Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2009

Open Access 01-12-2009 | Review

Mutation analysis of Rad18 in human cancer cell lines and non small cell lung cancer tissues

Authors: Tadahiko Nakamura, Shinji Ishikawa, Yoshikatsu Koga, Youhei Nagai, Yu Imamura, Kouei Ikeda, Takeshi Mori, Hiroaki Nomori, Hideo Baba

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2009

Login to get access

Abstract

Background

Genetic instability is known as a cause of oncogenesis. Though Rad18 is reported to function in a post replication mismatch repair system, the relation between the status of Rad18 and human tumorigenesis has not been described so far.

Methods

Mutation analysis of 34 human cancer cell lines and 32 non small cell lung cancer (NSCLC) tissues were performed by RT-PCR SSCP. Expression level of Rad18 was measured by real time RT-PCR. Stable transfectant was constructed for in vitro study.

Results

No mutation was found in both cancer cell lines and NSCLC tissues. A single nucleotide polymorphism (SNP) at codon 302 was detected in 51.5% of the cell lines and 62.5% of NSCLC tissues. Interestingly, Rad18 was homozygously deleted in a pulmonary adenocarcinoma cell line PC3. Furthermore, there was no difference in the expression level of wild type Rad18 and Rad18 with SNP. The growth, cell morphology, sensitivity to anti-cancer drugs and in vitro DNA repair activity between wild type Rad18 and Rad18 with SNP revealed to have no difference in vitro.

