Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Multiple Sclerosis | Research

N-acetylglucosamine inhibits inflammation and neurodegeneration markers in multiple sclerosis: a mechanistic trial

Authors: Michael Sy, Barbara L. Newton, Judy Pawling, Ken L. Hayama, Andres Cordon, Zhaoxia Yu, Jens Kuhle, James W. Dennis, Alexander U. Brandt, Michael Demetriou

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Background

In the demyelinating disease multiple sclerosis (MS), chronic-active brain inflammation, remyelination failure and neurodegeneration remain major issues despite immunotherapy. While B cell depletion and blockade/sequestration of T and B cells potently reduces episodic relapses, they act peripherally to allow persistence of chronic-active brain inflammation and progressive neurological dysfunction. N-acetyglucosamine (GlcNAc) is a triple modulator of inflammation, myelination and neurodegeneration. GlcNAc promotes biosynthesis of Asn (N)-linked-glycans, which interact with galectins to co-regulate the clustering/signaling/endocytosis of multiple glycoproteins simultaneously. In mice, GlcNAc crosses the blood brain barrier to raise N-glycan branching, suppress inflammatory demyelination by T and B cells and trigger stem/progenitor cell mediated myelin repair. MS clinical severity, demyelination lesion size and neurodegeneration inversely associate with a marker of endogenous GlcNAc, while in healthy humans, age-associated increases in endogenous GlcNAc promote T cell senescence.

Objectives and methods

An open label dose-escalation mechanistic trial of oral GlcNAc at 6 g (n = 18) and 12 g (n = 16) for 4 weeks was performed in MS patients on glatiramer acetate and not in relapse from March 2016 to December 2019 to assess changes in serum GlcNAc, lymphocyte N-glycosylation and inflammatory markers. Post-hoc analysis examined changes in serum neurofilament light chain (sNfL) as well as neurological disability via the Expanded Disability Status Scale (EDSS).

Results

Prior to GlcNAc therapy, high serum levels of the inflammatory cytokines IFNγ, IL-17 and IL-6 associated with reduced baseline levels of a marker of endogenous serum GlcNAc. Oral GlcNAc therapy was safe, raised serum levels and modulated N-glycan branching in lymphocytes. Glatiramer acetate reduces TH1, TH17 and B cell activity as well as sNfL, yet the addition of oral GlcNAc dose-dependently lowered serum IFNγ, IL-17, IL-6 and NfL. Oral GlcANc also dose-dependently reduced serum levels of the anti-inflammatory cytokine IL-10, which is increased in the brain of MS patients. 30% of treated patients displayed confirmed improvement in neurological disability, with an average EDSS score decrease of 0.52 points.

Conclusions

Oral GlcNAc inhibits inflammation and neurodegeneration markers in MS patients despite concurrent immunomodulation by glatiramer acetate. Blinded studies are required to investigate GlcNAc’s potential to control residual brain inflammation, myelin repair and neurodegeneration in MS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J, et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain. 1989;112(Pt 1):133–46.PubMed Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J, et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain. 1989;112(Pt 1):133–46.PubMed
2.
go back to reference Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338(5):278–85.PubMed Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338(5):278–85.PubMed
3.
go back to reference Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14(2):183–93.PubMed Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14(2):183–93.PubMed
4.
go back to reference Henry RG, Shieh M, Okuda DT, Evangelista A, Gorno-Tempini ML, Pelletier D. Regional grey matter atrophy in clinically isolated syndromes at presentation. J Neurol Neurosurg Psychiatry. 2008;79(11):1236–44.PubMed Henry RG, Shieh M, Okuda DT, Evangelista A, Gorno-Tempini ML, Pelletier D. Regional grey matter atrophy in clinically isolated syndromes at presentation. J Neurol Neurosurg Psychiatry. 2008;79(11):1236–44.PubMed
5.
go back to reference Zivadinov R, Havrdova E, Bergsland N, Tyblova M, Hagemeier J, Seidl Z, et al. Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology. 2013;268(3):831–41.PubMed Zivadinov R, Havrdova E, Bergsland N, Tyblova M, Hagemeier J, Seidl Z, et al. Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology. 2013;268(3):831–41.PubMed
6.
go back to reference Steckova T, Hlustik P, Sladkova V, Odstrcil F, Mares J, Kanovsky P. Thalamic atrophy and cognitive impairment in clinically isolated syndrome and multiple sclerosis. J Neurol Sci. 2014;342(1–2):62–8.PubMed Steckova T, Hlustik P, Sladkova V, Odstrcil F, Mares J, Kanovsky P. Thalamic atrophy and cognitive impairment in clinically isolated syndrome and multiple sclerosis. J Neurol Sci. 2014;342(1–2):62–8.PubMed
7.
go back to reference Azevedo CJ, Overton E, Khadka S, Buckley J, Liu S, Sampat M, et al. Early CNS neurodegeneration in radiologically isolated syndrome. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e102.PubMedPubMedCentral Azevedo CJ, Overton E, Khadka S, Buckley J, Liu S, Sampat M, et al. Early CNS neurodegeneration in radiologically isolated syndrome. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e102.PubMedPubMedCentral
8.
go back to reference Oberwahrenbrock T, Ringelstein M, Jentschke S, Deuschle K, Klumbies K, Bellmann-Strobl J, et al. Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Mult Scler. 2013;19(14):1887–95.PubMed Oberwahrenbrock T, Ringelstein M, Jentschke S, Deuschle K, Klumbies K, Bellmann-Strobl J, et al. Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Mult Scler. 2013;19(14):1887–95.PubMed
9.
go back to reference Popescu BF, Lucchinetti CF. Pathology of demyelinating diseases. Annu Rev Pathol. 2012;7:185–217.PubMed Popescu BF, Lucchinetti CF. Pathology of demyelinating diseases. Annu Rev Pathol. 2012;7:185–217.PubMed
10.
go back to reference Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol. 2015;78(5):710–21.PubMedPubMedCentral Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol. 2015;78(5):710–21.PubMedPubMedCentral
11.
go back to reference Luchetti S, Fransen NL, van Eden CG, Ramaglia V, Mason M, Huitinga I. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 2018;135(4):511–28.PubMedPubMedCentral Luchetti S, Fransen NL, van Eden CG, Ramaglia V, Mason M, Huitinga I. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 2018;135(4):511–28.PubMedPubMedCentral
12.
go back to reference Kuhlmann T, Ludwin S, Prat A, Antel J, Bruck W, Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017;133(1):13–24.PubMed Kuhlmann T, Ludwin S, Prat A, Antel J, Bruck W, Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017;133(1):13–24.PubMed
13.
go back to reference Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J, et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature. 2021;597(7878):709–14.PubMedPubMedCentral Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J, et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature. 2021;597(7878):709–14.PubMedPubMedCentral
14.
go back to reference Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34.PubMed Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34.PubMed
15.
go back to reference Hauser SL, Belachew S, Kappos L. Ocrelizumab in primary progressive and relapsing multiple sclerosis. N Engl J Med. 2017;376(17):1694.PubMed Hauser SL, Belachew S, Kappos L. Ocrelizumab in primary progressive and relapsing multiple sclerosis. N Engl J Med. 2017;376(17):1694.PubMed
16.
go back to reference Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018;391(10127):1263–73.PubMed Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018;391(10127):1263–73.PubMed
17.
go back to reference Villoslada P, Steinman L. New targets and therapeutics for neuroprotection, remyelination and repair in multiple sclerosis. Expert Opin Investig Drugs. 2020;29(5):443–59.PubMed Villoslada P, Steinman L. New targets and therapeutics for neuroprotection, remyelination and repair in multiple sclerosis. Expert Opin Investig Drugs. 2020;29(5):443–59.PubMed
18.
go back to reference Absinta M, Sati P, Schindler M, Leibovitch EC, Ohayon J, Wu T, et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest. 2016;126(7):2597–609.PubMedPubMedCentral Absinta M, Sati P, Schindler M, Leibovitch EC, Ohayon J, Wu T, et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest. 2016;126(7):2597–609.PubMedPubMedCentral
19.
go back to reference Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 2019;76(12):1474–83.PubMedPubMedCentral Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 2019;76(12):1474–83.PubMedPubMedCentral
20.
go back to reference Elliott C, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, Bernasconi C, et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler. 2019;25(14):1915–25.PubMed Elliott C, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, Bernasconi C, et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler. 2019;25(14):1915–25.PubMed
21.
go back to reference Preziosa P, Pagani E, Meani A, Moiola L, Rodegher M, Filippi M, et al. Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol Neuroimmunol Neuroinflamm. 2022;9(2):e1139.PubMedPubMedCentral Preziosa P, Pagani E, Meani A, Moiola L, Rodegher M, Filippi M, et al. Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol Neuroimmunol Neuroinflamm. 2022;9(2):e1139.PubMedPubMedCentral
22.
go back to reference Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell. 2007;129(1):123–34.PubMed Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell. 2007;129(1):123–34.PubMed
23.
go back to reference Grigorian A, Lee SU, Tian W, Chen IJ, Gao G, Mendelsohn R, et al. Control of T Cell-mediated autoimmunity by metabolite flux to N-glycan biosynthesis. J Biol Chem. 2007;282(27):20027–35.PubMed Grigorian A, Lee SU, Tian W, Chen IJ, Gao G, Mendelsohn R, et al. Control of T Cell-mediated autoimmunity by metabolite flux to N-glycan biosynthesis. J Biol Chem. 2007;282(27):20027–35.PubMed
24.
25.
go back to reference Demetriou M, Granovsky M, Quaggin S, Dennis JW. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature. 2001;409(6821):733–9.PubMed Demetriou M, Granovsky M, Quaggin S, Dennis JW. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature. 2001;409(6821):733–9.PubMed
26.
go back to reference Zhou RW, Mkhikian H, Grigorian A, Hong A, Chen D, Arakelyan A, et al. N-glycosylation bidirectionally extends the boundaries of thymocyte positive selection by decoupling Lck from Ca(2)(+) signaling. Nat Immunol. 2014;15(11):1038–45.PubMed Zhou RW, Mkhikian H, Grigorian A, Hong A, Chen D, Arakelyan A, et al. N-glycosylation bidirectionally extends the boundaries of thymocyte positive selection by decoupling Lck from Ca(2)(+) signaling. Nat Immunol. 2014;15(11):1038–45.PubMed
27.
go back to reference Mkhikian H, Mortales CL, Zhou RW, Khachikyan K, Wu G, Haslam SM, et al. Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis. eLife. 2016;5. Mkhikian H, Mortales CL, Zhou RW, Khachikyan K, Wu G, Haslam SM, et al. Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis. eLife. 2016;5.
28.
go back to reference Araujo L, Khim P, Mkhikian H, Mortales CL, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife. 2017;6. Araujo L, Khim P, Mkhikian H, Mortales CL, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife. 2017;6.
29.
go back to reference Chen IJ, Chen HL, Demetriou M. Lateral compartmentalization of T cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling. J Biol Chem. 2007;282(48):35361–72.PubMed Chen IJ, Chen HL, Demetriou M. Lateral compartmentalization of T cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling. J Biol Chem. 2007;282(48):35361–72.PubMed
30.
go back to reference Grigorian A, Demetriou M. Mgat5 deficiency in T cells and experimental autoimmune encephalomyelitis. ISRN Neurol. 2011;2011: 374314.PubMedPubMedCentral Grigorian A, Demetriou M. Mgat5 deficiency in T cells and experimental autoimmune encephalomyelitis. ISRN Neurol. 2011;2011: 374314.PubMedPubMedCentral
31.
go back to reference Lee SU, Grigorian A, Pawling J, Chen IJ, Gao G, Mozaffar T, et al. N-glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration. J Biol Chem. 2007;282(46):33725–34.PubMed Lee SU, Grigorian A, Pawling J, Chen IJ, Gao G, Mozaffar T, et al. N-glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration. J Biol Chem. 2007;282(46):33725–34.PubMed
32.
go back to reference Mkhikian H, Hayama KL, Khachikyan K, Li C, Zhou RW, Pawling J, et al. Age-associated impairment of T cell immunity is linked to sex-dimorphic elevation of N-glycan branching. Nature Aging. 2022;2(3):231–42.PubMedPubMedCentral Mkhikian H, Hayama KL, Khachikyan K, Li C, Zhou RW, Pawling J, et al. Age-associated impairment of T cell immunity is linked to sex-dimorphic elevation of N-glycan branching. Nature Aging. 2022;2(3):231–42.PubMedPubMedCentral
33.
go back to reference Morgan R, Gao G, Pawling J, Dennis JW, Demetriou M, Li B. N-acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J Immunol. 2004;173(12):7200–8.PubMed Morgan R, Gao G, Pawling J, Dennis JW, Demetriou M, Li B. N-acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J Immunol. 2004;173(12):7200–8.PubMed
34.
go back to reference Mortales CL, Lee SU, Demetriou M. N-glycan branching is required for development of mature B cells. J Immunol. 2020;205(3):630–6.PubMed Mortales CL, Lee SU, Demetriou M. N-glycan branching is required for development of mature B cells. J Immunol. 2020;205(3):630–6.PubMed
35.
go back to reference Mortales CL, Lee SU, Manousadjian A, Hayama KL, Demetriou M. N-glycan branching decouples B cell innate and adaptive immunity to control inflammatory demyelination. J iScience. 2020;23(8):101380. Mortales CL, Lee SU, Manousadjian A, Hayama KL, Demetriou M. N-glycan branching decouples B cell innate and adaptive immunity to control inflammatory demyelination. J iScience. 2020;23(8):101380.
36.
go back to reference Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity. 2012;37(2):249–63.PubMedPubMedCentral Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity. 2012;37(2):249–63.PubMedPubMedCentral
37.
go back to reference Sy M, Brandt AU, Lee SU, Newton BL, Pawling J, Golzar A, et al. N-acetylglucosamine drives myelination by triggering oligodendrocyte precursor cell differentiation. J Biol Chem. 2020;295(51):17413–24.PubMedPubMedCentral Sy M, Brandt AU, Lee SU, Newton BL, Pawling J, Golzar A, et al. N-acetylglucosamine drives myelination by triggering oligodendrocyte precursor cell differentiation. J Biol Chem. 2020;295(51):17413–24.PubMedPubMedCentral
38.
go back to reference Pasquini LA, Millet V, Hoyos HC, Giannoni JP, Croci DO, Marder M, et al. Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function. Cell Death Differ. 2011;18(11):1746–56.PubMedPubMedCentral Pasquini LA, Millet V, Hoyos HC, Giannoni JP, Croci DO, Marder M, et al. Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function. Cell Death Differ. 2011;18(11):1746–56.PubMedPubMedCentral
39.
go back to reference Ye Z, Marth JD. N-glycan branching requirement in neuronal and postnatal viability. Glycobiology. 2004;14(6):547–58.PubMed Ye Z, Marth JD. N-glycan branching requirement in neuronal and postnatal viability. Glycobiology. 2004;14(6):547–58.PubMed
40.
go back to reference Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S, Lamborn IT, et al. Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol. 2014;133(5):1400–9.PubMedPubMedCentral Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S, Lamborn IT, et al. Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol. 2014;133(5):1400–9.PubMedPubMedCentral
41.
go back to reference Li CF, Zhou RW, Mkhikian H, Newton BL, Yu Z, Demetriou M. Hypomorphic MGAT5 polymorphisms promote multiple sclerosis cooperatively with MGAT1 and interleukin-2 and 7 receptor variants. J Neuroimmunol. 2013;256:71.PubMedPubMedCentral Li CF, Zhou RW, Mkhikian H, Newton BL, Yu Z, Demetriou M. Hypomorphic MGAT5 polymorphisms promote multiple sclerosis cooperatively with MGAT1 and interleukin-2 and 7 receptor variants. J Neuroimmunol. 2013;256:71.PubMedPubMedCentral
42.
go back to reference Mkhikian H, Grigorian A, Li CF, Chen HL, Newton B, Zhou RW, et al. Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat Commun. 2011;2:334.PubMed Mkhikian H, Grigorian A, Li CF, Chen HL, Newton B, Zhou RW, et al. Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat Commun. 2011;2:334.PubMed
43.
go back to reference Brynedal B, Wojcik J, Esposito F, Debailleul V, Yaouanq J, Martinelli-Boneschi F, et al. MGAT5 alters the severity of multiple sclerosis. J Neuroimmunol. 2010;220(1–2):120–4.PubMed Brynedal B, Wojcik J, Esposito F, Debailleul V, Yaouanq J, Martinelli-Boneschi F, et al. MGAT5 alters the severity of multiple sclerosis. J Neuroimmunol. 2010;220(1–2):120–4.PubMed
44.
go back to reference Backer-Koduah P, Infante-Duarte C, Ivaldi F, Uccelli A, Bellmann-Strobl J, Wernecke KD, et al. Effect of vitamin D supplementation on N-glycan branching and cellular immunophenotypes in MS. Ann Clin Transl Neurol. 2020;7(9):1628–41.PubMedPubMedCentral Backer-Koduah P, Infante-Duarte C, Ivaldi F, Uccelli A, Bellmann-Strobl J, Wernecke KD, et al. Effect of vitamin D supplementation on N-glycan branching and cellular immunophenotypes in MS. Ann Clin Transl Neurol. 2020;7(9):1628–41.PubMedPubMedCentral
45.
go back to reference Grigorian A, Araujo L, Naidu NN, Place D, Choudhury B, Demetriou M. N-acetylglucosamine inhibits T-helper 1 (Th1) / T-helper 17 (Th17) responses and treats experimental autoimmune encephalomyelitis. J Biol Chem. 2011;286:40133.PubMedPubMedCentral Grigorian A, Araujo L, Naidu NN, Place D, Choudhury B, Demetriou M. N-acetylglucosamine inhibits T-helper 1 (Th1) / T-helper 17 (Th17) responses and treats experimental autoimmune encephalomyelitis. J Biol Chem. 2011;286:40133.PubMedPubMedCentral
46.
go back to reference Brandt AU, Sy M, Bellmann-Strobl J, Newton BL, Pawling J, Zimmermann HG, et al. Association of a marker of n-acetylglucosamine with progressive multiple sclerosis and neurodegeneration. JAMA Neurol. 2021;78(7):842–52.PubMed Brandt AU, Sy M, Bellmann-Strobl J, Newton BL, Pawling J, Zimmermann HG, et al. Association of a marker of n-acetylglucosamine with progressive multiple sclerosis and neurodegeneration. JAMA Neurol. 2021;78(7):842–52.PubMed
47.
go back to reference Siller N, Kuhle J, Muthuraman M, Barro C, Uphaus T, Groppa S, et al. Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Mult Scler. 2018;25:678.PubMed Siller N, Kuhle J, Muthuraman M, Barro C, Uphaus T, Groppa S, et al. Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Mult Scler. 2018;25:678.PubMed
48.
go back to reference Disanto G, Barro C, Benkert P, Naegelin Y, Schadelin S, Giardiello A, et al. Serum Neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 2017;81(6):857–70.PubMedPubMedCentral Disanto G, Barro C, Benkert P, Naegelin Y, Schadelin S, Giardiello A, et al. Serum Neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 2017;81(6):857–70.PubMedPubMedCentral
50.
go back to reference Bai Z, Chen D, Wang L, Zhao Y, Liu T, Yu Y, et al. Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: a systematic review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients. Front Neurosci. 2019;13:1026.PubMedPubMedCentral Bai Z, Chen D, Wang L, Zhao Y, Liu T, Yu Y, et al. Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: a systematic review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients. Front Neurosci. 2019;13:1026.PubMedPubMedCentral
51.
go back to reference Hulshof S, Montagne L, De Groot CJ, Van Der Valk P. Cellular localization and expression patterns of interleukin-10, interleukin-4, and their receptors in multiple sclerosis lesions. Glia. 2002;38(1):24–35.PubMed Hulshof S, Montagne L, De Groot CJ, Van Der Valk P. Cellular localization and expression patterns of interleukin-10, interleukin-4, and their receptors in multiple sclerosis lesions. Glia. 2002;38(1):24–35.PubMed
52.
go back to reference Hu WT, Howell JC, Ozturk T, Gangishetti U, Kollhoff AL, Hatcher-Martin JM, et al. CSF cytokines in aging, multiple sclerosis, and dementia. Front Immunol. 2019;10:480.PubMedPubMedCentral Hu WT, Howell JC, Ozturk T, Gangishetti U, Kollhoff AL, Hatcher-Martin JM, et al. CSF cytokines in aging, multiple sclerosis, and dementia. Front Immunol. 2019;10:480.PubMedPubMedCentral
53.
go back to reference Kallaur AP, Oliveira SR, Simao ANC, Alfieri DF, Flauzino T, Lopes J, et al. Cytokine profile in patients with progressive multiple sclerosis and its association with disease progression and disability. Mol Neurobiol. 2017;54(4):2950–60.PubMed Kallaur AP, Oliveira SR, Simao ANC, Alfieri DF, Flauzino T, Lopes J, et al. Cytokine profile in patients with progressive multiple sclerosis and its association with disease progression and disability. Mol Neurobiol. 2017;54(4):2950–60.PubMed
54.
go back to reference Thebault S, Abdoli M, Fereshtehnejad SM, Tessier D, Tabard-Cossa V, Freedman MS. Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis. Sci Rep. 2020;10(1):10381.PubMedPubMedCentral Thebault S, Abdoli M, Fereshtehnejad SM, Tessier D, Tabard-Cossa V, Freedman MS. Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis. Sci Rep. 2020;10(1):10381.PubMedPubMedCentral
55.
go back to reference Benkert P, Meier S, Schaedelin S, Manouchehrinia A, Yaldizli O, Maceski A, et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. Lancet Neurol. 2022;21(3):246–57.PubMed Benkert P, Meier S, Schaedelin S, Manouchehrinia A, Yaldizli O, Maceski A, et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. Lancet Neurol. 2022;21(3):246–57.PubMed
56.
go back to reference Fernandez-Velasco JI, Kuhle J, Monreal E, Meca-Lallana V, Meca-Lallana J, Izquierdo G, et al. Effect of ocrelizumab in blood leukocytes of patients with primary progressive MS. Neurol Neuroimmunol Neuroinflamm. 2021;8(2):e940.PubMedPubMedCentral Fernandez-Velasco JI, Kuhle J, Monreal E, Meca-Lallana V, Meca-Lallana J, Izquierdo G, et al. Effect of ocrelizumab in blood leukocytes of patients with primary progressive MS. Neurol Neuroimmunol Neuroinflamm. 2021;8(2):e940.PubMedPubMedCentral
57.
go back to reference Bar-Or At G, Harp C, Bernasconi C, Bonati U, Cross AH, Fischer S, Gaetano L, Hauser SL, Hendricks R, Kappos L, Kuhle J, Leppert D, Model F, Koendgen H, Jia X, Herman A. Ocrelizumab treatment induces a sustained blood NfL reduction in patients with PPMS and RMS. ACTRIMS-ECTRIMS Meeting. 2020;11–13:2020. Bar-Or At G, Harp C, Bernasconi C, Bonati U, Cross AH, Fischer S, Gaetano L, Hauser SL, Hendricks R, Kappos L, Kuhle J, Leppert D, Model F, Koendgen H, Jia X, Herman A. Ocrelizumab treatment induces a sustained blood NfL reduction in patients with PPMS and RMS. ACTRIMS-ECTRIMS Meeting. 2020;11–13:2020.
58.
go back to reference Racke MK, Lovett-Racke AE, Karandikar NJ. The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology. 2010;74(Suppl 1):S25-30.PubMed Racke MK, Lovett-Racke AE, Karandikar NJ. The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology. 2010;74(Suppl 1):S25-30.PubMed
59.
go back to reference Ireland SJ, Guzman AA, O’Brien DE, Hughes S, Greenberg B, Flores A, et al. The effect of glatiramer acetate therapy on functional properties of B cells from patients with relapsing-remitting multiple sclerosis. JAMA Neurol. 2014;71(11):1421–8.PubMedPubMedCentral Ireland SJ, Guzman AA, O’Brien DE, Hughes S, Greenberg B, Flores A, et al. The effect of glatiramer acetate therapy on functional properties of B cells from patients with relapsing-remitting multiple sclerosis. JAMA Neurol. 2014;71(11):1421–8.PubMedPubMedCentral
60.
go back to reference Melnikov M, Sharanova S, Sviridova A, Rogovskii V, Murugina N, Nikolaeva A, et al. The influence of glatiramer acetate on Th17-immune response in multiple sclerosis. PLoS ONE. 2020;15(10): e0240305.PubMedPubMedCentral Melnikov M, Sharanova S, Sviridova A, Rogovskii V, Murugina N, Nikolaeva A, et al. The influence of glatiramer acetate on Th17-immune response in multiple sclerosis. PLoS ONE. 2020;15(10): e0240305.PubMedPubMedCentral
61.
go back to reference Cutter G, Rudick RA, de Moor C, Singh CM, Fisher E, Koster T, et al. Serum neurofilament light-chain levels and long-term treatment outcomes in relapsing-remitting multiple sclerosis patients: a post hoc analysis of the randomized CombiRx trial. Mult Scler J Exp Transl Clin. 2023;9(2):20552173231169464.PubMedPubMedCentral Cutter G, Rudick RA, de Moor C, Singh CM, Fisher E, Koster T, et al. Serum neurofilament light-chain levels and long-term treatment outcomes in relapsing-remitting multiple sclerosis patients: a post hoc analysis of the randomized CombiRx trial. Mult Scler J Exp Transl Clin. 2023;9(2):20552173231169464.PubMedPubMedCentral
62.
go back to reference Levin RM, Krieger NN, Winzler RJ. Glucmsumine and acetylglucosamine tolerance in man. J Lab Clin Med. 1961;58:927–32.PubMed Levin RM, Krieger NN, Winzler RJ. Glucmsumine and acetylglucosamine tolerance in man. J Lab Clin Med. 1961;58:927–32.PubMed
63.
go back to reference Gaulden EC, Keating WC. The effect of intravenous N-Acetyl-D-glucosamine on the blood and urine sugar concentrations of normal subjects. Metab Clin Exp. 1964;13:466–72.PubMed Gaulden EC, Keating WC. The effect of intravenous N-Acetyl-D-glucosamine on the blood and urine sugar concentrations of normal subjects. Metab Clin Exp. 1964;13:466–72.PubMed
64.
go back to reference Salvatore S, Heuschkel R, Tomlin S, Davies SE, Edwards S, Walker-Smith JA, et al. A pilot study of N-acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in paediatric chronic inflammatory bowel disease. Aliment Pharmacol Ther. 2000;14(12):1567–79.PubMed Salvatore S, Heuschkel R, Tomlin S, Davies SE, Edwards S, Walker-Smith JA, et al. A pilot study of N-acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in paediatric chronic inflammatory bowel disease. Aliment Pharmacol Ther. 2000;14(12):1567–79.PubMed
65.
go back to reference Lee KY, Shibutani M, Takagi H, Arimura T, Takigami S, Uneyama C, et al. Subchronic toxicity study of dietary N-acetylglucosamine in F344 rats. Food Chem Toxicol. 2004;42(4):687–95.PubMed Lee KY, Shibutani M, Takagi H, Arimura T, Takigami S, Uneyama C, et al. Subchronic toxicity study of dietary N-acetylglucosamine in F344 rats. Food Chem Toxicol. 2004;42(4):687–95.PubMed
66.
go back to reference Takahashi M, Inoue K, Yoshida M, Morikawa T, Shibutani M, Nishikawa A. Lack of chronic toxicity or carcinogenicity of dietary N-acetylglucosamine in F344 rats. Food Chem Toxicol. 2009;47(2):462–71.PubMed Takahashi M, Inoue K, Yoshida M, Morikawa T, Shibutani M, Nishikawa A. Lack of chronic toxicity or carcinogenicity of dietary N-acetylglucosamine in F344 rats. Food Chem Toxicol. 2009;47(2):462–71.PubMed
Metadata
Title
N-acetylglucosamine inhibits inflammation and neurodegeneration markers in multiple sclerosis: a mechanistic trial
Authors
Michael Sy
Barbara L. Newton
Judy Pawling
Ken L. Hayama
Andres Cordon
Zhaoxia Yu
Jens Kuhle
James W. Dennis
Alexander U. Brandt
Michael Demetriou
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02893-9

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue