Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2019

Open Access 01-12-2019 | Multiple Sclerosis | Research

Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis

Authors: Roberta Magliozzi, Owain William Howell, Pascal Durrenberger, Eleonora Aricò, Rachel James, Carolina Cruciani, Cheryl Reeves, Federico Roncaroli, Richard Nicholas, Richard Reynolds

Published in: Journal of Neuroinflammation | Issue 1/2019

Login to get access

Abstract

Background

Recent studies of cortical pathology in secondary progressive multiple sclerosis have shown that a more severe clinical course and the presence of extended subpial grey matter lesions with significant neuronal/glial loss and microglial activation are associated with meningeal inflammation, including the presence of lymphoid-like structures in the subarachnoid space in a proportion of cases.

Methods

To investigate the molecular consequences of pro-inflammatory and cytotoxic molecules diffusing from the meninges into the underlying grey matter, we carried out gene expression profiling analysis of the motor cortex from 20 post-mortem multiple sclerosis brains with and without substantial meningeal inflammation and 10 non-neurological controls.

Results

Gene expression profiling of grey matter lesions and normal appearing grey matter not only confirmed the substantial pathological cell changes, which were greatest in multiple sclerosis cases with increased meningeal inflammation, but also demonstrated the upregulation of multiple genes/pathways associated with the inflammatory response. In particular, genes involved in tumour necrosis factor (TNF) signalling were significantly deregulated in MS cases compared with controls. Increased meningeal inflammation was found to be associated with a shift in the balance of TNF signalling away from TNFR1/TNFR2 and NFkB-mediated anti-apoptotic pathways towards TNFR1- and RIPK3-mediated pro-apoptotic/pro-necroptotic signalling in the grey matter, which was confirmed by RT-PCR analysis. TNFR1 was found expressed preferentially on neurons and oligodendrocytes in MS cortical grey matter, whereas TNFR2 was predominantly expressed by astrocytes and microglia.

Conclusions

We suggest that the inflammatory milieu generated in the subarachnoid space of the multiple sclerosis meninges by infiltrating immune cells leads to increased demyelinating and neurodegenerative pathology in the underlying grey matter due to changes in the balance of TNF signalling.
Appendix
Available only for authorised users
Literature
1.
go back to reference Agresti C, Bernardo A, Del Russo N, Marziali G, Battistini A, Aloisi F, et al. Synergistic stimulation of MHC class I and IRF-1 gene expression by IFN-gamma and TNF-alpha in oligodendrocytes. Eur J Neurosci. 1998;10:2975–83.PubMedCrossRef Agresti C, Bernardo A, Del Russo N, Marziali G, Battistini A, Aloisi F, et al. Synergistic stimulation of MHC class I and IRF-1 gene expression by IFN-gamma and TNF-alpha in oligodendrocytes. Eur J Neurosci. 1998;10:2975–83.PubMedCrossRef
2.
go back to reference Androdias G, Reynolds R, Chanal M, Ritleng C, Confavreux C, Nataf S. A link between meningeal T-cells and axonal loss in progressive multiple sclerosis spinal cords. Ann Neurol. 2010;68:465–76.PubMedCrossRef Androdias G, Reynolds R, Chanal M, Ritleng C, Confavreux C, Nataf S. A link between meningeal T-cells and axonal loss in progressive multiple sclerosis spinal cords. Ann Neurol. 2010;68:465–76.PubMedCrossRef
3.
go back to reference Bö L, Vedeler CA, Nyland HI, Trapp BD, Maork SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol. 2003;62:723–32.PubMedCrossRef Bö L, Vedeler CA, Nyland HI, Trapp BD, Maork SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol. 2003;62:723–32.PubMedCrossRef
4.
go back to reference Brambilla R, Ashbaugh JJ, Magliozzi R, Dellarole A, Karmally S, Szymkowski DE, et al. Inhibition of soluble TNF is therapeutic in experimental autoimmune encephalitis and promotes axon preservation and remyelination. Brain. 2011;134:2736–54.PubMedPubMedCentralCrossRef Brambilla R, Ashbaugh JJ, Magliozzi R, Dellarole A, Karmally S, Szymkowski DE, et al. Inhibition of soluble TNF is therapeutic in experimental autoimmune encephalitis and promotes axon preservation and remyelination. Brain. 2011;134:2736–54.PubMedPubMedCentralCrossRef
5.
go back to reference Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJG, Reynolds R, Martin R. Exploring the origins of grey matter damage in multiple sclerosis. Nature Rev Neurosci. 2015;16:147–58.CrossRef Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJG, Reynolds R, Martin R. Exploring the origins of grey matter damage in multiple sclerosis. Nature Rev Neurosci. 2015;16:147–58.CrossRef
6.
go back to reference Calabrese M, Poretto V, Favaretto A, Alessio S, Bernardi V, Romualdi C, et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain. 2012;135:2952–61.PubMedCrossRef Calabrese M, Poretto V, Favaretto A, Alessio S, Bernardi V, Romualdi C, et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain. 2012;135:2952–61.PubMedCrossRef
7.
go back to reference Calabrese M, Rinaldi F, Mattisi I, Bernardi V, Favaretto A, Perini P, et al. The predictive value of gray matter atrophy in clinically isolated syndromes. Neurology. 2011;77:257–63.PubMedCrossRef Calabrese M, Rinaldi F, Mattisi I, Bernardi V, Favaretto A, Perini P, et al. The predictive value of gray matter atrophy in clinically isolated syndromes. Neurology. 2011;77:257–63.PubMedCrossRef
8.
go back to reference Carassiti D, Altmann DR, Petrova N, Pakkenberg B, Scaravilli F, Schmierer K. Neuronal loss, demyelination and volume change in the multiple sclerosis neocortex. Neuropathol Appl Neurobiol. 2018;44(4):377–90.PubMedCrossRef Carassiti D, Altmann DR, Petrova N, Pakkenberg B, Scaravilli F, Schmierer K. Neuronal loss, demyelination and volume change in the multiple sclerosis neocortex. Neuropathol Appl Neurobiol. 2018;44(4):377–90.PubMedCrossRef
9.
go back to reference Chadwick W, Magnus T, Martin B, Keselman A, Mattson MP, Maudsley S. Targeting TNF-alpha receptors for neurotherapeutics. Trends Neurosci. 2008;31:504–11.PubMedPubMedCentralCrossRef Chadwick W, Magnus T, Martin B, Keselman A, Mattson MP, Maudsley S. Targeting TNF-alpha receptors for neurotherapeutics. Trends Neurosci. 2008;31:504–11.PubMedPubMedCentralCrossRef
10.
go back to reference Choi S, Howell OW, Carassiti D, Magliozzi R, Gveric D, Muraro PA, et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain. 2012;135:2925–37.PubMedCrossRef Choi S, Howell OW, Carassiti D, Magliozzi R, Gveric D, Muraro PA, et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain. 2012;135:2925–37.PubMedCrossRef
11.
go back to reference DeLuca GC, Alterman R, Martin JL, Mittal A, Blundell S, Bird S, et al. Casting light on multiple sclerosis heterogeneity: the role of HLA-DRB1 on spinal cord pathology. Brain. 2013;136:1025–34.PubMedCrossRef DeLuca GC, Alterman R, Martin JL, Mittal A, Blundell S, Bird S, et al. Casting light on multiple sclerosis heterogeneity: the role of HLA-DRB1 on spinal cord pathology. Brain. 2013;136:1025–34.PubMedCrossRef
12.
go back to reference Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58.CrossRefPubMed Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58.CrossRefPubMed
13.
go back to reference Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2016;15:545–58.CrossRef Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2016;15:545–58.CrossRef
14.
go back to reference Duprez L, Takahashi N, Hauwermeiren F, Vandendriessche B, Goosens V, Vanden Berghe T, et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity. 2011;35:908–18.PubMedCrossRef Duprez L, Takahashi N, Hauwermeiren F, Vandendriessche B, Goosens V, Vanden Berghe T, et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity. 2011;35:908–18.PubMedCrossRef
15.
go back to reference Durrenberger PF, Fernando S, Kashefi SN, Bonnert TP, Ferrer I, Seilhean D, et al. Selection of novel reference genes for use in the human central nervous system: a BrainNet Europe study. Acta Neuropath. 2012;24:893–903.CrossRef Durrenberger PF, Fernando S, Kashefi SN, Bonnert TP, Ferrer I, Seilhean D, et al. Selection of novel reference genes for use in the human central nervous system: a BrainNet Europe study. Acta Neuropath. 2012;24:893–903.CrossRef
16.
go back to reference Durrenberger PF, Fernando S, Kashefi SN, Bonnert TP, Seilhean D, Oumesmar BN, et al. Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transmission. 2015;122:1055–68.CrossRef Durrenberger PF, Fernando S, Kashefi SN, Bonnert TP, Seilhean D, Oumesmar BN, et al. Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transmission. 2015;122:1055–68.CrossRef
17.
go back to reference Durrenberger PF, Fernando S, Kashefi SN, Ferrer I, Hauw J-J, Seilhean D, et al. Effects of antemortem and postmortem variables on human brain mRNA quality: a BrainNetEurope study. J Neuropathol Exp Neurol. 2010;69:70–81.PubMedCrossRef Durrenberger PF, Fernando S, Kashefi SN, Ferrer I, Hauw J-J, Seilhean D, et al. Effects of antemortem and postmortem variables on human brain mRNA quality: a BrainNetEurope study. J Neuropathol Exp Neurol. 2010;69:70–81.PubMedCrossRef
18.
go back to reference Dutta R, McDonough J, Chang A, Swamy L, Siu A, Kidd GJ, et al. Activation of the ciliary neurotrophic factor (CNTF) signalling pathway in cortical neurons of multiple sclerosis patients. Brain. 2007;130:2566–76.PubMedCrossRef Dutta R, McDonough J, Chang A, Swamy L, Siu A, Kidd GJ, et al. Activation of the ciliary neurotrophic factor (CNTF) signalling pathway in cortical neurons of multiple sclerosis patients. Brain. 2007;130:2566–76.PubMedCrossRef
19.
go back to reference Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol. 2006;59:478–89.PubMedCrossRef Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol. 2006;59:478–89.PubMedCrossRef
20.
go back to reference Fischer MT, Wimmer I, Höftberger R, Gerlach S, Haider L, Zrzavy T, et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain. 2013;136:1799–815.PubMedPubMedCentralCrossRef Fischer MT, Wimmer I, Höftberger R, Gerlach S, Haider L, Zrzavy T, et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain. 2013;136:1799–815.PubMedPubMedCentralCrossRef
21.
go back to reference Fischer R, Wajant H, Kontermann R, Pfizenmaier K, Maier O. Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor. Glia. 2014;62:272–83.PubMedCrossRef Fischer R, Wajant H, Kontermann R, Pfizenmaier K, Maier O. Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor. Glia. 2014;62:272–83.PubMedCrossRef
22.
go back to reference Fisniku LK, Chard DT, Jackson JS, Anderson VM, Altmann DR, Miszkiel KA, et al. Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol. 2008;64:247–54.PubMedCrossRef Fisniku LK, Chard DT, Jackson JS, Anderson VM, Altmann DR, Miszkiel KA, et al. Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol. 2008;64:247–54.PubMedCrossRef
23.
go back to reference Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132:1175–89.PubMedPubMedCentralCrossRef Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132:1175–89.PubMedPubMedCentralCrossRef
24.
go back to reference Gardner C, Magliozzi R, Howell OW, Durrenberger P, Rundle J, Reynolds R. Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space in MOG-immunised rats. Brain. 2013;136:3596–608.PubMedCrossRef Gardner C, Magliozzi R, Howell OW, Durrenberger P, Rundle J, Reynolds R. Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space in MOG-immunised rats. Brain. 2013;136:3596–608.PubMedCrossRef
25.
go back to reference Haider L, Zrzavy T, Hametner S, Hoftberger R, Bagnato F, Grabner G, et al. The topography of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016;139:807–15.PubMedPubMedCentralCrossRef Haider L, Zrzavy T, Hametner S, Hoftberger R, Bagnato F, Grabner G, et al. The topography of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016;139:807–15.PubMedPubMedCentralCrossRef
26.
go back to reference Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol. 2013;74:848–61.PubMedPubMedCentralCrossRef Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol. 2013;74:848–61.PubMedPubMedCentralCrossRef
27.
go back to reference Han J, Zhong CQ, Zhang DW. Programmed necrosis: back up to and competitor with apoptosis in the immune system. Nat Immunol. 2011;12:1143–9.PubMedCrossRef Han J, Zhong CQ, Zhang DW. Programmed necrosis: back up to and competitor with apoptosis in the immune system. Nat Immunol. 2011;12:1143–9.PubMedCrossRef
28.
go back to reference Hofman FM, Hinton DR, Johnson K, Merrill JE. Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med. 1989;170:607–12.PubMedCrossRef Hofman FM, Hinton DR, Johnson K, Merrill JE. Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med. 1989;170:607–12.PubMedCrossRef
29.
go back to reference Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B, Gentleman S, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. 2011;134:2755–71.PubMedCrossRef Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B, Gentleman S, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. 2011;134:2755–71.PubMedCrossRef
30.
go back to reference Kassiotis G, Bauer J, Akassoglou K, Lassmann H, Kollias G, Probert L. A tumor necrosis factor-induced model of human primary demyelinating diseases develops in immunodeficient mice. Eur J Immunol. 1999;29:912–7.PubMedCrossRef Kassiotis G, Bauer J, Akassoglou K, Lassmann H, Kollias G, Probert L. A tumor necrosis factor-induced model of human primary demyelinating diseases develops in immunodeficient mice. Eur J Immunol. 1999;29:912–7.PubMedCrossRef
31.
go back to reference Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128:2705–12.PubMedCrossRef Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128:2705–12.PubMedCrossRef
32.
go back to reference Lassmann H, van Horssen J, Mahad D. (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 2012;8:647–56.PubMedCrossRef Lassmann H, van Horssen J, Mahad D. (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 2012;8:647–56.PubMedCrossRef
33.
go back to reference Lucchinetti CF, Popescu BFG, Bunyan RF, Moll NM, Roemer SF, Lassmann H, et al. Inflammatory cortical demyelination in early multiple sclerosis. NEJM. 2011;365:2188–97.PubMedCrossRef Lucchinetti CF, Popescu BFG, Bunyan RF, Moll NM, Roemer SF, Lassmann H, et al. Inflammatory cortical demyelination in early multiple sclerosis. NEJM. 2011;365:2188–97.PubMedCrossRef
34.
go back to reference Madsen PM, Motti D, Karmally S, Szymkowski DE, Lambertsen KL, Bethea JR, et al. Oligodendroglial TNFR2 mediates membrane TNF-dependent repair in experimental autoimmune encephalomyelitis by promoting oligodendrocyte differentiation and remyelination. J Neurosci. 2016;38:5128–43.CrossRef Madsen PM, Motti D, Karmally S, Szymkowski DE, Lambertsen KL, Bethea JR, et al. Oligodendroglial TNFR2 mediates membrane TNF-dependent repair in experimental autoimmune encephalomyelitis by promoting oligodendrocyte differentiation and remyelination. J Neurosci. 2016;38:5128–43.CrossRef
35.
go back to reference Magliozzi R, Howell O, Nicholas R, Cruciani C, Castellaro M, Romualdi C, et al. Inflammatory intrathecal profiles and cortical pathology stratify multiple sclerosis patients. Ann Neurol. 2018;83:739–55.PubMedCrossRef Magliozzi R, Howell O, Nicholas R, Cruciani C, Castellaro M, Romualdi C, et al. Inflammatory intrathecal profiles and cortical pathology stratify multiple sclerosis patients. Ann Neurol. 2018;83:739–55.PubMedCrossRef
36.
go back to reference Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130:1089–104.PubMedCrossRef Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130:1089–104.PubMedCrossRef
37.
go back to reference Magliozzi R, Howell OW, Reeves C, Roncaroli F, Nicholas R, Serafini B, et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol. 2010;68:477–93.PubMedCrossRef Magliozzi R, Howell OW, Reeves C, Roncaroli F, Nicholas R, Serafini B, et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol. 2010;68:477–93.PubMedCrossRef
38.
go back to reference Magliozzi R, Serafini B, Rosicarelli B, Chiappetta G, Veroni C, Reynolds R, et al. B-cell enrichment and Epstein-Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J Neuropath Exp Neurobiol. 2013;72:29–41.CrossRef Magliozzi R, Serafini B, Rosicarelli B, Chiappetta G, Veroni C, Reynolds R, et al. B-cell enrichment and Epstein-Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J Neuropath Exp Neurobiol. 2013;72:29–41.CrossRef
39.
40.
go back to reference Neyt K, Perros F, Geurts van Kessel CH, Hammad H, Lambrecht BN. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 2012;33:297–305.PubMedCrossRefPubMedCentral Neyt K, Perros F, Geurts van Kessel CH, Hammad H, Lambrecht BN. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 2012;33:297–305.PubMedCrossRefPubMedCentral
41.
go back to reference Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerlad P, Pop C, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibites RIPK3-dependent necrosis. Nature. 2011;471:363–7.PubMedPubMedCentralCrossRef Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerlad P, Pop C, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibites RIPK3-dependent necrosis. Nature. 2011;471:363–7.PubMedPubMedCentralCrossRef
42.
go back to reference Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, et al. Activation of necroptosis in multiple sclerosis. Cell Reports. 2015;10:1836–49.PubMedCrossRef Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, et al. Activation of necroptosis in multiple sclerosis. Cell Reports. 2015;10:1836–49.PubMedCrossRef
43.
go back to reference Papadopoulos D, Dukes S, Patel R, Nicholas R, Vora A, Reynolds R. Substantial archaeocortical atrophy and neuronal loss in multiple sclerosis. Brain Pathol. 2009;19:238–53.PubMedCrossRef Papadopoulos D, Dukes S, Patel R, Nicholas R, Vora A, Reynolds R. Substantial archaeocortical atrophy and neuronal loss in multiple sclerosis. Brain Pathol. 2009;19:238–53.PubMedCrossRef
44.
45.
go back to reference Patel VB, Bhigiee AL, Bill PLA, Connelly C. Cytokine profiles in HIV seropositive patients with tuberculous meningitis. J Neurol Neurosurg Psych. 2002;73:598–9.CrossRef Patel VB, Bhigiee AL, Bill PLA, Connelly C. Cytokine profiles in HIV seropositive patients with tuberculous meningitis. J Neurol Neurosurg Psych. 2002;73:598–9.CrossRef
46.
go back to reference Perros F, Dorfmüller P, Montani D, Hammad H, Waelput W, Girerd B, et al. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Resp Crit Care Med. 2012;185:311–21.PubMedCrossRef Perros F, Dorfmüller P, Montani D, Hammad H, Waelput W, Girerd B, et al. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Resp Crit Care Med. 2012;185:311–21.PubMedCrossRef
47.
go back to reference Peterson JW, Bö L, Mörk S, Chang A, Trapp BD. Transected neuritis, apoptotic neurons and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2001;50:389–400.PubMedCrossRef Peterson JW, Bö L, Mörk S, Chang A, Trapp BD. Transected neuritis, apoptotic neurons and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2001;50:389–400.PubMedCrossRef
48.
go back to reference Pouly S, Antel JP, Ladiwala U, Nalbantoglu J, Becher B. Mechanisms of tissue injury in multiple sclerosis: opportunities for neuroprotective therapy. J Neural Transm Suppl. 2000;58:193–203. Pouly S, Antel JP, Ladiwala U, Nalbantoglu J, Becher B. Mechanisms of tissue injury in multiple sclerosis: opportunities for neuroprotective therapy. J Neural Transm Suppl. 2000;58:193–203.
49.
go back to reference Probert L. TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience. 2015;302:2–22.PubMedCrossRef Probert L. TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience. 2015;302:2–22.PubMedCrossRef
50.
go back to reference Probert L, Eugster H-P, Akassoglou K, Bauer J, Frei K, Lassmann H, et al. TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain. 2000;123:2005–19.PubMedCrossRef Probert L, Eugster H-P, Akassoglou K, Bauer J, Frei K, Lassmann H, et al. TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain. 2000;123:2005–19.PubMedCrossRef
51.
go back to reference Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D, Howell O. The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropath. 2011;122:155–70.PubMedCrossRef Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D, Howell O. The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropath. 2011;122:155–70.PubMedCrossRef
52.
go back to reference Selmaj K, Raine CS, Cannella B, Brosnan CF. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest. 1991;87:949–54.PubMedPubMedCentralCrossRef Selmaj K, Raine CS, Cannella B, Brosnan CF. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest. 1991;87:949–54.PubMedPubMedCentralCrossRef
53.
go back to reference Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, Conque P, et al. Dysregulated Epstein-Barr virus infection on the multiple sclerosis brain. J Exp Med. 2007;204:2899–912.PubMedPubMedCentralCrossRef Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, Conque P, et al. Dysregulated Epstein-Barr virus infection on the multiple sclerosis brain. J Exp Med. 2007;204:2899–912.PubMedPubMedCentralCrossRef
54.
go back to reference Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14:164–74.PubMedCrossRef Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14:164–74.PubMedCrossRef
55.
go back to reference Takemura S, Klimiuk PA, Braun A, Goronzy JJ, Weyand CM. T cell activation in rheumatoid synovium is B cell dependent. J Immunol. 2001;167:1072–80.PubMedCrossRef Takemura S, Klimiuk PA, Braun A, Goronzy JJ, Weyand CM. T cell activation in rheumatoid synovium is B cell dependent. J Immunol. 2001;167:1072–80.PubMedCrossRef
56.
go back to reference Tanuma N, Shin T, Kogure K, Matsumoto Y. Differential role of TNF-α and IFN-γ in the brain of rats with chronic relapsing autoimmune encephalomyelitis. J Neuroimmunol. 1999;96:73–9.PubMedCrossRef Tanuma N, Shin T, Kogure K, Matsumoto Y. Differential role of TNF-α and IFN-γ in the brain of rats with chronic relapsing autoimmune encephalomyelitis. J Neuroimmunol. 1999;96:73–9.PubMedCrossRef
57.
go back to reference Taoufik E, Tseveleki V, Chu SY, Tselios T, Karin M, Lassmann H, et al. Transmembrane TNF is neuroprotective and regulates experimental autoimmune encephalomyelitis via neuronal nuclear factor-κB. Brain. 2011;134:2722–35.PubMedCrossRef Taoufik E, Tseveleki V, Chu SY, Tselios T, Karin M, Lassmann H, et al. Transmembrane TNF is neuroprotective and regulates experimental autoimmune encephalomyelitis via neuronal nuclear factor-κB. Brain. 2011;134:2722–35.PubMedCrossRef
58.
go back to reference Torkildsen Ø, Stansberg C, Angelskår SM, Kooi EJ, Geurts JJ, van der Valk P, Myhr KM, Steen VM, Bø L. Upregulation of immunoglobulin-related genes in cortical sections from multiple sclerosis patients. Brain Pathol. 2010;20(4):720–9.PubMedCrossRefPubMedCentral Torkildsen Ø, Stansberg C, Angelskår SM, Kooi EJ, Geurts JJ, van der Valk P, Myhr KM, Steen VM, Bø L. Upregulation of immunoglobulin-related genes in cortical sections from multiple sclerosis patients. Brain Pathol. 2010;20(4):720–9.PubMedCrossRefPubMedCentral
59.
go back to reference Van Horssen J, Brink BP, de Vries HE, van der Valk P, Bø L. The blood-brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol. 2007;66:321–8.PubMedCrossRef Van Horssen J, Brink BP, de Vries HE, van der Valk P, Bø L. The blood-brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol. 2007;66:321–8.PubMedCrossRef
60.
go back to reference Vercellino M, Merola A, Piacentino C, Votta B, Capello E, Mancardi GL, et al. Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol. 2007;66:732–9.PubMedCrossRef Vercellino M, Merola A, Piacentino C, Votta B, Capello E, Mancardi GL, et al. Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol. 2007;66:732–9.PubMedCrossRef
61.
go back to reference Veroni C, Gabriele L, Canini I, Castiello L, Coccia E, Remoli ME, et al. Activation of TNF receptor 2 in microglia promotes induction of anti-inflammatory pathways. Mol Cell Neurosci. 2010;45:234–44.PubMedCrossRef Veroni C, Gabriele L, Canini I, Castiello L, Coccia E, Remoli ME, et al. Activation of TNF receptor 2 in microglia promotes induction of anti-inflammatory pathways. Mol Cell Neurosci. 2010;45:234–44.PubMedCrossRef
62.
go back to reference Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM. Neocortical neuronal, synaptic and glial loss in multiple sclerosis. Neurology. 2006;67:960–7.PubMedCrossRef Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM. Neocortical neuronal, synaptic and glial loss in multiple sclerosis. Neurology. 2006;67:960–7.PubMedCrossRef
63.
go back to reference Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE. Rosetta error model for gene expression analysis. Bioinformatics. 2006;22:1111–21.PubMedCrossRef Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE. Rosetta error model for gene expression analysis. Bioinformatics. 2006;22:1111–21.PubMedCrossRef
64.
go back to reference Williams SK, Maier O, Fischer R, Fairless R, Hochmeister S, Stojic A, et al. (2014) Antibody-mediated inhibition of TNFR1 attenuates disease in a mouse model of multiple sclerosis. PLoS One. 2014;9:e90117.PubMedPubMedCentralCrossRef Williams SK, Maier O, Fischer R, Fairless R, Hochmeister S, Stojic A, et al. (2014) Antibody-mediated inhibition of TNFR1 attenuates disease in a mouse model of multiple sclerosis. PLoS One. 2014;9:e90117.PubMedPubMedCentralCrossRef
Metadata
Title
Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis
Authors
Roberta Magliozzi
Owain William Howell
Pascal Durrenberger
Eleonora Aricò
Rachel James
Carolina Cruciani
Cheryl Reeves
Federico Roncaroli
Richard Nicholas
Richard Reynolds
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2019
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-019-1650-x

Other articles of this Issue 1/2019

Journal of Neuroinflammation 1/2019 Go to the issue