Conclusion

Though the frequency of SNP was tended to be higher in NSCLC patients than healthy volunteers (57.7%), as the difference was not significant, we have concluded that there is no relation between Rad18 SNP and lung cancer development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Heinen CD, Schmutte C, Fishel R: DNA repair and tumorigenesis: lessons from hereditary cancer syndromes. Cancer Biol Ther. 2002, 5: 477-85.CrossRef Heinen CD, Schmutte C, Fishel R: DNA repair and tumorigenesis: lessons from hereditary cancer syndromes. Cancer Biol Ther. 2002, 5: 477-85.CrossRef
2.
go back to reference Lovett ST: Polymerase switching in DNA replication. Mol Cell. 2007, 27: 523-6. 10.1016/j.molcel.2007.08.003.CrossRef Lovett ST: Polymerase switching in DNA replication. Mol Cell. 2007, 27: 523-6. 10.1016/j.molcel.2007.08.003.CrossRef
3.
go back to reference Barbour L, Ball LG, Zhang K, Xiao W: DNA damage checkpoints are involved in postreplication repair. Genetics. 2006, 174: 1789-800. 10.1534/genetics.106.056283.CrossRef Barbour L, Ball LG, Zhang K, Xiao W: DNA damage checkpoints are involved in postreplication repair. Genetics. 2006, 174: 1789-800. 10.1534/genetics.106.056283.CrossRef
4.
go back to reference Callegari AJ, Kelly TJ: Shedding light on the DNA damage checkpoint. Cell Cycle. 2007, 6: 660-6.CrossRef Callegari AJ, Kelly TJ: Shedding light on the DNA damage checkpoint. Cell Cycle. 2007, 6: 660-6.CrossRef
5.
go back to reference McIntyre J, Podlaska A, Skoneczna A, Halas A, Sledziewska-Gojska E: Analysis of the spontaneous mutator phenotype associated with 20S proteasome deficiency in S. cerevisiae. Mutat Res. 2006, 593: 153-63.CrossRef McIntyre J, Podlaska A, Skoneczna A, Halas A, Sledziewska-Gojska E: Analysis of the spontaneous mutator phenotype associated with 20S proteasome deficiency in S. cerevisiae. Mutat Res. 2006, 593: 153-63.CrossRef
6.
go back to reference de Padula M, Slezak G, Auffret van Der Kemp P, Boiteux S: The post-replication repair RAD18 and RAD6 genes are involved in the prevention of spontaneous mutations caused by 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae. Nucleic Acids Res. 2004, 32: 5003-10. 10.1093/nar/gkh831.CrossRef de Padula M, Slezak G, Auffret van Der Kemp P, Boiteux S: The post-replication repair RAD18 and RAD6 genes are involved in the prevention of spontaneous mutations caused by 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae. Nucleic Acids Res. 2004, 32: 5003-10. 10.1093/nar/gkh831.CrossRef
7.
go back to reference Notenboom V, Hibbert RG, van Rossum-Fikkert SE, Olsen JV, Mann M, Sixma TK: Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification. Nucleic Acids Res. 2007, 35: 5819-30. 10.1093/nar/gkm615.CrossRef Notenboom V, Hibbert RG, van Rossum-Fikkert SE, Olsen JV, Mann M, Sixma TK: Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification. Nucleic Acids Res. 2007, 35: 5819-30. 10.1093/nar/gkm615.CrossRef
8.
go back to reference Shiomi N, Mori M, Tsuji H, Imai T, Inoue H, Tateishi S, Yamaizumi M, Shiomi T: Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination. Nucleic Acids Res. 2007, 35: e9-10.1093/nar/gkl979.CrossRef Shiomi N, Mori M, Tsuji H, Imai T, Inoue H, Tateishi S, Yamaizumi M, Shiomi T: Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination. Nucleic Acids Res. 2007, 35: e9-10.1093/nar/gkl979.CrossRef
9.
go back to reference Xin H, Lin W, Sumanasekera W, Zhang Y, Wu X, Wang Z: The human RAD18 gene product interacts with HHR6A and HHR6B. Nucleic Acids Res. 2000, 28: 2847-54. 10.1093/nar/28.14.2847.CrossRef Xin H, Lin W, Sumanasekera W, Zhang Y, Wu X, Wang Z: The human RAD18 gene product interacts with HHR6A and HHR6B. Nucleic Acids Res. 2000, 28: 2847-54. 10.1093/nar/28.14.2847.CrossRef
10.
go back to reference Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M: Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 2004, 23: 3886-96. 10.1038/sj.emboj.7600383.CrossRef Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M: Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 2004, 23: 3886-96. 10.1038/sj.emboj.7600383.CrossRef
11.
go back to reference Sobin LH, Wittekind C: UICC Tumor-Node-Metastasis Classification of Malignant Tumors. six edition. 2002, New-York: Wiley-Liss Sobin LH, Wittekind C: UICC Tumor-Node-Metastasis Classification of Malignant Tumors. six edition. 2002, New-York: Wiley-Liss
12.
go back to reference Shimizu S, Yatabe Y, Koshikawa T, Haruki N, Hatooka S, Shinoda M, Suyama M, Ogawa M, Hamajima N, Ueda R, Takahashi T, Mitsudomi T: High frequency of clonally related tumors in cases of multiple synchronous lung cancers as revealed by molecular diagnosis. Clin Cancer Res. 2000, 6: 3994-9. Shimizu S, Yatabe Y, Koshikawa T, Haruki N, Hatooka S, Shinoda M, Suyama M, Ogawa M, Hamajima N, Ueda R, Takahashi T, Mitsudomi T: High frequency of clonally related tumors in cases of multiple synchronous lung cancers as revealed by molecular diagnosis. Clin Cancer Res. 2000, 6: 3994-9.
13.
go back to reference Ninomiya H, Nomura K, Satoh Y, Okumura S, Nakagawa K, Fujiwara M, Tsuchiya E, Ishikawa Y: Genetic instability in lung cancer: concurrent analysis of chromosomal, mini- and microsatellite instability and loss of heterozygosity. Br J Cancer. 2006, 94: 1485-91. 10.1038/sj.bjc.6603121.CrossRef Ninomiya H, Nomura K, Satoh Y, Okumura S, Nakagawa K, Fujiwara M, Tsuchiya E, Ishikawa Y: Genetic instability in lung cancer: concurrent analysis of chromosomal, mini- and microsatellite instability and loss of heterozygosity. Br J Cancer. 2006, 94: 1485-91. 10.1038/sj.bjc.6603121.CrossRef
