Skip to main content
Top
Published in: European Radiology 3/2024

02-09-2023 | Multiple Sclerosis | Review

Use of gadolinium-based contrast agents in multiple sclerosis: a review by the ESMRMB-GREC and ESNR Multiple Sclerosis Working Group

Authors: Àlex Rovira, Fabio M. Doniselli, Cristina Auger, Lukas Haider, Jerome Hodel, Mariasavina Severino, Mike P. Wattjes, Aart J. van der Molen, Bas Jasperse, Carlo A. Mallio, Tarek Yousry, Carlo C. Quattrocchi, on behalf of the ESMRMB-GREC Working Group and of the ESNR Multiple Sclerosis Working Group

Published in: European Radiology | Issue 3/2024

Login to get access

Abstract 

Magnetic resonance imaging (MRI) is the most sensitive technique for detecting inflammatory demyelinating lesions in multiple sclerosis (MS) and plays a crucial role in diagnosis and monitoring treatment effectiveness, and for predicting the disease course. In clinical practice, detection of MS lesions is mainly based on T2-weighted and contrast-enhanced T1-weighted sequences. Contrast-enhancing lesions (CEL) on T1-weighted sequences are related to (sub)acute inflammation, while new or enlarging T2 lesions reflect the permanent footprint from a previous acute inflammatory demyelinating event. These two types of MRI features provide redundant information, at least in regular monitoring of the disease. Due to the concern of gadolinium deposition after repetitive injections of gadolinium-based contrast agents (GBCAs), scientific organizations and regulatory agencies in Europe and North America have proposed that these contrast agents should be administered only if clinically necessary. In this article, we provide data on the mode of action of GBCAs in MS, the indications of the use of these agents in clinical practice, their value in MS for diagnostic, prognostic, and monitoring purposes, and their use in specific populations (children, pregnant women, and breast-feeders). We discuss imaging strategies that achieve the highest sensitivity for detecting CELs in compliance with the safety regulations established by different regulatory agencies. Finally, we will briefly discuss some alternatives to the use of GBCA for detecting blood–brain barrier disruption in MS lesions.

Clinical relevance statement

Although use of GBCA at diagnostic workup of suspected MS is highly valuable for diagnostic and prognostic purposes, their use in routine monitoring is not mandatory and must be reduced, as detection of disease activity can be based on the identification of new or enlarging lesions on T2-weighted images.

Key Points

• Both the EMA and the FDA state that the use of GBCA in medicine should be restricted to clinical scenarios in which the additional information offered by the contrast agent is required.
• The use of GBCA is generally recommended in the diagnostic workup in subjects with suspected MS and is generally not necessary for routine monitoring in clinical practice.
• Alternative MRI-based approaches for detecting acute focal inflammatory MS lesions are not yet ready to be used in clinical practice.
Literature
1.
go back to reference Wattjes MP, Ciccarelli O, Reich DS et al (2021) 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 20:653–670PubMed Wattjes MP, Ciccarelli O, Reich DS et al (2021) 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 20:653–670PubMed
2.
go back to reference Rovira A, Auger C, Alonso J (2013) Magnetic resonance monitoring of lesion evolution in multiple sclerosis. Ther Adv Neurol Disord 6:298–310PubMedPubMedCentral Rovira A, Auger C, Alonso J (2013) Magnetic resonance monitoring of lesion evolution in multiple sclerosis. Ther Adv Neurol Disord 6:298–310PubMedPubMedCentral
3.
go back to reference Gulani V, Calamante F, Shellock FG et al (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16:564–570PubMed Gulani V, Calamante F, Shellock FG et al (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16:564–570PubMed
4.
go back to reference Ognard J, Barrat JA, Cotton F et al (2021) A roadmap towards pollution prevention and sustainable development of Gadolinium. J Neuroradiol 48:409–411PubMed Ognard J, Barrat JA, Cotton F et al (2021) A roadmap towards pollution prevention and sustainable development of Gadolinium. J Neuroradiol 48:409–411PubMed
6.
go back to reference Mallio CA, Rovira À, Parizel PM, Quattrocchi CC (2020) Exposure to gadolinium and neurotoxicity: current status of preclinical and clinical studies. Neuroradiology 62:925–934PubMed Mallio CA, Rovira À, Parizel PM, Quattrocchi CC (2020) Exposure to gadolinium and neurotoxicity: current status of preclinical and clinical studies. Neuroradiology 62:925–934PubMed
7.
