:105–113CrossRefPubMed Soussi T, Dehouche K, Beroud C (2000) P53 website and analysis of p53 gene mutations in human cancer: forging a link between epidemiology and carcinogenesis. Hum Mutat 15:105–113CrossRefPubMed
4.
go back to reference Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:1–17CrossRef Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:1–17CrossRef
5.
go back to reference Pekova S, Mazal O, Cmejla R, Hardekopf DW, Plachy R, Zejskova L et al (2011) A comprehensive study of TP53 mutations in chronic lymphocytic leukemia: analysis of 1287 diagnostic and 1148 follow-up CLL samples. Leuk Res 35:889–898CrossRefPubMed Pekova S, Mazal O, Cmejla R, Hardekopf DW, Plachy R, Zejskova L et al (2011) A comprehensive study of TP53 mutations in chronic lymphocytic leukemia: analysis of 1287 diagnostic and 1148 follow-up CLL samples. Leuk Res 35:889–898CrossRefPubMed
6.
go back to reference Chng WJ, Price-Troska T, Gonzalez-Paz N, Van-Wier S, Jacobus S, Blood E et al (2007) Clinical significance of TP53 mutation in myeloma. Leukemia 21:582–584CrossRefPubMed Chng WJ, Price-Troska T, Gonzalez-Paz N, Van-Wier S, Jacobus S, Blood E et al (2007) Clinical significance of TP53 mutation in myeloma. Leukemia 21:582–584CrossRefPubMed
7.
go back to reference Nahi H, Selivanova G, Lehmann S, Möllgard L, Bengtzen S, Concha H et al (2008) Mutated and non-mutated TP53 as targets in the treatment of leukaemia. Br J Haematol 141:445–448CrossRefPubMed Nahi H, Selivanova G, Lehmann S, Möllgard L, Bengtzen S, Concha H et al (2008) Mutated and non-mutated TP53 as targets in the treatment of leukaemia. Br J Haematol 141:445–448CrossRefPubMed
8.
go back to reference Agirre X, Novo FJ, Calasanz MJ, Larrayoz MJ, Lahortiga I, Valgañón M et al (2003) TP53 is frequently altered by methylation, mutation, and/or deletion in acute lymphoblastic leukaemia. Mol Carcinog 38:201–207CrossRefPubMed Agirre X, Novo FJ, Calasanz MJ, Larrayoz MJ, Lahortiga I, Valgañón M et al (2003) TP53 is frequently altered by methylation, mutation, and/or deletion in acute lymphoblastic leukaemia. Mol Carcinog 38:201–207CrossRefPubMed
9.
go back to reference Peller S, Rotter V (2003) TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum Mutat 21:277–284CrossRefPubMed Peller S, Rotter V (2003) TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum Mutat 21:277–284CrossRefPubMed
10.
go back to reference Stecher G, Liu L, Sanderford M, Peterson D, Tamura K, Kumar S (2014) MEGA-MD: molecular evolutionary genetics analysis software with mutational diagnosis of amino acid variation. Bioinformatics 30:1305–1307CrossRefPubMedPubMedCentral Stecher G, Liu L, Sanderford M, Peterson D, Tamura K, Kumar S (2014) MEGA-MD: molecular evolutionary genetics analysis software with mutational diagnosis of amino acid variation. Bioinformatics 30:1305–1307CrossRefPubMedPubMedCentral
11.
go back to reference Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fong CY, Nguyen VQ et al (2009) Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27:1250–1256CrossRefPubMed Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fong CY, Nguyen VQ et al (2009) Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27:1250–1256CrossRefPubMed
12.
go back to reference Nadauld LD, Garcia S, Natsoulis G, Bell JM, Miotke L, Hopmans ES et al (2014) Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer. Genome Biol 15:428CrossRefPubMedPubMedCentral Nadauld LD, Garcia S, Natsoulis G, Bell JM, Miotke L, Hopmans ES et al (2014) Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer. Genome Biol 15:428CrossRefPubMedPubMedCentral
13.
go back to reference Perriaud L, Marcel V, Sagne C, Favaudon V, Guédin A, De-Rache A et al (2014) Impact of G-quadruplex structures and intronic polymorphisms rs17878362 and rs1642785 on basal and ionizing radiation-induced expression of alternative p53 transcripts. Carcinogenesis 35:2706–2709CrossRefPubMedPubMedCentral Perriaud L, Marcel V, Sagne C, Favaudon V, Guédin A, De-Rache A et al (2014) Impact of G-quadruplex structures and intronic polymorphisms rs17878362 and rs1642785 on basal and ionizing radiation-induced expression of alternative p53 transcripts. Carcinogenesis 35:2706–2709CrossRefPubMedPubMedCentral
14.
go back to reference Jha P, Pathak P, Chosdol K, Suri V, Sharma MC, Kumar G et al (2011) TP53 polymorphisms in gliomas from Indian patients: study of codon 72 genotype, rs1642785, rs1800370 and 16 base pair insertion in intron-3. Exp Mol Pathol 90:167–172CrossRefPubMed Jha P, Pathak P, Chosdol K, Suri V, Sharma MC, Kumar G et al (2011) TP53 polymorphisms in gliomas from Indian patients: study of codon 72 genotype, rs1642785, rs1800370 and 16 base pair insertion in intron-3. Exp Mol Pathol 90:167–172CrossRefPubMed
15.
go back to reference Djansugurova L, Zhunussova G, Khussainova E, Iksan O, Afonin G, Kaidarova D et al (2014) Screening the APC, MLH1, MSH2 and TP53 mutations in patients with early onset of colorectal cancer. J Carcinog Mutagen 5:197–199 Djansugurova L, Zhunussova G, Khussainova E, Iksan O, Afonin G, Kaidarova D et al (2014) Screening the APC, MLH1, MSH2 and TP53 mutations in patients with early onset of colorectal cancer. J Carcinog Mutagen 5:197–199
16.
go back to reference Damineni S, Rao VR, Kumar S, Ravuri RR, Kagitha S, Dunna NR et al (2014) Germline mutations of TP53 gene in breast cancer. Tumor Biol 35:9219–9227CrossRef Damineni S, Rao VR, Kumar S, Ravuri RR, Kagitha S, Dunna NR et al (2014) Germline mutations of TP53 gene in breast cancer. Tumor Biol 35:9219–9227CrossRef
17.
go back to reference Gomes C, Diniz MG, Orsine LA, Duarte AP, Fonseca-Silva T, Brendan-Conn B et al (2012) Assessment of TP53 mutations in benign and malignant salivary gland neoplasms. PLoS ONE 7:1–8 Gomes C, Diniz MG, Orsine LA, Duarte AP, Fonseca-Silva T, Brendan-Conn B et al (2012) Assessment of TP53 mutations in benign and malignant salivary gland neoplasms. PLoS ONE 7:1–8
18.
go back to reference Whibley C, Pharoah PD, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9:95–107CrossRefPubMed Whibley C, Pharoah PD, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9:95–107CrossRefPubMed
19.
go back to reference Wong P, Han K (2014) Lack of toxicity in a patient with germline TP53 mutation treated with radiotherapy. Curr Oncol 21:349–353CrossRef Wong P, Han K (2014) Lack of toxicity in a patient with germline TP53 mutation treated with radiotherapy. Curr Oncol 21:349–353CrossRef
20.
go back to reference Calhoun S, Daggett V (2011) Structural effects of the L145Q, V157F, and R282 W cancer-associated mutations in the p53 DNA-binding core domain. Biochemistry 50:5345–5348CrossRefPubMedPubMedCentral Calhoun S, Daggett V (2011) Structural effects of the L145Q, V157F, and R282 W cancer-associated mutations in the p53 DNA-binding core domain. Biochemistry 50:5345–5348CrossRefPubMedPubMedCentral
21.
go back to reference Vineis P, Manuguerra M, Kavvoura FK, Guarrera S, Allione A, Rosa F et al (2009) A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility. J Natl Cancer Inst 101:24–36CrossRefPubMed Vineis P, Manuguerra M, Kavvoura FK, Guarrera S, Allione A, Rosa F et al (2009) A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility. J Natl Cancer Inst 101:24–36CrossRefPubMed
22.
go back to reference Dahabreh IJ, Schmid CH, Lau J, Varvarigou V, Murray S, Trikalinos TA (2013) Genotype misclassification in genetic association studies of the rs1042522 TP53 (Arg72Pro) polymorphism: a systematic review of studies of breast, lung, colorectal, ovarian, and endometrial cancer. Am J Epidemiol 177:1317–1318CrossRefPubMedPubMedCentral Dahabreh IJ, Schmid CH, Lau J, Varvarigou V, Murray S, Trikalinos TA (2013) Genotype misclassification in genetic association studies of the rs1042522 TP53 (Arg72Pro) polymorphism: a systematic review of studies of breast, lung, colorectal, ovarian, and endometrial cancer. Am J Epidemiol 177:1317–1318CrossRefPubMedPubMedCentral
23.
go back to reference Mabrouk I, Baccouche S, El-Abed R, Mokdad-Gargouri R, Mosbah A, Saïd S et al (2003) No evidence of correlation between p53 codon 72 polymorphism and risk of bladder or breast carcinoma in Tunisian patients. Ann N Y Acad Sci 1010:764–766CrossRefPubMed Mabrouk I, Baccouche S, El-Abed R, Mokdad-Gargouri R, Mosbah A, Saïd S et al (2003) No evidence of correlation between p53 codon 72 polymorphism and risk of bladder or breast carcinoma in Tunisian patients. Ann N Y Acad Sci 1010:764–766CrossRefPubMed
24.
go back to reference Arfaoui A, Douik H, Kablouti G, Chaaben AB, Handiri N, Zid Z et al (2015) Role of p53 Codon72 SNP in breast cancer risk and anthracycline resistance. Anticancer Res 35:1763–1766PubMed Arfaoui A, Douik H, Kablouti G, Chaaben AB, Handiri N, Zid Z et al (2015) Role of p53 Codon72 SNP in breast cancer risk and anthracycline resistance. Anticancer Res 35:1763–1766PubMed
25.
go back to reference Hof J, Krentz S, van-Schewick C, Körner G, Shalapour S, Rhein P et al (2011) Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol 29:3185–3188CrossRefPubMed Hof J, Krentz S, van-Schewick C, Körner G, Shalapour S, Rhein P et al (2011) Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol 29:3185–3188CrossRefPubMed
Metadata
Title
Mutational analysis of TP53 gene in Tunisian familial hematological malignancies and sporadic acute leukemia cases
Authors
Walid Sabri Hamadou
Sawsen Besbes
Violaine Bourdon
Yosra Ben Youssef
Mohamed Adnène Laatiri
Testsuro Noguchi
Abderrahim Khélif
Hagay Sobol
Zohra Soua
Publication date
01-01-2017
Publisher
Springer Netherlands
Published in
Familial Cancer / Issue 1/2017
Print ISSN: 1389-9600
Electronic ISSN: 1573-7292
DOI
https://doi.org/10.1007/s10689-016-9931-3

Other articles of this Issue 1/2017

Familial Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine