Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Multiple Myeloma | Research article

Gm40600 suppressed SP 2/0 isograft tumor by reducing Blimp1 and Xbp1 proteins

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Multiple myeloma (MM), characterized by cancerous proliferation of plasmablasts (PB) and plasma cells (PC), remains incurable in many patients. Differentially expressed molecules between MM PCs and healthy PCs have been explored in order to identify novel targets for treating MM. In the present study, we searched for novel MM therapeutic targets by comparing mRNA expression patterns between the Mus musculus myeloma plasmablast-like SP 2/0 cell line and LPS-induced PB/PC.

Methods

Gene expression profiles of LPS-induced PB/PC and SP 2/0 cells were determined using RNA-sequencing. A predicted gene (Gm40600) was found to be expressed at a low level in SP 2/0 cells. To study the role of Gm40600 in malignant PC, Gm40600 cDNA was cloned into a lentiviral vector (LV201) containing a puromycin selectable marker that was then transfected into SP 2/0 cells. Stable Gm40600-expressing SP 2/0 cells were selected using puromycin. The effect of Gm40600 on SP 2/0 cell proliferation, cell cycle/apoptosis, and tumor progression was assessed by cell counting kit-8 (CCK8), flow cytometry (FACS), and the SP 2/0 isograft mouse model, respectively. The effect of Gm40600 on mRNA and protein expression was evaluated by RNA-sequencing and western blotting, respectively.

Results

We found that SP 2/0 cells expressed lower level of Gm40600 mRNA as compared to LPS-induced PB/PC. Overexpression of Gm40600 significantly suppressed SP 2/0 cell proliferation and isograft tumor progression in an isograft mouse model by promoting apoptosis. In addition, Gm40600 overexpression suppressed transcription of the gene encoding Bcl2. Gm40600 overexpression also reduced the expression of PC-associated transcription factors Blimp1 and Xbp1, which promote transcription of the gene that encodes Bcl2.