go back to reference Quattrocchi CC, Ramalho J, van der Molen AJ et al (2019) Standardized assessment of the signal intensity increase on unenhanced T1-weighted images in the brain: the European Gadolinium Retention Evaluation Consortium (GREC) Task Force position statement. Eur Radiol 29:3959–3967PubMed Quattrocchi CC, Ramalho J, van der Molen AJ et al (2019) Standardized assessment of the signal intensity increase on unenhanced T1-weighted images in the brain: the European Gadolinium Retention Evaluation Consortium (GREC) Task Force position statement. Eur Radiol 29:3959–3967PubMed
8.
go back to reference Quattrocchi CC, van der Molen AJ (2017) Gadolinium retention in the body and brain: is it time for an international joint research effort? Radiology 282:12–16PubMed Quattrocchi CC, van der Molen AJ (2017) Gadolinium retention in the body and brain: is it time for an international joint research effort? Radiology 282:12–16PubMed
9.
go back to reference Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841PubMed Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841PubMed
10.
go back to reference Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173PubMed Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173PubMed
11.
go back to reference Saade C, Bou-Fakhredin R, Yousem DM et al (2018) Gadolinium and multiple sclerosis: vessels, barriers of the brain, and glymphatics. AJNR Am J Neuroradiol 39:2168–2176PubMedPubMedCentral Saade C, Bou-Fakhredin R, Yousem DM et al (2018) Gadolinium and multiple sclerosis: vessels, barriers of the brain, and glymphatics. AJNR Am J Neuroradiol 39:2168–2176PubMedPubMedCentral
12.
go back to reference Minagar A, Alexander JS (2003) Blood-brain barrier disruption in multiple sclerosis. Mult Scler 9:540–549PubMed Minagar A, Alexander JS (2003) Blood-brain barrier disruption in multiple sclerosis. Mult Scler 9:540–549PubMed
14.
go back to reference Barkhof F, Scheltens P, Frequin STFM et al (1992) Relapsing-remitting multiple sclerosis: sequential enhanced MR imaging vs clinical findings in determining disease activity. AJR Am J Roentgenol 159:1041–1047PubMed Barkhof F, Scheltens P, Frequin STFM et al (1992) Relapsing-remitting multiple sclerosis: sequential enhanced MR imaging vs clinical findings in determining disease activity. AJR Am J Roentgenol 159:1041–1047PubMed
15.
go back to reference Lassmann H (2008) The pathologic substrate of magnetic resonance alterations in multiple sclerosis. Neuroimaging Clin N Am 18:563–576PubMed Lassmann H (2008) The pathologic substrate of magnetic resonance alterations in multiple sclerosis. Neuroimaging Clin N Am 18:563–576PubMed
16.
go back to reference Koudriavtseva T, Thompson AJ, Fiorelli M et al (1997) Gadolinium enhanced MRI predicts clinical and MRI disease activity in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 62:285–287PubMedPubMedCentral Koudriavtseva T, Thompson AJ, Fiorelli M et al (1997) Gadolinium enhanced MRI predicts clinical and MRI disease activity in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 62:285–287PubMedPubMedCentral
17.
go back to reference Cotton F, Weiner HL, Jolesz FA, Guttmann CRG (2003) MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology 60:640–646PubMed Cotton F, Weiner HL, Jolesz FA, Guttmann CRG (2003) MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology 60:640–646PubMed
18.
go back to reference Burnham JA, Wright RR, Dreisbach J, Murray RS (1991) The effect of high-dose steroids on MRI gadolinium enhancement in acute demyelinating lesions. Neurology 41:1349–1349PubMed Burnham JA, Wright RR, Dreisbach J, Murray RS (1991) The effect of high-dose steroids on MRI gadolinium enhancement in acute demyelinating lesions. Neurology 41:1349–1349PubMed
19.
go back to reference Thompson AJ, Kermode AG, Wicks D et al (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29:53–62PubMed Thompson AJ, Kermode AG, Wicks D et al (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29:53–62PubMed
20.
go back to reference Tremlett H, Zhao Y, Joseph J et al (2008) Relapses in multiple sclerosis are age- and time-dependent. J Neurol Neurosurg Psychiatry 79:1368–1374PubMed Tremlett H, Zhao Y, Joseph J et al (2008) Relapses in multiple sclerosis are age- and time-dependent. J Neurol Neurosurg Psychiatry 79:1368–1374PubMed
21.
go back to reference Koch MW, Mostert J, Greenfield J et al (2020) Gadolinium enhancement on cranial MRI in multiple sclerosis is age dependent. J Neurol 267:2619–2624PubMed Koch MW, Mostert J, Greenfield J et al (2020) Gadolinium enhancement on cranial MRI in multiple sclerosis is age dependent. J Neurol 267:2619–2624PubMed
22.