14.
go back to reference Geradts J, Fong KM, Zimmerman PV, Maynard R, Minna JD: Correlation of abnormal RB, p16ink4a, and p53 expression with 3p loss of heterozygosity, other genetic abnormalities, and clinical features in 103 primary non-small cell lung cancers. Clin Cancer Res. 1999, 5: 791-800. Geradts J, Fong KM, Zimmerman PV, Maynard R, Minna JD: Correlation of abnormal RB, p16ink4a, and p53 expression with 3p loss of heterozygosity, other genetic abnormalities, and clinical features in 103 primary non-small cell lung cancers. Clin Cancer Res. 1999, 5: 791-800.
15.
go back to reference Tai AL, Mak W, Ng PK, Chua DT, Ng MY, Fu L, Chu KK, Fang Y, Qiang Song Y, Chen M, Zhang M, Sham PC, Guan XY: High-throughput loss-of-heterozygosity study of chromosome 3p in lung cancer using single-nucleotide polymorphism markers. Cancer Res. 2006, 66: 4133-8. 10.1158/0008-5472.CAN-05-2775.CrossRef Tai AL, Mak W, Ng PK, Chua DT, Ng MY, Fu L, Chu KK, Fang Y, Qiang Song Y, Chen M, Zhang M, Sham PC, Guan XY: High-throughput loss-of-heterozygosity study of chromosome 3p in lung cancer using single-nucleotide polymorphism markers. Cancer Res. 2006, 66: 4133-8. 10.1158/0008-5472.CAN-05-2775.CrossRef
16.
go back to reference Economidou F, Tzortzaki EG, Schiza S, Antoniou KM, Neofytou E, Zervou M, Lambiri I, Siafakas NM: Microsatellite DNA analysis does not distinguish malignant from benign pleural effusions. Oncol Rep. 2007, 18: 1507-12. Economidou F, Tzortzaki EG, Schiza S, Antoniou KM, Neofytou E, Zervou M, Lambiri I, Siafakas NM: Microsatellite DNA analysis does not distinguish malignant from benign pleural effusions. Oncol Rep. 2007, 18: 1507-12.
17.
go back to reference Takahashi Y, Kondo K, Hirose T, Nakagawa H, Tsuyuguchi M, Hashimoto M, Sano T, Ochiai A, Monden Y: Microsatellite instability and protein expression of the DNA mismatch repair gene, hMLH1, of lung cancer in chromate-exposed workers. Mol Carcinog. 2005, 42: 150-8. 10.1002/mc.20073.CrossRef Takahashi Y, Kondo K, Hirose T, Nakagawa H, Tsuyuguchi M, Hashimoto M, Sano T, Ochiai A, Monden Y: Microsatellite instability and protein expression of the DNA mismatch repair gene, hMLH1, of lung cancer in chromate-exposed workers. Mol Carcinog. 2005, 42: 150-8. 10.1002/mc.20073.CrossRef
18.
go back to reference Kanzaki H, Ouchida M, Hanafusa H, Yamamoto H, Suzuki H, Yano M, Aoe M, Imai K, Date H, Nakachi K, Shimizu K: The association between RAD18 Gln302Arg polymorphism and the risk of human non-small-cell lung cancer. J Cancer Res Clin Oncol. 2008, 134: 211-7. 10.1007/s00432-007-0272-3.CrossRef Kanzaki H, Ouchida M, Hanafusa H, Yamamoto H, Suzuki H, Yano M, Aoe M, Imai K, Date H, Nakachi K, Shimizu K: The association between RAD18 Gln302Arg polymorphism and the risk of human non-small-cell lung cancer. J Cancer Res Clin Oncol. 2008, 134: 211-7. 10.1007/s00432-007-0272-3.CrossRef
19.
go back to reference Perego P, Zunino F, Carenini N, Giuliani F, Spinelli S, Howell SB: Sensitivity to cisplatin and platinum-containing compounds of Schizosaccharomyces pompe rad mutants. Mol Pharmacol. 1998, 54: 213-9. Perego P, Zunino F, Carenini N, Giuliani F, Spinelli S, Howell SB: Sensitivity to cisplatin and platinum-containing compounds of Schizosaccharomyces pompe rad mutants. Mol Pharmacol. 1998, 54: 213-9.
20.
go back to reference Yoshmura A, Seki M, Hayashi T, Kusa Y, Tada S, Ishii Y, Enomoto T: Functional relationships between Rad18 and WRNIP1 in vertebrate cells. Bio Pharm Bull. 2006, 29: 2192-6. 10.1248/bpb.29.2192.CrossRef Yoshmura A, Seki M, Hayashi T, Kusa Y, Tada S, Ishii Y, Enomoto T: Functional relationships between Rad18 and WRNIP1 in vertebrate cells. Bio Pharm Bull. 2006, 29: 2192-6. 10.1248/bpb.29.2192.CrossRef
21.
go back to reference Tateishi S, Niwa H, Miyazaki J, Fujimoto S, Inoue H, Yamaizumi M: Enhanced genomic instability and defective post replication repair in RAD18 knockout mouse embryonic stem cells. Mol Cell Biol. 2003, 23: 474-81. 10.1128/MCB.23.2.474-481.2003.CrossRef Tateishi S, Niwa H, Miyazaki J, Fujimoto S, Inoue H, Yamaizumi M: Enhanced genomic instability and defective post replication repair in RAD18 knockout mouse embryonic stem cells. Mol Cell Biol. 2003, 23: 474-81. 10.1128/MCB.23.2.474-481.2003.CrossRef
22.
go back to reference Fousteri MI, Lehmann AR: A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J. 2000, 19: 1691-1702. 10.1093/emboj/19.7.1691.CrossRef Fousteri MI, Lehmann AR: A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J. 2000, 19: 1691-1702. 10.1093/emboj/19.7.1691.CrossRef
Metadata
Title
Mutation analysis of Rad18 in human cancer cell lines and non small cell lung cancer tissues
Authors
Tadahiko Nakamura
Shinji Ishikawa
Yoshikatsu Koga
Youhei Nagai
Yu Imamura
Kouei Ikeda
Takeshi Mori
Hiroaki Nomori
Hideo Baba
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2009
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-28-106

Other articles of this Issue 1/2009

Journal of Experimental & Clinical Cancer Research 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine