Skip to main content
Top
Published in: Thrombosis Journal 1/2003

Open Access 01-12-2003 | Original basic research

Multivariate relationships between international normalized ratio and vitamin K-dependent coagulation-derived parameters in normal healthy donors and oral anticoagulant therapy patients

Authors: Cezary Watala, Jacek Golanski, Przemyslaw Kardas

Published in: Thrombosis Journal | Issue 1/2003

Login to get access

Abstract

Background and objectives

International Normalized Ratio (INR) is a world-wide routinely used factor in the monitoring of oral anticoagulation treatment (OAT). However, it was reported that other factors, e. g. factor II, may even better reflect therapeutic efficacy of OAT and, therefore, may be potentialy useful for OAT monitoring. The primary purpose of this study was to characterize the associations of INR with other vitamin K-dependent plasma proteins in a heterogenous group of individuals, including healthy donors, patients on OAT and patients not receiving OAT. The study aimed also at establishing the influence of co-morbid conditions (incl. accompanying diseases) and co-medications (incl. different intensity of OAT) on INR.

Design and Methods

Two hundred and three subjects were involved in the study. Of these, 35 were normal healthy donors (group I), 73 were patients on medication different than OAT (group II) and 95 were patients on stable oral anticoagulant (acenocoumarol) therapy lasting for at least half a year prior to the study. The values of INR and activated partial thromboplastin time (APTT) ratio, as well as activities of FII, FVII, FX, protein C, and concentration of prothrombin F1+2 fragments and fibrinogen were obtained for all subjects. In statistical evaluation, the uni- and multivariate analyses were employed and the regression equations describing the obtained associations were estimated.

Results

Of the studied parameters, three (factors II, VII and X) appeared as very strong modulators of INR, protein C and prothrombin fragments F1+2 had moderate influence, whereas both APTT ratio and fibrinogen had no significant impact on INR variability. Due to collinearity and low tolerance of independent variables included in the multiple regression models, we routinely employed a ridge multiple regression model which compromises the minimal number of independent variables with the maximal overall determination coefficient. The best-fitted two-component model included FII and FVII activities and explained 90% of INR variability (compared to 93% in the 5-component model including all vitamin K-dependent proteins). Neither the presence of accompanying diseases nor the use of OAT nor any other medication (acetylsalicylic acid, statins, steroids, thyroxin) biased significantly these associations.

Conclusion

Among various vitamin K-dependent plasma proteins, the coagulation factors II, VII and X showed the most significant associations with INR. Of these variables, the two-component model, including factors II and VII, deserves special attention, as it largely explains the overall variability observed in INR estimates. The statistical power of this model is validated on virtue of the estimation that the revealed associations are rather universal and remain essentially unbiased by other compounding variables, including clinical status and medical treatment. Further, much broader population studies are needed to verify clinical usefulness of methods alternate or compounding to INR monitoring of OAT.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hirsh J, Dalen J, Anderson DR, Poller L, Bussey H, Ansell J, Deykin D: Oral anticoagulants:mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 2001, 119: 8S-21S. 10.1378/chest.119.1_suppl.8SCrossRefPubMed Hirsh J, Dalen J, Anderson DR, Poller L, Bussey H, Ansell J, Deykin D: Oral anticoagulants:mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 2001, 119: 8S-21S. 10.1378/chest.119.1_suppl.8SCrossRefPubMed
2.
go back to reference Hirsh J, Dalen J, Guyatt G: The sixth (2000) ACCP guidelines for antithrombotic therapy for prevention and treatment of thrombosis. American College of Chest Physicians. Chest 2001, 119: 1S-2S. 10.1378/chest.119.1_suppl.1SCrossRefPubMed Hirsh J, Dalen J, Guyatt G: The sixth (2000) ACCP guidelines for antithrombotic therapy for prevention and treatment of thrombosis. American College of Chest Physicians. Chest 2001, 119: 1S-2S. 10.1378/chest.119.1_suppl.1SCrossRefPubMed
3.
go back to reference Palmer RN, Kessler CM, Gralnick HR: Warfarin anticoagulation:difficulties in interpretation of the prothrombin time. Thromb Res 1982, 25: 125-30.CrossRefPubMed Palmer RN, Kessler CM, Gralnick HR: Warfarin anticoagulation:difficulties in interpretation of the prothrombin time. Thromb Res 1982, 25: 125-30.CrossRefPubMed
4.
go back to reference D'Angelo A, Della VP, Crippa L, Fattorini A, Pattarini E, Vigano DS: Relationship between international normalized ratio values, vitamin K-dependent clotting factor levels and in vivo prothrombin activation during the early and steady phases of oral anticoagulant treatment. Haematologica 2002, 87: 1074-80.PubMed D'Angelo A, Della VP, Crippa L, Fattorini A, Pattarini E, Vigano DS: Relationship between international normalized ratio values, vitamin K-dependent clotting factor levels and in vivo prothrombin activation during the early and steady phases of oral anticoagulant treatment. Haematologica 2002, 87: 1074-80.PubMed
5.
go back to reference Tripodi A, Cattaneo M, Molteni A, Cesana BM, Mannucci PM: Changes of prothrombin fragment 1+2 (F 1+2) as a function of increasing intensity of oral anticoagulation – considerations on the suitability of F 1+2 to monitor oral anticoagulant treatment. Thromb Haemost 1998, 79: 571-3.PubMed Tripodi A, Cattaneo M, Molteni A, Cesana BM, Mannucci PM: Changes of prothrombin fragment 1+2 (F 1+2) as a function of increasing intensity of oral anticoagulation – considerations on the suitability of F 1+2 to monitor oral anticoagulant treatment. Thromb Haemost 1998, 79: 571-3.PubMed
6.
go back to reference Koefoed BG, Feddersen C, Gullov AL, Petersen P: Effect of fixed minidose warfarin, conventional dose warfarin and aspirin on INR and prothrombin fragment 1 + 2 in patients with atrial fibrillation. Thromb Haemost 1997, 77: 845-8.PubMed Koefoed BG, Feddersen C, Gullov AL, Petersen P: Effect of fixed minidose warfarin, conventional dose warfarin and aspirin on INR and prothrombin fragment 1 + 2 in patients with atrial fibrillation. Thromb Haemost 1997, 77: 845-8.PubMed
7.
go back to reference Bruhn HD, Conard J, Mannucci M, Monteagudo J, Pelzer H, Reverter JC, Samama M, Tripodi A, Wagner C: Multicentric evaluation of a new assay for prothrombin fragment F1+2 determination. Thromb Haemost 1992, 68: 413-7.PubMed Bruhn HD, Conard J, Mannucci M, Monteagudo J, Pelzer H, Reverter JC, Samama M, Tripodi A, Wagner C: Multicentric evaluation of a new assay for prothrombin fragment F1+2 determination. Thromb Haemost 1992, 68: 413-7.PubMed
8.
go back to reference Lind SE, Callas PW, Golden EA, Joyner KA Jr, Ortel TL: Plasma levels of factors II, VII and X and their relationship to the international normalized ratio during chronic warfarin therapy. Blood Coagul Fibrinolysis 1997, 8: 48-53.CrossRefPubMed Lind SE, Callas PW, Golden EA, Joyner KA Jr, Ortel TL: Plasma levels of factors II, VII and X and their relationship to the international normalized ratio during chronic warfarin therapy. Blood Coagul Fibrinolysis 1997, 8: 48-53.CrossRefPubMed
9.
go back to reference Weinstock DM, Chang P, Aronson DL, Kessler CM: Comparison of plasma prothrombin and factor VII and urine prothrombin F1 concentrations in patients on long-term warfarin therapy and those in the initial phase. Am J Hematol 1998, 57: 193-9. 10.1002/(SICI)1096-8652(199803)57:3<193::AID-AJH2>3.3.CO;2-6CrossRefPubMed Weinstock DM, Chang P, Aronson DL, Kessler CM: Comparison of plasma prothrombin and factor VII and urine prothrombin F1 concentrations in patients on long-term warfarin therapy and those in the initial phase. Am J Hematol 1998, 57: 193-9. 10.1002/(SICI)1096-8652(199803)57:3<193::AID-AJH2>3.3.CO;2-6CrossRefPubMed
10.
go back to reference De Muth JE: Basic statistics and pharmaceutical statistical applications New York: Marcel Dekker 1999. De Muth JE: Basic statistics and pharmaceutical statistical applications New York: Marcel Dekker 1999.
11.
go back to reference Zar J: Biostatistical analysis Upper Saddle River, N.J.: Prentice-Hall International, Inc.:Simon & Schuster/A Viacom Company 1999. Zar J: Biostatistical analysis Upper Saddle River, N.J.: Prentice-Hall International, Inc.:Simon & Schuster/A Viacom Company 1999.
12.
go back to reference Armitage P, Berry G, Matthews JNS: Statistical methods in medical research Oxford: Blackwell 2002.CrossRef Armitage P, Berry G, Matthews JNS: Statistical methods in medical research Oxford: Blackwell 2002.CrossRef
13.
go back to reference Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1: 307-10.CrossRefPubMed Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1: 307-10.CrossRefPubMed
14.
go back to reference Altman DG, Bland JM: Mesurment in medicine:the analysis of method comparision studies. Statistician 1983, 32: 307-17.CrossRef Altman DG, Bland JM: Mesurment in medicine:the analysis of method comparision studies. Statistician 1983, 32: 307-17.CrossRef
15.
go back to reference Simmelink MJ, de Groot PG, Derksen RH, Fernandez JA, Griffin JH: Oral anticoagulation reduces activated protein C less than protein C and other vitamin K-dependent clotting factors. Blood 2002, 100: 4232-3. 10.1182/blood-2002-01-0329CrossRefPubMed Simmelink MJ, de Groot PG, Derksen RH, Fernandez JA, Griffin JH: Oral anticoagulation reduces activated protein C less than protein C and other vitamin K-dependent clotting factors. Blood 2002, 100: 4232-3. 10.1182/blood-2002-01-0329CrossRefPubMed
16.
go back to reference Bauer KA, Kass BL, ten Cate H, Bednarek MA, Hawiger JJ, Rosenberg RD: Detection of factor X activation in humans. Blood 1989, 74: 2007-15.PubMed Bauer KA, Kass BL, ten Cate H, Bednarek MA, Hawiger JJ, Rosenberg RD: Detection of factor X activation in humans. Blood 1989, 74: 2007-15.PubMed
17.
go back to reference Jerkeman A, Astermark J, Hedner U, Lethagen S, Olsson CG, Berntorp E: Correlation between different intensities of anti-vitamin K treatment and coagulation parameters. Thromb Res 2000, 98: 467-71. 10.1016/S0049-3848(00)00203-6CrossRefPubMed Jerkeman A, Astermark J, Hedner U, Lethagen S, Olsson CG, Berntorp E: Correlation between different intensities of anti-vitamin K treatment and coagulation parameters. Thromb Res 2000, 98: 467-71. 10.1016/S0049-3848(00)00203-6CrossRefPubMed
18.
go back to reference Conway EM, Bauer KA, Barzegar S, Rosenberg RD: Suppression of hemostatic system activation by oral anticoagulants in the blood of patients with thrombotic diatheses. J Clin Invest 1987, 80: 1535-44.PubMedCentralCrossRefPubMed Conway EM, Bauer KA, Barzegar S, Rosenberg RD: Suppression of hemostatic system activation by oral anticoagulants in the blood of patients with thrombotic diatheses. J Clin Invest 1987, 80: 1535-44.PubMedCentralCrossRefPubMed
19.
go back to reference Holm J, Berntorp E, Carlsson R, Erhardt L: Low-dose warfarin decreases coagulability without affecting prothrombin complex activity. J Intern Med 1993, 234: 303-8.CrossRefPubMed Holm J, Berntorp E, Carlsson R, Erhardt L: Low-dose warfarin decreases coagulability without affecting prothrombin complex activity. J Intern Med 1993, 234: 303-8.CrossRefPubMed
20.
go back to reference Ho CH, Lin MW, You JY, Chen CC, Yu TJ: Variations of prothrombin time and international normalized ratio in patients treated with warfarin. Thromb Res 2002, 107: 277-80. 10.1016/S0049-3848(02)00339-0CrossRefPubMed Ho CH, Lin MW, You JY, Chen CC, Yu TJ: Variations of prothrombin time and international normalized ratio in patients treated with warfarin. Thromb Res 2002, 107: 277-80. 10.1016/S0049-3848(02)00339-0CrossRefPubMed
21.
22.
go back to reference Nakamura K, Toyohira H, Kariyazono H, Yamada K, Moriyama Y, Taira A: Relationship between changes in F1+2 and TAT levels and blood coagulation early after prosthetic valve replacement. Thromb Res 1997, 86: 161-71. 10.1016/S0049-3848(97)00059-5CrossRefPubMed Nakamura K, Toyohira H, Kariyazono H, Yamada K, Moriyama Y, Taira A: Relationship between changes in F1+2 and TAT levels and blood coagulation early after prosthetic valve replacement. Thromb Res 1997, 86: 161-71. 10.1016/S0049-3848(97)00059-5CrossRefPubMed
23.
go back to reference Kumar S, Haigh JR, Tate G, Boothby M, Joanes DN, Davies JA, Roberts BE, Feely MP: Effect of warfarin on plasma concentrations of vitamin K dependent coagulation factors in patients with stable control and monitored compliance. Br J Haematol 1990, 74: 82-5.CrossRefPubMed Kumar S, Haigh JR, Tate G, Boothby M, Joanes DN, Davies JA, Roberts BE, Feely MP: Effect of warfarin on plasma concentrations of vitamin K dependent coagulation factors in patients with stable control and monitored compliance. Br J Haematol 1990, 74: 82-5.CrossRefPubMed
24.
go back to reference O'Brien AE, Tate GM, Shiach C: Evaluation of protein C and protein S levels during oral anticoagulant therapy. Clin Lab Haematol 1998, 20: 245-52. 10.1046/j.1365-2257.1998.00130.xCrossRefPubMed O'Brien AE, Tate GM, Shiach C: Evaluation of protein C and protein S levels during oral anticoagulant therapy. Clin Lab Haematol 1998, 20: 245-52. 10.1046/j.1365-2257.1998.00130.xCrossRefPubMed
Metadata
Title
Multivariate relationships between international normalized ratio and vitamin K-dependent coagulation-derived parameters in normal healthy donors and oral anticoagulant therapy patients
Authors
Cezary Watala
Jacek Golanski
Przemyslaw Kardas
Publication date
01-12-2003
Publisher
BioMed Central
Published in
Thrombosis Journal / Issue 1/2003
Electronic ISSN: 1477-9560
DOI
https://doi.org/10.1186/1477-9560-1-7

Other articles of this Issue 1/2003

Thrombosis Journal 1/2003 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine