Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2016

Open Access 01-12-2015 | Technical advance

Multiscale Poincaré plots for visualizing the structure of heartbeat time series

Authors: Teresa S. Henriques, Sara Mariani, Anton Burykin, Filipa Rodrigues, Tiago F. Silva, Ary L. Goldberger

Published in: BMC Medical Informatics and Decision Making | Issue 1/2016

Login to get access

Abstract

Background

Poincaré delay maps are widely used in the analysis of cardiac interbeat interval (RR) dynamics. To facilitate visualization of the structure of these time series, we introduce multiscale Poincaré (MSP) plots.

Methods

Starting with the original RR time series, the method employs a coarse-graining procedure to create a family of time series, each of which represents the system’s dynamics in a different time scale. Next, the Poincaré plots are constructed for the original and the coarse-grained time series. Finally, as an optional adjunct, color can be added to each point to represent its normalized frequency.

Results

We illustrate the MSP method on simulated Gaussian white and 1/f noise time series. The MSP plots of 1/f noise time series reveal relative conservation of the phase space area over multiple time scales, while those of white noise show a marked reduction in area. We also show how MSP plots can be used to illustrate the loss of complexity when heartbeat time series from healthy subjects are compared with those from patients with chronic (congestive) heart failure syndrome or with atrial fibrillation.

Conclusions

This generalized multiscale approach to Poincaré plots may be useful in visualizing other types of time series.
Literature
1.
go back to reference Ruelle D, Takens F. On the nature of turbulence. Commun Math Phys. 1971;20:167–92.CrossRef Ruelle D, Takens F. On the nature of turbulence. Commun Math Phys. 1971;20:167–92.CrossRef
2.
go back to reference Takens F. Detecting strange attractors in turbulence. Lect Notes Math. 1981;898:366–81.CrossRef Takens F. Detecting strange attractors in turbulence. Lect Notes Math. 1981;898:366–81.CrossRef
3.
go back to reference Lerma C, Infante O, Pérez-Grovas H, José MV. Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clin Physiol Funct Imaging. 2003;23(2):72–80.CrossRefPubMed Lerma C, Infante O, Pérez-Grovas H, José MV. Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clin Physiol Funct Imaging. 2003;23(2):72–80.CrossRefPubMed
4.
go back to reference Woo MA, Stevenson WG, Moser DK, Trelease RB, Harper RM. Patterns of beat-to-beat heart rate variability in advanced heart failure. Am Heart J. 1992;123(3):704–10.CrossRefPubMed Woo MA, Stevenson WG, Moser DK, Trelease RB, Harper RM. Patterns of beat-to-beat heart rate variability in advanced heart failure. Am Heart J. 1992;123(3):704–10.CrossRefPubMed
5.
go back to reference Kamen PW, Tonkin AM. Application of the Poincaré plot to heart rate variability: a new measure of functional status in heart failure. Aust N Z J Med. 1995;25(1):18–26.CrossRefPubMed Kamen PW, Tonkin AM. Application of the Poincaré plot to heart rate variability: a new measure of functional status in heart failure. Aust N Z J Med. 1995;25(1):18–26.CrossRefPubMed
6.
go back to reference Kamen PW, Krum H, Tonkin AM. Poincaré plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci (Lond). 1996;91(2):201–8.CrossRef Kamen PW, Krum H, Tonkin AM. Poincaré plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci (Lond). 1996;91(2):201–8.CrossRef
7.
go back to reference Tulppo MP, Mäkikallio TH, Takala TE, Seppänen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol Heart Circ Physiol. 1996;271(1):H244–52. Tulppo MP, Mäkikallio TH, Takala TE, Seppänen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol Heart Circ Physiol. 1996;271(1):H244–52.
8.
go back to reference Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng. 2001;48(11):1342–7.CrossRefPubMed Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng. 2001;48(11):1342–7.CrossRefPubMed
9.
go back to reference Stein PK, Reddy A. Non-linear heart rate variability and risk stratification in cardiovascular disease. Indian Pacing Electrophysiol J. 2005;5(3):210–20.PubMedCentralPubMed Stein PK, Reddy A. Non-linear heart rate variability and risk stratification in cardiovascular disease. Indian Pacing Electrophysiol J. 2005;5(3):210–20.PubMedCentralPubMed
10.
go back to reference Stein PK, Domitrovich PP, Hui N, Rautaharju P, Gottdiener J. Sometimes higher heart rate variability is not better heart rate variability: results of graphical and nonlinear analyses. J Cardiovasc Electrophysiol. 2005;16(9):954–9.CrossRefPubMed Stein PK, Domitrovich PP, Hui N, Rautaharju P, Gottdiener J. Sometimes higher heart rate variability is not better heart rate variability: results of graphical and nonlinear analyses. J Cardiovasc Electrophysiol. 2005;16(9):954–9.CrossRefPubMed
11.
go back to reference Khandoker AH, Karmakar C, Brennan M, Palaniswami M, Voss A. Poincaré plot methods for heart rate variability analysis. New York: Springer; 2013.CrossRef Khandoker AH, Karmakar C, Brennan M, Palaniswami M, Voss A. Poincaré plot methods for heart rate variability analysis. New York: Springer; 2013.CrossRef
13.
go back to reference Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PC, Peng C-K, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA. 2002;99 suppl 1:2466–72.PubMedCentralCrossRefPubMed Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PC, Peng C-K, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA. 2002;99 suppl 1:2466–72.PubMedCentralCrossRefPubMed
15.
go back to reference Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys Eng Sci. 2009;367(1887):277–96.CrossRefPubMed Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys Eng Sci. 2009;367(1887):277–96.CrossRefPubMed
16.
go back to reference Peng C-K, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1):82–7.CrossRefPubMed Peng C-K, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1):82–7.CrossRefPubMed
17.
go back to reference Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, et al. Multifractality in human heartbeat dynamics. Nature. 1999;399(6735):461–5.CrossRefPubMed Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, et al. Multifractality in human heartbeat dynamics. Nature. 1999;399(6735):461–5.CrossRefPubMed
18.
go back to reference Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A. 2002;316(1):87–114.CrossRef Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A. 2002;316(1):87–114.CrossRef
19.
go back to reference Costa MD, Goldberger AL, Peng C-K. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):068102.CrossRefPubMed Costa MD, Goldberger AL, Peng C-K. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):068102.CrossRefPubMed
20.
go back to reference Costa MD, Peng C-K, Goldberger AL, Hausdorff JM. Multiscale entropy analysis of human gait dynamics. Physica A. 2003;330(1):53–60.CrossRef Costa MD, Peng C-K, Goldberger AL, Hausdorff JM. Multiscale entropy analysis of human gait dynamics. Physica A. 2003;330(1):53–60.CrossRef
21.
go back to reference Costa MD, Goldberger AL, Peng C-K. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71(2):021906.CrossRefPubMed Costa MD, Goldberger AL, Peng C-K. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71(2):021906.CrossRefPubMed
22.
go back to reference Wu SD, Wu CW, Lin SG, Lee KY, Peng C-K. Analysis of complex time series using refined composite multiscale entropy. Phys Lett A. 2014;378(20):1369–74.CrossRef Wu SD, Wu CW, Lin SG, Lee KY, Peng C-K. Analysis of complex time series using refined composite multiscale entropy. Phys Lett A. 2014;378(20):1369–74.CrossRef
23.
go back to reference Costa MD, Goldberger AL, Peng C-K. Broken asymmetry of the human heartbeat: loss of time irreversibility in aging and disease. Phys Rev Lett. 2005;95(19):198102.CrossRefPubMed Costa MD, Goldberger AL, Peng C-K. Broken asymmetry of the human heartbeat: loss of time irreversibility in aging and disease. Phys Rev Lett. 2005;95(19):198102.CrossRefPubMed
24.
go back to reference Costa MD, Peng C-K, Goldberger AL. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures. Cardiovasc Eng. 2008;8(2):88–93.CrossRefPubMed Costa MD, Peng C-K, Goldberger AL. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures. Cardiovasc Eng. 2008;8(2):88–93.CrossRefPubMed
25.
go back to reference Burykin A, Costa MD, Citi L, Goldberger AL. Dynamical density delay maps: simple, new method for visualising the behaviour of complex systems. BMC Med Inform Decis Mak. 2014;14(1):6.PubMedCentralCrossRefPubMed Burykin A, Costa MD, Citi L, Goldberger AL. Dynamical density delay maps: simple, new method for visualising the behaviour of complex systems. BMC Med Inform Decis Mak. 2014;14(1):6.PubMedCentralCrossRefPubMed
26.
go back to reference Henriques T, Munshi MN, Segal AR, Costa MD, Goldberger AL. “Glucose-at-a-Glance”: new method to visualize the dynamics of continuous glucose monitoring data. J Diabetes Sci Technol. 2014;8(2):299–306.PubMedCentralCrossRefPubMed Henriques T, Munshi MN, Segal AR, Costa MD, Goldberger AL. “Glucose-at-a-Glance”: new method to visualize the dynamics of continuous glucose monitoring data. J Diabetes Sci Technol. 2014;8(2):299–306.PubMedCentralCrossRefPubMed
27.
go back to reference Burykin A, Mariani S, Henriques T, Silva TF, Schnettler WT, Costa MD, et al. Remembrance of time series past: simple chromatic method for visualizing trends in biomedical signals. Physiol Meas. 2015;36(7):N95–102.CrossRefPubMed Burykin A, Mariani S, Henriques T, Silva TF, Schnettler WT, Costa MD, et al. Remembrance of time series past: simple chromatic method for visualizing trends in biomedical signals. Physiol Meas. 2015;36(7):N95–102.CrossRefPubMed
28.
go back to reference Rosenblatt M. Remarks on some nonparametric estimates of a density function. Ann Math Stat. 1956;27:832–7.CrossRef Rosenblatt M. Remarks on some nonparametric estimates of a density function. Ann Math Stat. 1956;27:832–7.CrossRef
29.
30.
go back to reference Eilers PH, Goeman JJ. Enhancing scatterplots with smoothed densities. Bioinformatics. 2004;20(5):623–8.CrossRefPubMed Eilers PH, Goeman JJ. Enhancing scatterplots with smoothed densities. Bioinformatics. 2004;20(5):623–8.CrossRefPubMed
31.
go back to reference Ware C. Color sequences for univariate maps: Theory, experiments and principles. IEEE Comput Graph Appl. 1988;8(5):41–9.CrossRef Ware C. Color sequences for univariate maps: Theory, experiments and principles. IEEE Comput Graph Appl. 1988;8(5):41–9.CrossRef
32.
go back to reference Gehlenborg N, Wong B. Points of view: Mapping quantitative data to color. Nat Methods. 2012;9(8):769.CrossRefPubMed Gehlenborg N, Wong B. Points of view: Mapping quantitative data to color. Nat Methods. 2012;9(8):769.CrossRefPubMed
33.
go back to reference Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):e215–20.CrossRefPubMed Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):e215–20.CrossRefPubMed
34.
go back to reference Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, et al. Heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17(3):354–81.CrossRef Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, et al. Heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17(3):354–81.CrossRef
35.
go back to reference Piskorski J, Guzik P. Geometry of Poincaré plot of RR intervals and its asymmetry in healthy adults. Physiol Meas. 2007;28(3):287–300.CrossRefPubMed Piskorski J, Guzik P. Geometry of Poincaré plot of RR intervals and its asymmetry in healthy adults. Physiol Meas. 2007;28(3):287–300.CrossRefPubMed
36.
go back to reference Von Seggern DH. CRC Standard Curves and Surfaces with Mathematica. Boca Raton: CRC; 2006. Von Seggern DH. CRC Standard Curves and Surfaces with Mathematica. Boca Raton: CRC; 2006.
38.
go back to reference Monfredi O, Lyashkov AE, Johnsen AB, Inada S, Schneider H, Wang R, et al. Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension. 2014;64(6):1334–43.PubMedCentralCrossRefPubMed Monfredi O, Lyashkov AE, Johnsen AB, Inada S, Schneider H, Wang R, et al. Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension. 2014;64(6):1334–43.PubMedCentralCrossRefPubMed
39.
go back to reference Climent AM, de la Salud GM, Husser D, Castells F, Millet J, Bollmann A. Poincaré surface profiles of RR intervals: a novel noninvasive method for the evaluation of preferential AV nodal conduction during atrial fibrillation. IEEE Trans Biomed Eng. 2009;56(2):433–42.CrossRefPubMed Climent AM, de la Salud GM, Husser D, Castells F, Millet J, Bollmann A. Poincaré surface profiles of RR intervals: a novel noninvasive method for the evaluation of preferential AV nodal conduction during atrial fibrillation. IEEE Trans Biomed Eng. 2009;56(2):433–42.CrossRefPubMed
40.
go back to reference Hayano J, Yamasaki F, Sakata S, Okada A, Mukai S, Fujinami T. Spectral characteristics of ventricular response to atrial fibrillation. Am J Physiol Heart Circ Physiol. 1997;273(6):H2811–6. Hayano J, Yamasaki F, Sakata S, Okada A, Mukai S, Fujinami T. Spectral characteristics of ventricular response to atrial fibrillation. Am J Physiol Heart Circ Physiol. 1997;273(6):H2811–6.
41.
go back to reference Balocchi R, Carpeggiani C, Fronzoni L, Peng CK, Michelassi C, Mietus J, et al. Short and long-term heart rate dynamics in atrial fibrillation. Stud Health Technol Inform. 1999;60:91–6. Balocchi R, Carpeggiani C, Fronzoni L, Peng CK, Michelassi C, Mietus J, et al. Short and long-term heart rate dynamics in atrial fibrillation. Stud Health Technol Inform. 1999;60:91–6.
42.
go back to reference Masè M, Marini M, Disertori M, Ravelli F. Dynamics of AV coupling during human atrial fibrillation: role of atrial rate. Am J Physiol Heart Circ Physiol. 2015;301(1):H198–205.CrossRef Masè M, Marini M, Disertori M, Ravelli F. Dynamics of AV coupling during human atrial fibrillation: role of atrial rate. Am J Physiol Heart Circ Physiol. 2015;301(1):H198–205.CrossRef
43.
go back to reference Goldberger AL, Findley L, Blackburn MJ, Mandell AJ. Nonlinear dynamics of heart failure: implications of long-wavelength cardiopulmonary oscillations. Am Heart J. 1984;107(3):612–5.CrossRefPubMed Goldberger AL, Findley L, Blackburn MJ, Mandell AJ. Nonlinear dynamics of heart failure: implications of long-wavelength cardiopulmonary oscillations. Am Heart J. 1984;107(3):612–5.CrossRefPubMed
44.
go back to reference Guzik P, Piskorski J, Krauze T, Wykretowicz A, Wysocki H. Heart rate asymmetry by Poincaré plots of RR intervals. Biomed Tech (Berl). 2006;51(4):272–5.CrossRef Guzik P, Piskorski J, Krauze T, Wykretowicz A, Wysocki H. Heart rate asymmetry by Poincaré plots of RR intervals. Biomed Tech (Berl). 2006;51(4):272–5.CrossRef
Metadata
Title
Multiscale Poincaré plots for visualizing the structure of heartbeat time series
Authors
Teresa S. Henriques
Sara Mariani
Anton Burykin
Filipa Rodrigues
Tiago F. Silva
Ary L. Goldberger
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2016
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-016-0252-0

Other articles of this Issue 1/2016

BMC Medical Informatics and Decision Making 1/2016 Go to the issue