go back to reference Brownlee WJ, Altmann DR, Prados F et al (2019) Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis. Brain 142:2276–2287PubMed Brownlee WJ, Altmann DR, Prados F et al (2019) Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis. Brain 142:2276–2287PubMed
23.
go back to reference Filippi M, Preziosa P, Banwell BL et al (2019) Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 142:1858–1875PubMedPubMedCentral Filippi M, Preziosa P, Banwell BL et al (2019) Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 142:1858–1875PubMedPubMedCentral
26.
go back to reference Wijburg MT, Warnke C, McGuigan C et al (2021) Pharmacovigilance during treatment of multiple sclerosis: early recognition of CNS complications. J Neurol Neurosurg Psychiatry 92:177–188PubMed Wijburg MT, Warnke C, McGuigan C et al (2021) Pharmacovigilance during treatment of multiple sclerosis: early recognition of CNS complications. J Neurol Neurosurg Psychiatry 92:177–188PubMed
27.
go back to reference Mallio CA, Quattrocchi CC, Rovira À, Parizel PM (2020) Gadolinium deposition safety: seeking the patient’s perspective. AJNR Am J Neuroradiol 41:944–946PubMedPubMedCentral Mallio CA, Quattrocchi CC, Rovira À, Parizel PM (2020) Gadolinium deposition safety: seeking the patient’s perspective. AJNR Am J Neuroradiol 41:944–946PubMedPubMedCentral
28.
go back to reference Mallio CA, Piervincenzi C, Gianolio E et al (2019) Absence of dentate nucleus resting-state functional connectivity changes in nonneurological patients with gadolinium-related hyperintensity on T1 -weighted images. J Magn Reson Imaging 50:445–455PubMed Mallio CA, Piervincenzi C, Gianolio E et al (2019) Absence of dentate nucleus resting-state functional connectivity changes in nonneurological patients with gadolinium-related hyperintensity on T1 -weighted images. J Magn Reson Imaging 50:445–455PubMed
29.
go back to reference Mallio CA, Piervincenzi C, Carducci F et al (2020) Within-network brain connectivity in Crohn’s disease patients with gadolinium deposition in the cerebellum. Neuroradiology 62:833–841PubMed Mallio CA, Piervincenzi C, Carducci F et al (2020) Within-network brain connectivity in Crohn’s disease patients with gadolinium deposition in the cerebellum. Neuroradiology 62:833–841PubMed
30.
go back to reference Wiendl H, Gold R, Berger T et al (2021) Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Ther Adv Neurol Disord 14:17562864211039648PubMedPubMedCentral Wiendl H, Gold R, Berger T et al (2021) Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Ther Adv Neurol Disord 14:17562864211039648PubMedPubMedCentral
31.
go back to reference Fernandes L, Allen CM, Williams T et al (2021) The contemporary role of MRI in the monitoring and management of people with multiple sclerosis in the UK. Mult Scler Relat Disord 55:103190PubMed Fernandes L, Allen CM, Williams T et al (2021) The contemporary role of MRI in the monitoring and management of people with multiple sclerosis in the UK. Mult Scler Relat Disord 55:103190PubMed
32.
go back to reference Blumfield E, Swenson DW, Iyer RS, Stanescu AL (2019) Gadolinium-based contrast agents - review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients. Pediatr Radiol 49:448–457PubMed Blumfield E, Swenson DW, Iyer RS, Stanescu AL (2019) Gadolinium-based contrast agents - review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients. Pediatr Radiol 49:448–457PubMed
33.
go back to reference Towbin AJ, Zhang B, Dillman JR (2021) Evaluation of the effect of multiple administrations of gadopentetate dimeglumine or gadoterate meglumine on brain T1-weighted hyperintensity in pediatric patients. Pediatr Radiol 51:2568–2580PubMed Towbin AJ, Zhang B, Dillman JR (2021) Evaluation of the effect of multiple administrations of gadopentetate dimeglumine or gadoterate meglumine on brain T1-weighted hyperintensity in pediatric patients. Pediatr Radiol 51:2568–2580PubMed
34.
go back to reference Noda SM, Oztek MA, Stanescu AL et al (2022) Gadolinium retention: should pediatric radiologists be concerned, and how to frame conversations with families. Pediatr Radiol 52:345–353PubMed Noda SM, Oztek MA, Stanescu AL et al (2022) Gadolinium retention: should pediatric radiologists be concerned, and how to frame conversations with families. Pediatr Radiol 52:345–353PubMed
35.
go back to reference Oh KY, Roberts VHJ, Schabel MC et al (2015) Gadolinium chelate contrast material in pregnancy: fetal biodistribution in the nonhuman primate. Radiology 276:110–118PubMed Oh KY, Roberts VHJ, Schabel MC et al (2015) Gadolinium chelate contrast material in pregnancy: fetal biodistribution in the nonhuman primate. Radiology 276:110–118PubMed
36.
go back to reference Puac P, Rodríguez A, Vallejo C et al (2017) Safety of contrast material use during pregnancy and lactation. Magn Reson Imaging Clin N Am 25:787–797PubMed Puac P, Rodríguez A, Vallejo C et al (2017) Safety of contrast material use during pregnancy and lactation. Magn Reson Imaging Clin N Am 25:787–797PubMed
37.
go back to reference Winterstein AG, Thai TN, Nduaguba S et al (2022) Risk of fetal or neonatal death or neonatal intensive care unit admission associated with gadolinium magnetic resonance imaging exposure during pregnancy. Am J Obstet Gynecol 228:465.e1–465.e11PubMed Winterstein AG, Thai TN, Nduaguba S et al (2022) Risk of fetal or neonatal death or neonatal intensive care unit admission associated with gadolinium magnetic resonance imaging exposure during pregnancy. Am J Obstet Gynecol 228:465.e1–465.e11PubMed
38.
go back to reference Ray JG, Vermeulen MJ, Bharatha A et al (2016) Association between MRI Exposure during pregnancy and fetal and childhood outcomes. JAMA 316:952–961PubMed Ray JG, Vermeulen MJ, Bharatha A et al (2016) Association between MRI Exposure during pregnancy and fetal and childhood outcomes. JAMA 316:952–961PubMed
39.
go back to reference Chen MM, Coakley FV, Kaimal A, Laros RK (2008) Guidelines for computed tomography and magnetic resonance imaging use during pregnancy and lactation. Obstet Gynecol 112:333–340PubMed Chen MM, Coakley FV, Kaimal A, Laros RK (2008) Guidelines for computed tomography and magnetic resonance imaging use during pregnancy and lactation. Obstet Gynecol 112:333–340PubMed
40.
go back to reference Mervak BM, Altun E, McGinty KA et al (2019) MRI in pregnancy: indications and practical considerations. J Magn Reson Imaging 49:621–631PubMed Mervak BM, Altun E, McGinty KA et al (2019) MRI in pregnancy: indications and practical considerations. J Magn Reson Imaging 49:621–631PubMed
44.
go back to reference ACOG (2017) Committee Opinion No. 723: Guidelines for Diagnostic Imaging During Pregnancy and Lactation. Obstet Gynecol 130:e210–e216 ACOG (2017) Committee Opinion No. 723: Guidelines for Diagnostic Imaging During Pregnancy and Lactation. Obstet Gynecol 130:e210–e216
45.
go back to reference Webb JA, Thomsen HS (2013) Gadolinium contrast media during pregnancy and lactation. Acta Radiol 54:599–600PubMed Webb JA, Thomsen HS (2013) Gadolinium contrast media during pregnancy and lactation. Acta Radiol 54:599–600PubMed
46.
go back to reference Wang PI, Chong ST, Kielar AZ et al (2012) Imaging of pregnant and lactating patients: part 1, evidence-based review and recommendations. AJR Am J Roentgenol 198:778–784PubMed Wang PI, Chong ST, Kielar AZ et al (2012) Imaging of pregnant and lactating patients: part 1, evidence-based review and recommendations. AJR Am J Roentgenol 198:778–784PubMed
47.
go back to reference Kubik-Huch RA, Gottstein-Aalame NM, Frenzel T et al (2000) Gadopentetate dimeglumine excretion into human breast milk during lactation. Radiology 216:555–558PubMed Kubik-Huch RA, Gottstein-Aalame NM, Frenzel T et al (2000) Gadopentetate dimeglumine excretion into human breast milk during lactation. Radiology 216:555–558PubMed
48.
go back to reference Sundgren PC, Leander P (2011) Is administration of gadolinium-based contrast media to pregnant women and small children justified? J Magn Reson Imaging 34:750–757PubMed Sundgren PC, Leander P (2011) Is administration of gadolinium-based contrast media to pregnant women and small children justified? J Magn Reson Imaging 34:750–757PubMed
49.
go back to reference Proença F, Guerreiro C, Sá G, Reimão S (2021) Neuroimaging safety during pregnancy and lactation: a review. Neuroradiology 63:837–845PubMed Proença F, Guerreiro C, Sá G, Reimão S (2021) Neuroimaging safety during pregnancy and lactation: a review. Neuroradiology 63:837–845PubMed
50.
go back to reference Little JT, Bookwalter CA (2020) Magnetic resonance safety: pregnancy and lactation. Magn Reson Imaging Clin N Am 28:509–516PubMed Little JT, Bookwalter CA (2020) Magnetic resonance safety: pregnancy and lactation. Magn Reson Imaging Clin N Am 28:509–516PubMed
52.
go back to reference van Waesberghe JH, Castelijns JA, Roser W et al (1997) Single-dose gadolinium with magnetization transfer versus triple-dose gadolinium in the MR detection of multiple sclerosis lesions. AJNR Am J Neuroradiol 18:1279–1285PubMedPubMedCentral van Waesberghe JH, Castelijns JA, Roser W et al (1997) Single-dose gadolinium with magnetization transfer versus triple-dose gadolinium in the MR detection of multiple sclerosis lesions. AJNR Am J Neuroradiol 18:1279–1285PubMedPubMedCentral
53.
go back to reference Rovira A, Auger C, Huerga E et al (2017) Cumulative dose of macrocyclic gadolinium-based contrast agent improves detection of enhancing lesions in patients with multiple sclerosis. AJNR Am J Neuroradiol 38:1486–1493PubMedPubMedCentral Rovira A, Auger C, Huerga E et al (2017) Cumulative dose of macrocyclic gadolinium-based contrast agent improves detection of enhancing lesions in patients with multiple sclerosis. AJNR Am J Neuroradiol 38:1486–1493PubMedPubMedCentral
54.
go back to reference Giesel FL, Runge V, Kirchin M et al (2010) Three-dimensional multiphase time-resolved low-dose contrast-enhanced magnetic resonance angiography using TWIST on a 32-channel coil at 3 T. J Comput Assist Tomogr 34:678–683PubMed Giesel FL, Runge V, Kirchin M et al (2010) Three-dimensional multiphase time-resolved low-dose contrast-enhanced magnetic resonance angiography using TWIST on a 32-channel coil at 3 T. J Comput Assist Tomogr 34:678–683PubMed
55.
go back to reference Loevner LA, Kolumban B, Hutóczki G et al (2023) Efficacy and safety of gadopiclenol for contrast-enhanced MRI of the central nervous system: the PICTURE randomized clinical trial. Invest Radiol 58:307–313PubMed Loevner LA, Kolumban B, Hutóczki G et al (2023) Efficacy and safety of gadopiclenol for contrast-enhanced MRI of the central nervous system: the PICTURE randomized clinical trial. Invest Radiol 58:307–313PubMed
56.
go back to reference Gong E, Pauly JM, Wintermark M, Zaharchuk G (2018) Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging 48:330–340PubMed Gong E, Pauly JM, Wintermark M, Zaharchuk G (2018) Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging 48:330–340PubMed
57.
go back to reference Filippi M, Yousry T, Rocca MA et al (1997) Sensitivity of delayed gadolinium-enhanced MRI in multiple sclerosis. Acta Neurol Scand 95:331–334PubMed Filippi M, Yousry T, Rocca MA et al (1997) Sensitivity of delayed gadolinium-enhanced MRI in multiple sclerosis. Acta Neurol Scand 95:331–334PubMed
58.
go back to reference Absinta M, Vuolo L, Rao A et al (2015) Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 85:18–28PubMedPubMedCentral Absinta M, Vuolo L, Rao A et al (2015) Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 85:18–28PubMedPubMedCentral
59.
go back to reference Okar SV, Reich DS (2022) Routine gadolinium use for MRI follow-up of multiple sclerosis: point-the role of leptomeningeal enhancement. AJR Am J Roentgenol 219:24–25PubMed Okar SV, Reich DS (2022) Routine gadolinium use for MRI follow-up of multiple sclerosis: point-the role of leptomeningeal enhancement. AJR Am J Roentgenol 219:24–25PubMed
60.
go back to reference Aymerich FX, Auger C, Alcaide-Leon P et al (2017) Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI. Eur Radiol 27:1361–1368PubMed Aymerich FX, Auger C, Alcaide-Leon P et al (2017) Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI. Eur Radiol 27:1361–1368PubMed
61.
go back to reference Bapst B, Amegnizin JL, Vignaud A et al (2020) Post-contrast 3D T1-weighted TSE MR sequences (SPACE, CUBE, VISTA/BRAINVIEW, isoFSE, 3D MVOX): technical aspects and clinical applications. J Neuroradiol 47:358–368PubMed Bapst B, Amegnizin JL, Vignaud A et al (2020) Post-contrast 3D T1-weighted TSE MR sequences (SPACE, CUBE, VISTA/BRAINVIEW, isoFSE, 3D MVOX): technical aspects and clinical applications. J Neuroradiol 47:358–368PubMed
63.