Conclusions

Gm40600 reduced SP 2/0 cell proliferation and isograft tumor growth and progression by suppressing Blimp1 and Xbp1-mediated Bcl2 transcription to induce apoptosis. Thus, regulation of a human homolog of Gm40600, or associated factors, may be a potential therapeutic approach for treating MM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mahtouk K, Hose D, Reme T, De Vos J, Jourdan M, Moreaux J, et al. Expression of EGF-family receptors and amphiregulin in multiple myeloma Amphiregulin is a growth factor for myeloma cells. Oncogene. 2005;24:3512–24.CrossRef Mahtouk K, Hose D, Reme T, De Vos J, Jourdan M, Moreaux J, et al. Expression of EGF-family receptors and amphiregulin in multiple myeloma Amphiregulin is a growth factor for myeloma cells. Oncogene. 2005;24:3512–24.CrossRef
2.
go back to reference Bataille R, Harousseau JL. Multiple myeloma. N Engl J Med. 1997;336:1657–64.CrossRef Bataille R, Harousseau JL. Multiple myeloma. N Engl J Med. 1997;336:1657–64.CrossRef
3.
go back to reference Shapiro VS, Mollenauer MN, Weiss A. Endogenous CD28 expressed on myeloma cells up-regulates interleukin-8 production: implications for multiple myeloma progression. Blood. 2001;98:187–93.CrossRef Shapiro VS, Mollenauer MN, Weiss A. Endogenous CD28 expressed on myeloma cells up-regulates interleukin-8 production: implications for multiple myeloma progression. Blood. 2001;98:187–93.CrossRef
4.
go back to reference Mahtouk K, Cremer FW, Reme T, Jourdan M, Baudard M, Moreaux J, et al. Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma. Oncogene. 2006;25:7180–91.CrossRef Mahtouk K, Cremer FW, Reme T, Jourdan M, Baudard M, Moreaux J, et al. Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma. Oncogene. 2006;25:7180–91.CrossRef
5.
go back to reference Kumar A, Loughran T, Alsina M, Durie BG, Djulbegovic B. Management of multiple myeloma: a systematic review and critical appraisal of published studies. Lancet Oncol. 2003;4:293–304.CrossRef Kumar A, Loughran T, Alsina M, Durie BG, Djulbegovic B. Management of multiple myeloma: a systematic review and critical appraisal of published studies. Lancet Oncol. 2003;4:293–304.CrossRef
6.
go back to reference Tremblay-LeMay R, Rastgoo N, Chang H. Modulating PD-L1 expression in multiple myeloma: an alternative strategy to target the PD-1/PD-L1 pathway. J Hematol Oncol. 2018;11:46.CrossRef Tremblay-LeMay R, Rastgoo N, Chang H. Modulating PD-L1 expression in multiple myeloma: an alternative strategy to target the PD-1/PD-L1 pathway. J Hematol Oncol. 2018;11:46.CrossRef
7.
go back to reference Kumar SK, Lee JH, Lahuerta JJ, Morgan G, Richardson PG, Crowley J, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26:149–57.CrossRef Kumar SK, Lee JH, Lahuerta JJ, Morgan G, Richardson PG, Crowley J, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26:149–57.CrossRef
8.
go back to reference Epstein J, Hoover R, Kornbluth J, Barlogie B. Biological aspects of multiple myeloma. Baillierres Clin Haematol. 1995;8:721–34.CrossRef Epstein J, Hoover R, Kornbluth J, Barlogie B. Biological aspects of multiple myeloma. Baillierres Clin Haematol. 1995;8:721–34.CrossRef
9.
go back to reference Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibodysecreting plasma cells. Nat Rev Immunol. 2015;15:160–71.CrossRef Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibodysecreting plasma cells. Nat Rev Immunol. 2015;15:160–71.CrossRef
10.
go back to reference Shi W, Liao Y, Willis SN, Taubenheim N, Inouye M, Tarlinton DM, et al. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat Immunol. 2015;16:663–73.CrossRef Shi W, Liao Y, Willis SN, Taubenheim N, Inouye M, Tarlinton DM, et al. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat Immunol. 2015;16:663–73.CrossRef
11.
go back to reference Rossi M, Botta C, Arbitrio M, Grembiale RD, Tagliaferri P, Tassone P. Mouse models of multiple myeloma: technologic platforms and perspectives. Oncotarget. 2018;9:20119–33.PubMedPubMedCentral Rossi M, Botta C, Arbitrio M, Grembiale RD, Tagliaferri P, Tassone P. Mouse models of multiple myeloma: technologic platforms and perspectives. Oncotarget. 2018;9:20119–33.PubMedPubMedCentral
12.
go back to reference Spets H, Stromberg T, Georgii-Hemming P, Siljason J, Nilsson K, Jernberg-Wiklund H. Expression of the bcl-2 family of proand anti-apoptotic genes in multiple myeloma and normal plasma cells: regulation during interleukin-6(IL-6)-induced growth and survival. Eur J Haematol. 2002;69:76–89.CrossRef Spets H, Stromberg T, Georgii-Hemming P, Siljason J, Nilsson K, Jernberg-Wiklund H. Expression of the bcl-2 family of proand anti-apoptotic genes in multiple myeloma and normal plasma cells: regulation during interleukin-6(IL-6)-induced growth and survival. Eur J Haematol. 2002;69:76–89.CrossRef
13.
go back to reference Flores-Montero J, de Tute R, Paiva B, Perez JJ, Bottcher S, Wind H, et al. Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for mrd detection in multiple myeloma. Cytometry B Clin Cytom. 2016;90:61–72.CrossRef Flores-Montero J, de Tute R, Paiva B, Perez JJ, Bottcher S, Wind H, et al. Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for mrd detection in multiple myeloma. Cytometry B Clin Cytom. 2016;90:61–72.CrossRef
14.
go back to reference Roy P, Sarkar UA, Basak S. The NF-kB activating pathways in multiple myeloma. Biomedicines. 2018;6:59.CrossRef Roy P, Sarkar UA, Basak S. The NF-kB activating pathways in multiple myeloma. Biomedicines. 2018;6:59.CrossRef
15.
go back to reference Gonzalez D, van der Burg M, Garcia-Sanz R, Fenton JA, Langerak AW, Gonzalez M, et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood. 2007;110:3112–21.CrossRef Gonzalez D, van der Burg M, Garcia-Sanz R, Fenton JA, Langerak AW, Gonzalez M, et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood. 2007;110:3112–21.CrossRef
16.
go back to reference Zhu G, Wang X, Xiao H, Liu X, Fang Y, Zhai B, et al. Both Notch1 and its ligands in B cells promote antibody production. Mol Immunol. 2017;91:17–23.CrossRef Zhu G, Wang X, Xiao H, Liu X, Fang Y, Zhai B, et al. Both Notch1 and its ligands in B cells promote antibody production. Mol Immunol. 2017;91:17–23.CrossRef
17.
go back to reference Wang X, Wei Y, Xiao H, Liu X, Zhang Y, Han G, et al. Pre-existing CD19-independent GL7- Breg cells are expanded during inflammation and in mice with lupus-like disease. Mol Immunol. 2016;71:54–63.CrossRef Wang X, Wei Y, Xiao H, Liu X, Zhang Y, Han G, et al. Pre-existing CD19-independent GL7- Breg cells are expanded during inflammation and in mice with lupus-like disease. Mol Immunol. 2016;71:54–63.CrossRef
18.
go back to reference Xu R, Fang Y, Hou C, Zhai B, Jiang Z, Ma N, et al. BC094916 suppressed SP 2/0 xenograft tumor by down?Regulating Creb1 and Bcl2 transcription. Cancer Cell Int. 2018;18:138.CrossRef Xu R, Fang Y, Hou C, Zhai B, Jiang Z, Ma N, et al. BC094916 suppressed SP 2/0 xenograft tumor by down?Regulating Creb1 and Bcl2 transcription. Cancer Cell Int. 2018;18:138.CrossRef
19.
go back to reference Liu X, Zhang Y, Wang Z, Wang X, Zhu G, Han G, et al. Metabotropic glutamate receptor 3 is involved in B-cell-related tumor apoptosis. Int J Oncol. 2016;49:1469–78.CrossRef Liu X, Zhang Y, Wang Z, Wang X, Zhu G, Han G, et al. Metabotropic glutamate receptor 3 is involved in B-cell-related tumor apoptosis. Int J Oncol. 2016;49:1469–78.CrossRef
20.
go back to reference Zhu G, Liu X, Fang Y, Zhai B, Xu R, Han G, et al. Increased mTOR cancels out the effect of reduced Xbp-1 on antibody secretion in IL-1a-deficient B cells. Cell Immunol. 2018;328:9–17.CrossRef Zhu G, Liu X, Fang Y, Zhai B, Xu R, Han G, et al. Increased mTOR cancels out the effect of reduced Xbp-1 on antibody secretion in IL-1a-deficient B cells. Cell Immunol. 2018;328:9–17.CrossRef
21.
go back to reference Ma N, Liu X, Xing C, Wang X, Wei Y, Han G, et al. Ligation of metabotropic glutamate receptor 3 (Grm3) ameliorates lupus-like disease by reducing B cells. Clin Immunol. 2015;160:142–54.CrossRef Ma N, Liu X, Xing C, Wang X, Wei Y, Han G, et al. Ligation of metabotropic glutamate receptor 3 (Grm3) ameliorates lupus-like disease by reducing B cells. Clin Immunol. 2015;160:142–54.CrossRef
22.
go back to reference Ozcan E, Garibyan L, Lee JJ, Bram RJ, Lam KP, Geha RS. Transmembrane activator, calcium modulator, and cyclophilin ligand interactor drives plasma cell differentiation in LPS-activated B cells. J Allergy Clin Immunol. 2009;123:1277–86.CrossRef Ozcan E, Garibyan L, Lee JJ, Bram RJ, Lam KP, Geha RS. Transmembrane activator, calcium modulator, and cyclophilin ligand interactor drives plasma cell differentiation in LPS-activated B cells. J Allergy Clin Immunol. 2009;123:1277–86.CrossRef
23.
go back to reference Calame KL, Lin KI, Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells. Annu Rev Immunol. 2003;21:205–30.CrossRef Calame KL, Lin KI, Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells. Annu Rev Immunol. 2003;21:205–30.CrossRef
24.
go back to reference Shapiro-Shelef M, Lin KI, McHeyzer-Williams LJ, Liao J, McHeyzer-Williams MG, Calame K. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity. 2003;19:607–20.CrossRef Shapiro-Shelef M, Lin KI, McHeyzer-Williams LJ, Liao J, McHeyzer-Williams MG, Calame K. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity. 2003;19:607–20.CrossRef
25.
go back to reference Clarke R, Cook KL, Hu R, Facey CO, Tavassoly I, Schwartz JL, et al. Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res. 2012;72:1321–31.PubMedPubMedCentral Clarke R, Cook KL, Hu R, Facey CO, Tavassoly I, Schwartz JL, et al. Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res. 2012;72:1321–31.PubMedPubMedCentral
26.
go back to reference Clarke R, Shajahan AN, Wang Y, Tyson JJ, Riggins RB, Weiner LM, et al. Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer. Horm Mol Biol Clin Invest. 2011;5:35–44. Clarke R, Shajahan AN, Wang Y, Tyson JJ, Riggins RB, Weiner LM, et al. Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer. Horm Mol Biol Clin Invest. 2011;5:35–44.
27.
28.
go back to reference Ria R, Reale A, Vacca A. Novel agents and new therapeutic approaches for treatment of multiple myeloma. World J Methodol. 2014;4:73–90.CrossRef Ria R, Reale A, Vacca A. Novel agents and new therapeutic approaches for treatment of multiple myeloma. World J Methodol. 2014;4:73–90.CrossRef
29.
go back to reference Borrello I. Can we change the disease biology of multiple myeloma? Leuk Res. 2012;36:S3–12.CrossRef Borrello I. Can we change the disease biology of multiple myeloma? Leuk Res. 2012;36:S3–12.CrossRef
30.
go back to reference Novak AJ, Darce JR, Arendt BK, Harder B, Henderson K, Kindsvogel W, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004;103:689–94.CrossRef Novak AJ, Darce JR, Arendt BK, Harder B, Henderson K, Kindsvogel W, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004;103:689–94.CrossRef
31.
go back to reference Lin FR, Huang SY, Hung KH, Su ST, Chung CH, Matsuzawa A, et al. ASK1 promotes apoptosis of normal and malignant plasma cells. Blood. 2012;120:1039–47.CrossRef Lin FR, Huang SY, Hung KH, Su ST, Chung CH, Matsuzawa A, et al. ASK1 promotes apoptosis of normal and malignant plasma cells. Blood. 2012;120:1039–47.CrossRef
32.
go back to reference Shapiro-Shelef M, Calame K. Plasma cell differentiation and multiple myeloma. Curr Opin Immunol. 2004;16:226–34.CrossRef Shapiro-Shelef M, Calame K. Plasma cell differentiation and multiple myeloma. Curr Opin Immunol. 2004;16:226–34.CrossRef
33.
go back to reference Letai A. Pharmacological manipulation of Bcl-2 family members to control cell death. J Clin Invest. 2005;115:2648–55.CrossRef Letai A. Pharmacological manipulation of Bcl-2 family members to control cell death. J Clin Invest. 2005;115:2648–55.CrossRef
34.
go back to reference Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell. 2005;8:407–19.CrossRef Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell. 2005;8:407–19.CrossRef
35.
go back to reference Catz SD, Johnson JL. Transcriptional regulation of bcl-2 by nuclear factor kB and its significance in prostate cancer. Oncogene. 2001;20:7342–51.CrossRef Catz SD, Johnson JL. Transcriptional regulation of bcl-2 by nuclear factor kB and its significance in prostate cancer. Oncogene. 2001;20:7342–51.CrossRef
36.
go back to reference Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.CrossRef Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.CrossRef
37.
go back to reference Pezzella F, Turley H, Kuzu I, Tungekar MF, Dunnill MS, Pierce CB, et al. Bcl-2 protein in non-small-cell lung carcinoma. N Engl J Med. 1993;329:690–4.CrossRef Pezzella F, Turley H, Kuzu I, Tungekar MF, Dunnill MS, Pierce CB, et al. Bcl-2 protein in non-small-cell lung carcinoma. N Engl J Med. 1993;329:690–4.CrossRef
38.
go back to reference Cleary M, Smith S, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t (14;18) translocation. Cell. 1986;47:19–28.CrossRef Cleary M, Smith S, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t (14;18) translocation. Cell. 1986;47:19–28.CrossRef
39.
go back to reference Chand HS, Montano G, Huang X, Randell SH, Mebratu Y, Petersen H, et al. A genetic variant of p53 restricts the mucous secretory phenotype by regulating SPDEF and Bcl-2 expression. Nat Commun. 2014;5:5567.CrossRef Chand HS, Montano G, Huang X, Randell SH, Mebratu Y, Petersen H, et al. A genetic variant of p53 restricts the mucous secretory phenotype by regulating SPDEF and Bcl-2 expression. Nat Commun. 2014;5:5567.CrossRef
40.
go back to reference Gomez BP, Riggins RB, Shajahan AN, Klimach U, Wang A, Crawford AC, et al. Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J. 2007;21:4013–27.CrossRef Gomez BP, Riggins RB, Shajahan AN, Klimach U, Wang A, Crawford AC, et al. Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J. 2007;21:4013–27.CrossRef
41.
go back to reference Martins G, Calame K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol. 2018;26:133–69.CrossRef Martins G, Calame K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol. 2018;26:133–69.CrossRef
42.
go back to reference Crotty S, Johnston RJ, Schoenberger SP. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat Immunol. 2010;11:114–20.CrossRef Crotty S, Johnston RJ, Schoenberger SP. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat Immunol. 2010;11:114–20.CrossRef
43.
go back to reference Shapiro-Shelef M, Calame K. Regulation of plasma-cell development. Nat Rev Immunol. 2005;5:230–42.CrossRef Shapiro-Shelef M, Calame K. Regulation of plasma-cell development. Nat Rev Immunol. 2005;5:230–42.CrossRef
44.
go back to reference Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001;412:300–7.CrossRef Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001;412:300–7.CrossRef
45.
go back to reference Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21:81–93.CrossRef Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21:81–93.CrossRef
46.
go back to reference Lin FR, Kuo HK, Ying HY, Yang FH, Lin KI. Induction of apoptosis in plasma cells by B lymphocyteinduced maturation protein-1 knockdown. Cancer Res. 2007;67:11914–23.CrossRef Lin FR, Kuo HK, Ying HY, Yang FH, Lin KI. Induction of apoptosis in plasma cells by B lymphocyteinduced maturation protein-1 knockdown. Cancer Res. 2007;67:11914–23.CrossRef
Metadata
Title
Gm40600 suppressed SP 2/0 isograft tumor by reducing Blimp1 and Xbp1 proteins
Publication date
01-12-2019
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5848-1

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine