Skip to main content
Top
Published in: Experimental Brain Research 2/2010

01-10-2010 | Research Article

Multiple reference frames used by the human brain for spatial perception and memory

Authors: Gaspare Galati, Gina Pelle, Alain Berthoz, Giorgia Committeri

Published in: Experimental Brain Research | Issue 2/2010

Login to get access

Abstract

We review human functional neuroimaging studies that have explicitly investigated the reference frames used in different cortical regions for representing spatial locations of objects. Beyond the general distinction between “egocentric” and “allocentric” reference frames, we provide evidence for the selective involvement of the posterior parietal cortex and associated frontal regions in the specific process of egocentric localization of visual and somatosensory stimuli with respect to relevant body parts (“body referencing”). Similarly, parahippocampal and retrosplenial regions, together with specific parietal subregions such as the precuneus, are selectively involved in a specific form of allocentric representation in which object locations are encoded relative to enduring spatial features of a familiar environment (“environmental referencing”). We also present a novel functional magnetic resonance imaging study showing that these regions are selectively activated, whenever a purely perceptual spatial task involves an object which maintains a stable location in space during the whole experiment, irrespective of its perceptual features and its orienting value as a landmark. This effect can be dissociated from the consequences of an explicit memory recall of landmark locations, a process that further engages the retrosplenial cortex.
Literature
go back to reference Aguirre GK, D’Esposito M (1997) Environmental knowledge is subserved by separable dorsal/ventral neural areas. J Neurosci 17:2512–2518PubMed Aguirre GK, D’Esposito M (1997) Environmental knowledge is subserved by separable dorsal/ventral neural areas. J Neurosci 17:2512–2518PubMed
go back to reference Aguirre GK, D’Esposito M (1999) Topographical disorientation: a synthesis and taxonomy. Brain 122:1613–1628PubMedCrossRef Aguirre GK, D’Esposito M (1999) Topographical disorientation: a synthesis and taxonomy. Brain 122:1613–1628PubMedCrossRef
go back to reference Aguirre GK, Detre JA, Alsop DC, D’Esposito M (1996) The parahippocampus subserves topographical learning in man. Cereb Cortex 6:823–829PubMedCrossRef Aguirre GK, Detre JA, Alsop DC, D’Esposito M (1996) The parahippocampus subserves topographical learning in man. Cereb Cortex 6:823–829PubMedCrossRef
go back to reference Aguirre GK, Zarahn E, D’Esposito M (1998) An area within human ventral cortex sensitive to ‘‘building’’ stimuli: evidence and implications. Neuron 21:373–383PubMedCrossRef Aguirre GK, Zarahn E, D’Esposito M (1998) An area within human ventral cortex sensitive to ‘‘building’’ stimuli: evidence and implications. Neuron 21:373–383PubMedCrossRef
go back to reference Amorim MA, Glasauer S, Corpinot K, Berthoz A (1997) Updating an object’s orientation and location during nonvisual navigation: a comparison between two processing modes. Percept Psychophys 59:404–418PubMed Amorim MA, Glasauer S, Corpinot K, Berthoz A (1997) Updating an object’s orientation and location during nonvisual navigation: a comparison between two processing modes. Percept Psychophys 59:404–418PubMed
go back to reference Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458PubMedCrossRef Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458PubMedCrossRef
go back to reference Andresen DR, Vinberg J, Grill-Spector K (2009) The representation of object viewpoint in human visual cortex. Neuroimage 45(2):522–536PubMedCrossRef Andresen DR, Vinberg J, Grill-Spector K (2009) The representation of object viewpoint in human visual cortex. Neuroimage 45(2):522–536PubMedCrossRef
go back to reference Avidan G, Levy I, Hendler T, Zohary E, Malach R (2003) Spatial vs. object specific attention in high-order visual areas. Neuroimage 19:308–318PubMedCrossRef Avidan G, Levy I, Hendler T, Zohary E, Malach R (2003) Spatial vs. object specific attention in high-order visual areas. Neuroimage 19:308–318PubMedCrossRef
go back to reference Bennequin D, Fuchs R, Berthoz A, Flash T (2009) Movement timing and invariance arise from several geometries. PLoS Comput Biol 5:e1000426PubMedCrossRef Bennequin D, Fuchs R, Berthoz A, Flash T (2009) Movement timing and invariance arise from several geometries. PLoS Comput Biol 5:e1000426PubMedCrossRef
go back to reference Bennett ADT (1996) Do animals have cognitive maps? J Exp Biol 199:219–224PubMed Bennett ADT (1996) Do animals have cognitive maps? J Exp Biol 199:219–224PubMed
go back to reference Berthoz A (1997) Parietal and hippocampal contribution to topokinetic and topographic memory. Philos Trans R Soc Lond B Biol Sci 352:1437–1448PubMedCrossRef Berthoz A (1997) Parietal and hippocampal contribution to topokinetic and topographic memory. Philos Trans R Soc Lond B Biol Sci 352:1437–1448PubMedCrossRef
go back to reference Biegler R, Morris RGM (1993) Landmark stability is a prerequisite for spatial but not discrimination-learning. Nature 361:631–633PubMedCrossRef Biegler R, Morris RGM (1993) Landmark stability is a prerequisite for spatial but not discrimination-learning. Nature 361:631–633PubMedCrossRef
go back to reference Bisiach E (1997) The spatial features of unilateral neglect. In: Thier P, Karnath H-O (ed) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 465–495 Bisiach E (1997) The spatial features of unilateral neglect. In: Thier P, Karnath H-O (ed) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 465–495
go back to reference Brotchie PR, Lee MB, Chen DY, Lourensz M, Jackson G, Bradley WG Jr (2003) Head position modulates activity in the human parietal eye fields. Neuroimage 18:178–184PubMedCrossRef Brotchie PR, Lee MB, Chen DY, Lourensz M, Jackson G, Bradley WG Jr (2003) Head position modulates activity in the human parietal eye fields. Neuroimage 18:178–184PubMedCrossRef
go back to reference Burgess N (2006) Spatial memory: how egocentric and allocentric combine. Trends Cogn Sci 10:551–557PubMedCrossRef Burgess N (2006) Spatial memory: how egocentric and allocentric combine. Trends Cogn Sci 10:551–557PubMedCrossRef
go back to reference Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL (1994) Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res 101:8–23PubMedCrossRef Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL (1994) Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res 101:8–23PubMedCrossRef
go back to reference Chokron S (2003) Right parietal lesions, unilateral spatial neglect, and the egocentric frame of reference. Neuroimage 20:S75–S81PubMedCrossRef Chokron S (2003) Right parietal lesions, unilateral spatial neglect, and the egocentric frame of reference. Neuroimage 20:S75–S81PubMedCrossRef
go back to reference Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3:553–562PubMedCrossRef Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3:553–562PubMedCrossRef
go back to reference Committeri G, Galati G, Paradis AL, Pizzamiglio L, Berthoz A, LeBihan D (2004) Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. J Cogn Neurosci 16:1517–1535PubMedCrossRef Committeri G, Galati G, Paradis AL, Pizzamiglio L, Berthoz A, LeBihan D (2004) Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. J Cogn Neurosci 16:1517–1535PubMedCrossRef
go back to reference Committeri G, Pitzalis S, Galati G, Patria F, Pelle G, Sabatini U, Castriota-Scanderbeg A, Piccardi L, Guariglia C, Pizzamiglio L (2007) Neural bases of personal and extrapersonal neglect in humans. Brain 130:431–441 Committeri G, Pitzalis S, Galati G, Patria F, Pelle G, Sabatini U, Castriota-Scanderbeg A, Piccardi L, Guariglia C, Pizzamiglio L (2007) Neural bases of personal and extrapersonal neglect in humans. Brain 130:431–441
go back to reference Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMedCrossRef Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMedCrossRef
go back to reference Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A (2005) Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 8:1603–1610PubMedCrossRef Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A (2005) Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 8:1603–1610PubMedCrossRef
go back to reference Critchley M (1953) The parietal lobes. Hafner Press, New York Critchley M (1953) The parietal lobes. Hafner Press, New York
go back to reference d’Avossa G, Tosetti M, Crespi S, Biagi L, Burr DC, Morrone MC (2007) Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nat Neurosci 10:249–255PubMedCrossRef d’Avossa G, Tosetti M, Crespi S, Biagi L, Burr DC, Morrone MC (2007) Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nat Neurosci 10:249–255PubMedCrossRef
go back to reference DeSouza JF, Dukelow SP, Gati JS, Menon RS, Andersen RA, Vilis T (2000) Eye position signal modulates a human parietal pointing region during memory-guided movements. J Neurosci 20:5835–5840PubMed DeSouza JF, Dukelow SP, Gati JS, Menon RS, Andersen RA, Vilis T (2000) Eye position signal modulates a human parietal pointing region during memory-guided movements. J Neurosci 20:5835–5840PubMed
go back to reference DeSouza JF, Dukelow SP, Vilis T (2002) Eye position signals modulate early dorsal and ventral visual areas. Cereb Cortex 12:991–997PubMedCrossRef DeSouza JF, Dukelow SP, Vilis T (2002) Eye position signals modulate early dorsal and ventral visual areas. Cereb Cortex 12:991–997PubMedCrossRef
go back to reference Driver J (1999) Egocentric and object-based visual neglect. In: Burgess N, Jeffery KJ, O’Keefe J (eds) The hippocampal and parietal foundations of spatial cognition. Oxford University Press, Oxford, pp 67–89 Driver J (1999) Egocentric and object-based visual neglect. In: Burgess N, Jeffery KJ, O’Keefe J (eds) The hippocampal and parietal foundations of spatial cognition. Oxford University Press, Oxford, pp 67–89
go back to reference Duhamel J-R, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92PubMedCrossRef Duhamel J-R, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92PubMedCrossRef
go back to reference Duhamel J-R, Bremmer F, Ben Hamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845–848 Duhamel J-R, Bremmer F, Ben Hamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845–848
go back to reference Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425:184–188PubMedCrossRef Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425:184–188PubMedCrossRef
go back to reference Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369:525PubMedCrossRef Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369:525PubMedCrossRef
go back to reference Epstein RA, Higgins JS (2007) Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cereb Cortex 17:1680–1693PubMedCrossRef Epstein RA, Higgins JS (2007) Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cereb Cortex 17:1680–1693PubMedCrossRef
go back to reference Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601PubMedCrossRef Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601PubMedCrossRef
go back to reference Epstein RA, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125PubMedCrossRef Epstein RA, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125PubMedCrossRef
go back to reference Epstein RA, Parker WE, Feiler AM (2007) Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci 27:6141–6149PubMedCrossRef Epstein RA, Parker WE, Feiler AM (2007) Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci 27:6141–6149PubMedCrossRef
go back to reference Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD (1997) Space-based and object-based visual attention: shared and specific neural domains. Brain 120:2013–2028PubMedCrossRef Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD (1997) Space-based and object-based visual attention: shared and specific neural domains. Brain 120:2013–2028PubMedCrossRef
go back to reference Fink GR, Marshall JC, Shah NJ, Weiss PH, Halligan PW, Grosse-Ruyken M, Ziemons K, Zilles K, Freund HJ (2000) Line bisection judgements implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology 54:1324–1331PubMed Fink GR, Marshall JC, Shah NJ, Weiss PH, Halligan PW, Grosse-Ruyken M, Ziemons K, Zilles K, Freund HJ (2000) Line bisection judgements implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology 54:1324–1331PubMed
go back to reference Fink GR, Marshall JC, Weiss PH, Stephan T, Grefkes C, Shah NJ, Zilles K, Dieterich M (2003) Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications. Neuroimage 20:1505–1517PubMedCrossRef Fink GR, Marshall JC, Weiss PH, Stephan T, Grefkes C, Shah NJ, Zilles K, Dieterich M (2003) Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications. Neuroimage 20:1505–1517PubMedCrossRef
go back to reference Fletcher PC, Frith CD, Baker SC, Shallice T, Frackowiak RSJ, Dolan RJ (1995) The mind’s eye: precuneus activation in memory-related imagery. Neuroimage 2:195–200PubMedCrossRef Fletcher PC, Frith CD, Baker SC, Shallice T, Frackowiak RSJ, Dolan RJ (1995) The mind’s eye: precuneus activation in memory-related imagery. Neuroimage 2:195–200PubMedCrossRef
go back to reference Galati G, Lobel E, Berthoz A, Pizzamiglio L, Le Bihan D, Vallar G (2000) The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Exp Brain Res 133:156–164PubMedCrossRef Galati G, Lobel E, Berthoz A, Pizzamiglio L, Le Bihan D, Vallar G (2000) The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Exp Brain Res 133:156–164PubMedCrossRef
go back to reference Galati G, Committeri G, Sanes JN, Pizzamiglio L (2001) Spatial coding of visual and somatic sensory information in body-centered coordinates. E J Neurosci 14:737–746CrossRef Galati G, Committeri G, Sanes JN, Pizzamiglio L (2001) Spatial coding of visual and somatic sensory information in body-centered coordinates. E J Neurosci 14:737–746CrossRef
go back to reference Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci 28:3988–3999PubMedCrossRef Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci 28:3988–3999PubMedCrossRef
go back to reference Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002:870–878CrossRef Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002:870–878CrossRef
go back to reference Ghaem O, Mellet E, Crivello F, Tzourio N, Mazoyer B, Berthoz A, Denis M (1997) Mental navigation along memorized routes activates the hippocampus, precuneus and insula. NeuroReport 8:739–744PubMedCrossRef Ghaem O, Mellet E, Crivello F, Tzourio N, Mazoyer B, Berthoz A, Denis M (1997) Mental navigation along memorized routes activates the hippocampus, precuneus and insula. NeuroReport 8:739–744PubMedCrossRef
go back to reference Habib M, Sirigu A (1987) Pure topographical disorientation: a definition and anatomical basis. Cortex 23:73–85PubMed Habib M, Sirigu A (1987) Pure topographical disorientation: a definition and anatomical basis. Cortex 23:73–85PubMed
go back to reference Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806PubMedCrossRef Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806PubMedCrossRef
go back to reference Hartley T, Maguire EA, Spiers HJ, Burgess N (2003) The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37:877–888PubMedCrossRef Hartley T, Maguire EA, Spiers HJ, Burgess N (2003) The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37:877–888PubMedCrossRef
go back to reference Hasson U, Harel M, Levy I, Malach R (2003) Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37:1027–1041PubMedCrossRef Hasson U, Harel M, Levy I, Malach R (2003) Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37:1027–1041PubMedCrossRef
go back to reference Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254CrossRef Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254CrossRef
go back to reference Hillis AE, Rapp B (1998) Unilateral spatial neglect in dissociable frames of reference: a comment on Farah, Brunn, Wong, Wallace, and Carpenter (1990) Neuropsychologia 36:1257–1262 Hillis AE, Rapp B (1998) Unilateral spatial neglect in dissociable frames of reference: a comment on Farah, Brunn, Wong, Wallace, and Carpenter (1990) Neuropsychologia 36:1257–1262
go back to reference Honda M, Wise SP, Weeks RA, Deiber M-P, Hallett M (1998) Cortical areas with enhanced activation during object-centred spatial information processing. Brain 121:2145–2158PubMedCrossRef Honda M, Wise SP, Weeks RA, Deiber M-P, Hallett M (1998) Cortical areas with enhanced activation during object-centred spatial information processing. Brain 121:2145–2158PubMedCrossRef
go back to reference Iaria G, Petrides M, Dagher A, Pike B, Bohbot VD (2003) Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J Neurosci 23:5945–5952 Iaria G, Petrides M, Dagher A, Pike B, Bohbot VD (2003) Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J Neurosci 23:5945–5952
go back to reference Iaria G, Chen JK, Guariglia C, Ptito A, Petrides M (2007) Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur J Neurosci 25:890–899PubMedCrossRef Iaria G, Chen JK, Guariglia C, Ptito A, Petrides M (2007) Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur J Neurosci 25:890–899PubMedCrossRef
go back to reference Iglói K, Zaoui M, Berthoz A, Rondi-Reig L (2009) Sequential egocentric strategy is acquired as early as allocentric strategy: parallel acquisition of these two navigation strategies. Hippocampus 19:1199–1211PubMedCrossRef Iglói K, Zaoui M, Berthoz A, Rondi-Reig L (2009) Sequential egocentric strategy is acquired as early as allocentric strategy: parallel acquisition of these two navigation strategies. Hippocampus 19:1199–1211PubMedCrossRef
go back to reference Janzen G (2006) Memory for object location and route direction in virtual large-scale space. Q J Exp Psychol 59:493–508CrossRef Janzen G (2006) Memory for object location and route direction in virtual large-scale space. Q J Exp Psychol 59:493–508CrossRef
go back to reference Janzen G, van Turennout M (2004) Selective neural representation of objects relevant for navigation. Nat Neurosci 7:673–677PubMedCrossRef Janzen G, van Turennout M (2004) Selective neural representation of objects relevant for navigation. Nat Neurosci 7:673–677PubMedCrossRef
go back to reference Karnath HO (1997) Neural encoding of space in egocentric coordinates? In: Thier P, Karnath H-O (eds) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 497–520 Karnath HO (1997) Neural encoding of space in egocentric coordinates? In: Thier P, Karnath H-O (eds) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 497–520
go back to reference Karnath H-O, Christ K, Hartje W (1993) Decrease of contralateral neglect by neck muscle vibration and spatial orientation of trunk midline. Brain 116:383–396PubMedCrossRef Karnath H-O, Christ K, Hartje W (1993) Decrease of contralateral neglect by neck muscle vibration and spatial orientation of trunk midline. Brain 116:383–396PubMedCrossRef
go back to reference Kerkhoff G, Schindler I, Artinger F, Zoelch C, Bublak P, Finke K (2006) Rotation or translation of auditory space in neglect? A case study of chronic right-sided neglect. Neuropsychology 44:923–930CrossRef Kerkhoff G, Schindler I, Artinger F, Zoelch C, Bublak P, Finke K (2006) Rotation or translation of auditory space in neglect? A case study of chronic right-sided neglect. Neuropsychology 44:923–930CrossRef
go back to reference King JA, Burgess N, Hartley T, Vargha-Khadem F, O’Keefe J (2002) Human hippocampus and viewpoint dependence in spatial memory. Hippocampus 12:811–820 King JA, Burgess N, Hartley T, Vargha-Khadem F, O’Keefe J (2002) Human hippocampus and viewpoint dependence in spatial memory. Hippocampus 12:811–820
go back to reference Kosslyn SM (1987) Seeing and imagining in the cerebral hemispheres: a computational approach. Psychol Rev 94:148–175PubMedCrossRef Kosslyn SM (1987) Seeing and imagining in the cerebral hemispheres: a computational approach. Psychol Rev 94:148–175PubMedCrossRef
go back to reference Kovács G, Raabe M, Greenlee MW (2008) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18:1779–1787PubMedCrossRef Kovács G, Raabe M, Greenlee MW (2008) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18:1779–1787PubMedCrossRef
go back to reference Kwong KK, Belliveau JW, Chesler DA (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679PubMedCrossRef Kwong KK, Belliveau JW, Chesler DA (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679PubMedCrossRef
go back to reference Lafon M, Vidal M, Berthoz A (2009) Selective influence of prior allocentric knowledge on the kinesthetic learning of a path. Exp Brain Res 194:541–552PubMedCrossRef Lafon M, Vidal M, Berthoz A (2009) Selective influence of prior allocentric knowledge on the kinesthetic learning of a path. Exp Brain Res 194:541–552PubMedCrossRef
go back to reference Lambrey S, Amorim MA, Samson S, Noulhiane M, Hasboun D, Dupont S, Baulac M, Berthoz A (2008) Distinct visual perspective-taking strategies involve the left and right medial temporal lobe structures differently. Brain 131:523–534PubMedCrossRef Lambrey S, Amorim MA, Samson S, Noulhiane M, Hasboun D, Dupont S, Baulac M, Berthoz A (2008) Distinct visual perspective-taking strategies involve the left and right medial temporal lobe structures differently. Brain 131:523–534PubMedCrossRef
go back to reference Landgraf S, Krebs MO, Olié JP, Committeri G, van der Meer E, Berthoz A, Amado I Real world referencing and schizophrenia: are we experiencing the same reality? Schizophr Bull (submitted) Landgraf S, Krebs MO, Olié JP, Committeri G, van der Meer E, Berthoz A, Amado I Real world referencing and schizophrenia: are we experiencing the same reality? Schizophr Bull (submitted)
go back to reference Maguire EA, Frackowiak RSJ, Frith CD (1997) Recalling routes around London: activation of the right hippocampus in taxi drivers. J Neurosci 17:7103–7110PubMed Maguire EA, Frackowiak RSJ, Frith CD (1997) Recalling routes around London: activation of the right hippocampus in taxi drivers. J Neurosci 17:7103–7110PubMed
go back to reference Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J (1998a) Knowing where and getting there: a human navigation network. Science 280:921–924PubMedCrossRef Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J (1998a) Knowing where and getting there: a human navigation network. Science 280:921–924PubMedCrossRef
go back to reference Maguire EA, Frith CD, Burgess N, Donnett JG, O’Keefe J (1998b) Knowing where things are: parahippocampal involvement in encoding object locations in virtual large-scale space. J Cogn Neurosci 10:61–76PubMedCrossRef Maguire EA, Frith CD, Burgess N, Donnett JG, O’Keefe J (1998b) Knowing where things are: parahippocampal involvement in encoding object locations in virtual large-scale space. J Cogn Neurosci 10:61–76PubMedCrossRef
go back to reference McCloskey M (2001) Spatial representation in mind and brain. In: Rapp Brenda (ed) The handbook of cognitive neuropsychology: what deficits reveal about the human mind. Psychology Press, Philadelphia McCloskey M (2001) Spatial representation in mind and brain. In: Rapp Brenda (ed) The handbook of cognitive neuropsychology: what deficits reveal about the human mind. Psychology Press, Philadelphia
go back to reference Medendorp WP, Goltz HC, Vilis T, Crawford JD (2003) Gaze-centered updating of visual space in human parietal cortex. J Neurosci 23:1624–6209 Medendorp WP, Goltz HC, Vilis T, Crawford JD (2003) Gaze-centered updating of visual space in human parietal cortex. J Neurosci 23:1624–6209
go back to reference Medendorp WP, Goltz HC, Vilis T (2005) Remapping the remembered target location for anti-saccades in human posterior parietal cortex. J Neurophysiol 94:734–740PubMedCrossRef Medendorp WP, Goltz HC, Vilis T (2005) Remapping the remembered target location for anti-saccades in human posterior parietal cortex. J Neurophysiol 94:734–740PubMedCrossRef
go back to reference Medina J, Kannan V, Pawlak MA, Kleinman JT, Newhart M, Davis C, Heidler-Gary JE, Herskovits EH, Hillis AE (2009) Neural substrates of visuospatial processing in distinct reference frames: evidence from unilateral spatial neglect. J Cogn Neurosci 21:2073–2084PubMedCrossRef Medina J, Kannan V, Pawlak MA, Kleinman JT, Newhart M, Davis C, Heidler-Gary JE, Herskovits EH, Hillis AE (2009) Neural substrates of visuospatial processing in distinct reference frames: evidence from unilateral spatial neglect. J Cogn Neurosci 21:2073–2084PubMedCrossRef
go back to reference Mellet E, Briscogne S, Tzourio-Mazoyer N, Ghaem O, Petit L, Zago L, Etard O, Berthoz A, Mazoyer B, Denis M (2000) Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. Neuroimage 12:588–600PubMedCrossRef Mellet E, Briscogne S, Tzourio-Mazoyer N, Ghaem O, Petit L, Zago L, Etard O, Berthoz A, Mazoyer B, Denis M (2000) Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. Neuroimage 12:588–600PubMedCrossRef
go back to reference Merriam EP, Genovese CR, Colby CL (2003) Spatial updating in human parietal cortex. Neuron 39:361–373PubMedCrossRef Merriam EP, Genovese CR, Colby CL (2003) Spatial updating in human parietal cortex. Neuron 39:361–373PubMedCrossRef
go back to reference Merriam EP, Genovese CR, Colby CL (2007) Remapping in human visual cortex. J Neurophysiol 97:1738–1755PubMedCrossRef Merriam EP, Genovese CR, Colby CL (2007) Remapping in human visual cortex. J Neurophysiol 97:1738–1755PubMedCrossRef
go back to reference Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford
go back to reference Murphy JS, Wynne CE, O’Rourke EM, Commins S, Roche RA (2009) High-resolution ERP mapping of cortical activation related to implicit object-location memory. Biol Psychol 82:234–245 Murphy JS, Wynne CE, O’Rourke EM, Commins S, Roche RA (2009) High-resolution ERP mapping of cortical activation related to implicit object-location memory. Biol Psychol 82:234–245
go back to reference Neggers SF, Van der Lubbe RH, Ramsey NF, Postma A (2006) Interactions between ego- and allocentric neuronal representations of space. Neuroimage 31:320–331PubMedCrossRef Neggers SF, Van der Lubbe RH, Ramsey NF, Postma A (2006) Interactions between ego- and allocentric neuronal representations of space. Neuroimage 31:320–331PubMedCrossRef
go back to reference O’Craven KM, Downing PE, Kanwisher N (1999) fMRI evidence for objects as the units of attentional selection. Nature 401:584–587PubMedCrossRef O’Craven KM, Downing PE, Kanwisher N (1999) fMRI evidence for objects as the units of attentional selection. Nature 401:584–587PubMedCrossRef
go back to reference O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, Oxford O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, Oxford
go back to reference Olson CR (2003) Brain representation of object-centered space in monkeys and humans. Annu Rev Neurosci 26:331–354PubMedCrossRef Olson CR (2003) Brain representation of object-centered space in monkeys and humans. Annu Rev Neurosci 26:331–354PubMedCrossRef
go back to reference Ono T, Tamura R, Nakamura K (1991) The hippocampus and space: are there “place neurons” in the monkey hippocampus? Hippocampus 1:253–257PubMedCrossRef Ono T, Tamura R, Nakamura K (1991) The hippocampus and space: are there “place neurons” in the monkey hippocampus? Hippocampus 1:253–257PubMedCrossRef
go back to reference Park S, Chun MM (2009) Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. Neuroimage 47:1747–1756PubMedCrossRef Park S, Chun MM (2009) Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. Neuroimage 47:1747–1756PubMedCrossRef
go back to reference Patchay S, Haggard P, Castiello U (2006) An object-centred reference frame for control of grasping: effects of grasping a distractor object on visuomotor control. Exp Brain Res 2170:532–542CrossRef Patchay S, Haggard P, Castiello U (2006) An object-centred reference frame for control of grasping: effects of grasping a distractor object on visuomotor control. Exp Brain Res 2170:532–542CrossRef
go back to reference Pizzamiglio L, Committeri G, Galati G, Patria F (2000) Psychophysical properties of line bisection and body midline perception in unilateral neglect. Cortex 36:469–484PubMedCrossRef Pizzamiglio L, Committeri G, Galati G, Patria F (2000) Psychophysical properties of line bisection and body midline perception in unilateral neglect. Cortex 36:469–484PubMedCrossRef
go back to reference Richard C, Rousseaux M, Saj A, Honoré J (2004) Straight ahead in spatial neglect: evidence that space is shifted, not rotated. Neurology 63:2136–2138PubMed Richard C, Rousseaux M, Saj A, Honoré J (2004) Straight ahead in spatial neglect: evidence that space is shifted, not rotated. Neurology 63:2136–2138PubMed
go back to reference Rolls ET (1999) Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9:467–480PubMedCrossRef Rolls ET (1999) Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9:467–480PubMedCrossRef
go back to reference Rosenbaum RS, Ziegler M, Winocur G, Grady CL, Moscovitch M (2004) “I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus 14:826–835PubMedCrossRef Rosenbaum RS, Ziegler M, Winocur G, Grady CL, Moscovitch M (2004) “I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus 14:826–835PubMedCrossRef
go back to reference Saj A, Honoré J, Richard C, Coello Y, Bernati T, Rousseaux M (2006) Where is the “straight ahead” in spatial neglect? Neurology 67:1500–1503PubMedCrossRef Saj A, Honoré J, Richard C, Coello Y, Bernati T, Rousseaux M (2006) Where is the “straight ahead” in spatial neglect? Neurology 67:1500–1503PubMedCrossRef
go back to reference Schmidt D, Krause BJ, Weiss PH, Fink GR, Shah NJ, Amorim MA, Müller HW, Berthoz A (2007) Visuospatial working memory and changes of the point of view in 3D space. Neuroimage 36:955–968PubMedCrossRef Schmidt D, Krause BJ, Weiss PH, Fink GR, Shah NJ, Amorim MA, Müller HW, Berthoz A (2007) Visuospatial working memory and changes of the point of view in 3D space. Neuroimage 36:955–968PubMedCrossRef
go back to reference Sepe R, Trojano L, Committeri G, Grossi D, Romani GL, Galati G (2007) On the relationship between categorical/coordinate and egocentric/allocentric spatial representations. In: Grainger J, Alario F-X, Burle B, Janssen N (eds) Proceedings of the fifteenth meeting of the European society for cognitive psychology. ESCoP, Marseille, pp 101 Sepe R, Trojano L, Committeri G, Grossi D, Romani GL, Galati G (2007) On the relationship between categorical/coordinate and egocentric/allocentric spatial representations. In: Grainger J, Alario F-X, Burle B, Janssen N (eds) Proceedings of the fifteenth meeting of the European society for cognitive psychology. ESCoP, Marseille, pp 101
go back to reference Sereno MI, Huang R-S (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9:1337–1343PubMedCrossRef Sereno MI, Huang R-S (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9:1337–1343PubMedCrossRef
go back to reference Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893PubMedCrossRef Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893PubMedCrossRef
go back to reference Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354PubMedCrossRef Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354PubMedCrossRef
go back to reference Shildler P (1935) The image and appearance of the human body. Routledge, London Shildler P (1935) The image and appearance of the human body. Routledge, London
go back to reference Shirani P, Thorn J, Davis C, Heidler-Gary J, Newhart M, Gottesman RF, Hillis AE (2009) Severity of hypoperfusion in distinct brain regions predicts severity of hemispatial neglect in different reference frames. Stroke 40:3563–3566PubMedCrossRef Shirani P, Thorn J, Davis C, Heidler-Gary J, Newhart M, Gottesman RF, Hillis AE (2009) Severity of hypoperfusion in distinct brain regions predicts severity of hemispatial neglect in different reference frames. Stroke 40:3563–3566PubMedCrossRef
go back to reference Silver MA, Kastner S (2009) Topographic maps in human frontal and parietal cortex. Trends Cogn Sci 13:488–495PubMedCrossRef Silver MA, Kastner S (2009) Topographic maps in human frontal and parietal cortex. Trends Cogn Sci 13:488–495PubMedCrossRef
go back to reference Smania N, Aglioti S (1995) Sensory and spatial components of somaesthetic deficits following right brain damage. Neurology 45:1725–1730PubMed Smania N, Aglioti S (1995) Sensory and spatial components of somaesthetic deficits following right brain damage. Neurology 45:1725–1730PubMed
go back to reference Sugiura M, Shah NJ, Zilles K, Fink GR (2005) Cortical representation of personally familiar objects and places: functional organization of the human posterior cingulate cortex. J Cogn Neurosci 17:183–198PubMedCrossRef Sugiura M, Shah NJ, Zilles K, Fink GR (2005) Cortical representation of personally familiar objects and places: functional organization of the human posterior cingulate cortex. J Cogn Neurosci 17:183–198PubMedCrossRef
go back to reference Sulpizio V, Committeri G, Lambrey S, Zaoui M, Berthoz A, Galati G (2009) Human cortical regions encoding spatial locations in the environment across viewpoint changes. Society for Neuroscience Abstract 380.2/FF100. Chicago, October 17–21 Sulpizio V, Committeri G, Lambrey S, Zaoui M, Berthoz A, Galati G (2009) Human cortical regions encoding spatial locations in the environment across viewpoint changes. Society for Neuroscience Abstract 380.2/FF100. Chicago, October 17–21
go back to reference Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27:5326–5337PubMedCrossRef Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27:5326–5337PubMedCrossRef
go back to reference Tabareau N, Bennequin D, Berthoz A, Slotine JJ, Girard B (2007) Geometry of the superior colliculus mapping and efficient oculomotor computation. Biol Cybern 97:279–292PubMedCrossRef Tabareau N, Bennequin D, Berthoz A, Slotine JJ, Girard B (2007) Geometry of the superior colliculus mapping and efficient oculomotor computation. Biol Cybern 97:279–292PubMedCrossRef
go back to reference Taube JS (1998) Head direction cells and the neuropsychological basis for a sense of direction. Prog Neurobiol 55:225–256PubMedCrossRef Taube JS (1998) Head direction cells and the neuropsychological basis for a sense of direction. Prog Neurobiol 55:225–256PubMedCrossRef
go back to reference Trullier O, Wiener SI, Berthoz A, Meyer JA (1997) Biologically based artificial navigation systems: review and prospects. Prog Neurobiol 51:483–544PubMedCrossRef Trullier O, Wiener SI, Berthoz A, Meyer JA (1997) Biologically based artificial navigation systems: review and prospects. Prog Neurobiol 51:483–544PubMedCrossRef
go back to reference Vallar G, Guariglia C, Nico D, Bisiach E (1995) Spatial hemineglect in back space. Brain 118:467–472PubMedCrossRef Vallar G, Guariglia C, Nico D, Bisiach E (1995) Spatial hemineglect in back space. Brain 118:467–472PubMedCrossRef
go back to reference Vallar G, Guariglia C, Rusconi ML (1997) Modulation of the neglect syndrome by sensory stimulation. In: Thier P, Karnath H-O (eds) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 555–578 Vallar G, Guariglia C, Rusconi ML (1997) Modulation of the neglect syndrome by sensory stimulation. In: Thier P, Karnath H-O (eds) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 555–578
go back to reference Vallar G, Lobel E, Galati G, Berthoz A, Pizzamiglio L, Le Bihan D (1999) A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Exp Brain Res 124:281–286PubMedCrossRef Vallar G, Lobel E, Galati G, Berthoz A, Pizzamiglio L, Le Bihan D (1999) A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Exp Brain Res 124:281–286PubMedCrossRef
go back to reference Waller D, Hodgson E (2006) Transient and enduring spatial representations under disorientation and selfrotation. J Exp Psychol Learn Mem Cogn 32:867–882PubMedCrossRef Waller D, Hodgson E (2006) Transient and enduring spatial representations under disorientation and selfrotation. J Exp Psychol Learn Mem Cogn 32:867–882PubMedCrossRef
go back to reference Wolbers T, Büchel C (2005) Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. J Neurosci 25:3333–3340PubMedCrossRef Wolbers T, Büchel C (2005) Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. J Neurosci 25:3333–3340PubMedCrossRef
go back to reference Wolbers T, Hegarty M, Buüchel C, Loomis JM (2008) Spatial updating: how the brain keeps track of changing object locations during observer motion. Nat Neurosci 11:1223–1230PubMedCrossRef Wolbers T, Hegarty M, Buüchel C, Loomis JM (2008) Spatial updating: how the brain keeps track of changing object locations during observer motion. Nat Neurosci 11:1223–1230PubMedCrossRef
Metadata
Title
Multiple reference frames used by the human brain for spatial perception and memory
Authors
Gaspare Galati
Gina Pelle
Alain Berthoz
Giorgia Committeri
Publication date
01-10-2010
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 2/2010
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-010-2168-8

Other articles of this Issue 2/2010

Experimental Brain Research 2/2010 Go to the issue