go back to reference Mugler JP, Bao S, Mulkern RV et al (2000) Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology 216:891–899PubMed Mugler JP, Bao S, Mulkern RV et al (2000) Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology 216:891–899PubMed
64.
go back to reference de Panafieu A, Lecler A, Goujon A et al (2023) Contrast-enhanced 3D spin echo T1-weighted sequence outperforms 3D gradient echo T1-weighted sequence for the detection of multiple sclerosis lesions on 3.0 T brain MRI. Invest Radiol 58:314–319PubMed de Panafieu A, Lecler A, Goujon A et al (2023) Contrast-enhanced 3D spin echo T1-weighted sequence outperforms 3D gradient echo T1-weighted sequence for the detection of multiple sclerosis lesions on 3.0 T brain MRI. Invest Radiol 58:314–319PubMed
65.
go back to reference Di Perri C, Dwyer MG, Wack DS et al (2009) Signal abnormalities on 1.5 and 3 Tesla brain MRI in multiple sclerosis patients and healthy controls. A morphological and spatial quantitative comparison study. Neuroimage 47:1352–1362PubMed Di Perri C, Dwyer MG, Wack DS et al (2009) Signal abnormalities on 1.5 and 3 Tesla brain MRI in multiple sclerosis patients and healthy controls. A morphological and spatial quantitative comparison study. Neuroimage 47:1352–1362PubMed
66.
go back to reference Do Amaral LLF, Fragoso DC, da Rocha AJ (2019) Improving acute demyelinating lesion detection: which T1-weighted magnetic resonance acquisition is more sensitive to gadolinium enhancement? Arq Neuropsiquiatr 77:485–492 Do Amaral LLF, Fragoso DC, da Rocha AJ (2019) Improving acute demyelinating lesion detection: which T1-weighted magnetic resonance acquisition is more sensitive to gadolinium enhancement? Arq Neuropsiquiatr 77:485–492
67.
go back to reference Bastianello S, Gasperini C, Paolillo A et al (1998) Sensitivity of enhanced MR in multiple sclerosis: effects of contrast dose and magnetization transfer contrast. AJNR Am J Neuroradiol 19:1863–1867PubMedPubMedCentral Bastianello S, Gasperini C, Paolillo A et al (1998) Sensitivity of enhanced MR in multiple sclerosis: effects of contrast dose and magnetization transfer contrast. AJNR Am J Neuroradiol 19:1863–1867PubMedPubMedCentral
68.
go back to reference Algin O, Hakyemez B, Taşkapilioǧlu Ö et al (2010) Imaging of active multiple sclerosis plaques: efficiency of contrast-enhanced magnetization transfer subtraction technique. Diagn Interv Radiol 16:106–111PubMed Algin O, Hakyemez B, Taşkapilioǧlu Ö et al (2010) Imaging of active multiple sclerosis plaques: efficiency of contrast-enhanced magnetization transfer subtraction technique. Diagn Interv Radiol 16:106–111PubMed
69.
go back to reference Al-Saeed O, Ismail M, Athyal R, Sheikh M (2011) Fat-saturated post gadolinium T1 imaging of the brain in multiple sclerosis. Acta Radiol 52:570–574PubMed Al-Saeed O, Ismail M, Athyal R, Sheikh M (2011) Fat-saturated post gadolinium T1 imaging of the brain in multiple sclerosis. Acta Radiol 52:570–574PubMed
70.
go back to reference Balashov KE, Aung LL, Dhib-Jalbut S, Keller IA (2011) Acute multiple sclerosis lesion: conversion of restricted diffusion due to vasogenic edema. J Neuroimaging 21:202–204PubMedPubMedCentral Balashov KE, Aung LL, Dhib-Jalbut S, Keller IA (2011) Acute multiple sclerosis lesion: conversion of restricted diffusion due to vasogenic edema. J Neuroimaging 21:202–204PubMedPubMedCentral
71.
go back to reference Bugnicourt J-M, Garcia P-Y, Monet P et al (2010) Teaching NeuroImages: marked reduced apparent diffusion coefficient in acute multiple sclerosis lesion. Neurology 74:e87PubMed Bugnicourt J-M, Garcia P-Y, Monet P et al (2010) Teaching NeuroImages: marked reduced apparent diffusion coefficient in acute multiple sclerosis lesion. Neurology 74:e87PubMed
72.
go back to reference Rosso C, Remy P, Creange A et al (2006) Diffusion-weighted MR imaging characteristics of an acute strokelike form of multiple sclerosis. AJNR Am J Neuroradiol 27:1006–1008PubMedPubMedCentral Rosso C, Remy P, Creange A et al (2006) Diffusion-weighted MR imaging characteristics of an acute strokelike form of multiple sclerosis. AJNR Am J Neuroradiol 27:1006–1008PubMedPubMedCentral
73.
go back to reference Rovira A, Pericot I, Alonso J et al (2002) Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions: case report. AJNR Am J Neuroradiol 23:989–994PubMedPubMedCentral Rovira A, Pericot I, Alonso J et al (2002) Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions: case report. AJNR Am J Neuroradiol 23:989–994PubMedPubMedCentral
74.
go back to reference Eisele P, Szabo K, Griebe M et al (2012) Reduced diffusion in a subset of acute MS lesions: a serial multiparametric MRI study. AJNR Am J Neuroradiol 33:1369–1373PubMedPubMedCentral Eisele P, Szabo K, Griebe M et al (2012) Reduced diffusion in a subset of acute MS lesions: a serial multiparametric MRI study. AJNR Am J Neuroradiol 33:1369–1373PubMedPubMedCentral
75.
go back to reference Lucchinetti C, Brück W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717PubMed Lucchinetti C, Brück W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717PubMed
76.
go back to reference Rigby H, Maloney W, Bhan V (2012) Diagnostic considerations in acute MS lesions with restricted diffusion on MRI. Can J Neurol Sci 39:525–526PubMed Rigby H, Maloney W, Bhan V (2012) Diagnostic considerations in acute MS lesions with restricted diffusion on MRI. Can J Neurol Sci 39:525–526PubMed
77.
go back to reference Tievsky AL, Ptak T, Farkas J (1999) Investigation of apparent diffusion coefficient and diffusion tensor anisotrophy in acute and chronic multiple sclerosis lesions. AJNR Am J Neuroradiol 20:1491–1499PubMedPubMedCentral Tievsky AL, Ptak T, Farkas J (1999) Investigation of apparent diffusion coefficient and diffusion tensor anisotrophy in acute and chronic multiple sclerosis lesions. AJNR Am J Neuroradiol 20:1491–1499PubMedPubMedCentral
78.
go back to reference Balashov KE, Lindzen E (2012) Acute demyelinating lesions with restricted diffusion in multiple sclerosis. Mult Scler 18:1745–1753PubMedPubMedCentral Balashov KE, Lindzen E (2012) Acute demyelinating lesions with restricted diffusion in multiple sclerosis. Mult Scler 18:1745–1753PubMedPubMedCentral
79.
go back to reference Gupta A, Al-Dasuqi K, Xia F et al (2017) The use of noncontrast quantitative MRI to detect gadolinium-enhancing multiple sclerosis brain lesions: a systematic review and meta-analysis. AJNR Am J Neuroradiol 38:1317–1322PubMedPubMedCentral Gupta A, Al-Dasuqi K, Xia F et al (2017) The use of noncontrast quantitative MRI to detect gadolinium-enhancing multiple sclerosis brain lesions: a systematic review and meta-analysis. AJNR Am J Neuroradiol 38:1317–1322PubMedPubMedCentral
80.
go back to reference Abdoli M, Chakraborty S, MacLean HJ, Freedman MS (2016) The evaluation of MRI diffusion values of active demyelinating lesions in multiple sclerosis. Mult Scler Relat Disord 10:97–102PubMed Abdoli M, Chakraborty S, MacLean HJ, Freedman MS (2016) The evaluation of MRI diffusion values of active demyelinating lesions in multiple sclerosis. Mult Scler Relat Disord 10:97–102PubMed
81.
go back to reference Sacco S, Caverzasi E, Papinutto N et al (2020) Neurite orientation dispersion and density imaging for assessing acute inflammation and lesion evolution in MS. AJNR Am J Neuroradiol 41:2219–2226PubMedPubMedCentral Sacco S, Caverzasi E, Papinutto N et al (2020) Neurite orientation dispersion and density imaging for assessing acute inflammation and lesion evolution in MS. AJNR Am J Neuroradiol 41:2219–2226PubMedPubMedCentral
82.
go back to reference Caruana G, Pessini LM, Cannella R et al (2020) Texture analysis in susceptibility-weighted imaging may be useful to differentiate acute from chronic multiple sclerosis lesions. Eur Radiol 30:6348–6356PubMed Caruana G, Pessini LM, Cannella R et al (2020) Texture analysis in susceptibility-weighted imaging may be useful to differentiate acute from chronic multiple sclerosis lesions. Eur Radiol 30:6348–6356PubMed
83.
go back to reference Yu O, Mauss Y, Zollner G et al (1999) Distinct patterns of active and non-active plaques using texture analysis on brain NMR images in multiple sclerosis patients: preliminary results. Magn Reson Imaging 17:1261–1267PubMed Yu O, Mauss Y, Zollner G et al (1999) Distinct patterns of active and non-active plaques using texture analysis on brain NMR images in multiple sclerosis patients: preliminary results. Magn Reson Imaging 17:1261–1267PubMed
84.
go back to reference Michoux N, Guillet A, Rommel D et al (2015) Texture analysis of T2-weighted MR images to assess acute inflammation in brain MS lesions. PLoS One 10 Michoux N, Guillet A, Rommel D et al (2015) Texture analysis of T2-weighted MR images to assess acute inflammation in brain MS lesions. PLoS One 10
85.
go back to reference Zhang Y, Gauthier SA, Gupta A et al (2016) Magnetic susceptibility from quantitative susceptibility mapping can differentiate new enhancing from nonenhancing multiple sclerosis lesions without gadolinium injection. AJNR Am J Neuroradiol 37:1794–1799PubMedPubMedCentral Zhang Y, Gauthier SA, Gupta A et al (2016) Magnetic susceptibility from quantitative susceptibility mapping can differentiate new enhancing from nonenhancing multiple sclerosis lesions without gadolinium injection. AJNR Am J Neuroradiol 37:1794–1799PubMedPubMedCentral
86.
go back to reference Caruana G, Auger C, Pessini LM et al (2022) SWI as an alternative to contrast-enhanced imaging to detect acute MS lesions. AJNR Am J Neuroradiol 43:534–539PubMedPubMedCentral Caruana G, Auger C, Pessini LM et al (2022) SWI as an alternative to contrast-enhanced imaging to detect acute MS lesions. AJNR Am J Neuroradiol 43:534–539PubMedPubMedCentral
87.
go back to reference Vinayagamani S, Sabarish S, Nair SS et al (2021) Quantitative susceptibility-weighted imaging in predicting disease activity in multiple sclerosis. Neuroradiology 63:1061–1069PubMed Vinayagamani S, Sabarish S, Nair SS et al (2021) Quantitative susceptibility-weighted imaging in predicting disease activity in multiple sclerosis. Neuroradiology 63:1061–1069PubMed
88.
go back to reference Narayana PA, Coronado I, Sujit SJ et al (2020) Deep learning for predicting enhancing lesions in multiple sclerosis from noncontrast MRI. Radiology 294:398–404PubMed Narayana PA, Coronado I, Sujit SJ et al (2020) Deep learning for predicting enhancing lesions in multiple sclerosis from noncontrast MRI. Radiology 294:398–404PubMed
89.
go back to reference Vargas WS, Monohan E, Pandya S et al (2015) Measuring longitudinal myelin water fraction in new multiple sclerosis lesions. NeuroImage Clin 9:369–375PubMedPubMedCentral Vargas WS, Monohan E, Pandya S et al (2015) Measuring longitudinal myelin water fraction in new multiple sclerosis lesions. NeuroImage Clin 9:369–375PubMedPubMedCentral
90.
go back to reference Filippi M, Rocca MA, Martino G et al (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814PubMed Filippi M, Rocca MA, Martino G et al (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814PubMed
91.
go back to reference de la Peña MJ, Peña IC, García PG-P et al (2019) Early perfusion changes in multiple sclerosis patients as assessed by MRI using arterial spin labeling. Acta Radiol Open 8:2058460119894214PubMedPubMedCentral de la Peña MJ, Peña IC, García PG-P et al (2019) Early perfusion changes in multiple sclerosis patients as assessed by MRI using arterial spin labeling. Acta Radiol Open 8:2058460119894214PubMedPubMedCentral
Metadata
Title
Use of gadolinium-based contrast agents in multiple sclerosis: a review by the ESMRMB-GREC and ESNR Multiple Sclerosis Working Group
Authors
Àlex Rovira
Fabio M. Doniselli
Cristina Auger
Lukas Haider
Jerome Hodel
Mariasavina Severino
Mike P. Wattjes
Aart J. van der Molen
Bas Jasperse
Carlo A. Mallio
Tarek Yousry
Carlo C. Quattrocchi
on behalf of the ESMRMB-GREC Working Group and of the ESNR Multiple Sclerosis Working Group
Publication date
02-09-2023
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 3/2024
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-023-10151-y

Other articles of this Issue 3/2024

European Radiology 3/2024 Go to the issue