Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2011

Open Access 01-12-2011 | Research

Multi-finger coordination in healthy subjects and stroke patients: a mathematical modelling approach

Authors: Ilaria Carpinella, Johanna Jonsdottir, Maurizio Ferrarin

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2011

Login to get access

Abstract

Background

Approximately 60% of stroke survivors experience hand dysfunction limiting execution of daily activities. Several methods have been proposed to objectively quantify fingers' joints range of motion (ROM), while few studies exist about multi-finger coordination during hand movements. The present work analysed this aspect, by providing a complete characterization of spatial and temporal aspects of hand movement, through the mathematical modelling of multi-joint finger motion in healthy subjects and stroke patients.

Methods

Hand opening and closing movements were examined in 12 healthy volunteers and 14 hemiplegic stroke survivors by means of optoelectronic kinematic analysis. The flexion/extension angles of metacarpophalangeal (MCPJ) and proximal interphalangeal joints (IPJ) of all fingers were computed and mathematically characterized by a four-parameter hyperbolic tangent function. Accuracy of the selected model was analysed by means of coefficient of determination (R2) and root mean square error (RMSE). Test-retest reliability was quantified by intraclass correlation coefficient (ICC) and test-retest errors. Comparison between performances of healthy controls and stroke subjects were performed by analysing possible differences in parameters describing angular and temporal aspects of hand kinematics and inter-joint, inter-digit coordination.

Results

The angular profiles of hand opening and closing were accurately characterized by the selected model, both in healthy controls and in stroke subjects (R2 > 0.973, RMSE < 2.0°). Test-retest reliability was found to be excellent, with ICC > 0.75 and remarking errors comparable to those obtained with other methods. Comparison with healthy controls revealed that hemiparetic hand movement was impaired not only in joints ROM but also in the temporal aspects of motion: peak velocities were significantly decreased, inter-digit coordination was reduced of more than 50% and inter-joint coordination patterns were highly disrupted. In particular, the stereotypical proximal-to-distal opening sequence (reversed during hand closing) found in healthy subjects, was altered in stroke subjects who showed abnormally high delay between IPJ and MCPJ movement or reversed moving sequences.

Conclusions

The proposed method has proven to be a promising tool for a complete objective characterization of spatial and temporal aspects of hand movement in stroke, providing further information for a more targeted planning of the rehabilitation treatment to each specific patient and for a quantitative assessment of therapy's outcome.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rau G, Disselhorst-Klug C, Schmidt R: Movement biomechanics goes upwards: from the leg to the arm. J Biomech 2000, 33: 1207-1216. 10.1016/S0021-9290(00)00062-2CrossRefPubMed Rau G, Disselhorst-Klug C, Schmidt R: Movement biomechanics goes upwards: from the leg to the arm. J Biomech 2000, 33: 1207-1216. 10.1016/S0021-9290(00)00062-2CrossRefPubMed
2.
go back to reference Kontaxis A, Cutti AG, Johnson GR, Veeger HE: A framework for the definition of standardized protocols for measuring upper-extremity kinematics. Clin Biomech (Bristol, Avon) 2009, 24: 246-253. 10.1016/j.clinbiomech.2008.12.009CrossRef Kontaxis A, Cutti AG, Johnson GR, Veeger HE: A framework for the definition of standardized protocols for measuring upper-extremity kinematics. Clin Biomech (Bristol, Avon) 2009, 24: 246-253. 10.1016/j.clinbiomech.2008.12.009CrossRef
3.
go back to reference Nowak DA: The impact of stroke on the performance of grasping: usefulness of kinetic and kinematic motion analysis. Neurosci Biobehav Rev 2008, 32: 1439-1450. 10.1016/j.neubiorev.2008.05.021CrossRefPubMed Nowak DA: The impact of stroke on the performance of grasping: usefulness of kinetic and kinematic motion analysis. Neurosci Biobehav Rev 2008, 32: 1439-1450. 10.1016/j.neubiorev.2008.05.021CrossRefPubMed
4.
go back to reference Strong K, Mathers C, Bonita R: Preventing stroke: saving lives around the world. Lancet Neurol 2007, 6: 182-187. 10.1016/S1474-4422(07)70031-5CrossRefPubMed Strong K, Mathers C, Bonita R: Preventing stroke: saving lives around the world. Lancet Neurol 2007, 6: 182-187. 10.1016/S1474-4422(07)70031-5CrossRefPubMed
5.
go back to reference Kamper DG, Harvey RL, Suresh S, Rymer WZ: Relative contributions of neural mechanisms versus muscle mechanics in promoting finger extension deficits following stroke. Muscle Nerve 2003, 28: 309-318. 10.1002/mus.10443CrossRefPubMed Kamper DG, Harvey RL, Suresh S, Rymer WZ: Relative contributions of neural mechanisms versus muscle mechanics in promoting finger extension deficits following stroke. Muscle Nerve 2003, 28: 309-318. 10.1002/mus.10443CrossRefPubMed
6.
go back to reference Jonsson P, Johnson PW, Hagberg M: Accuracy and feasibility of using an electrogoniometer for measuring simple thumb movements. Ergonomics 2007, 50: 647-659. 10.1080/00140130601164490CrossRefPubMed Jonsson P, Johnson PW, Hagberg M: Accuracy and feasibility of using an electrogoniometer for measuring simple thumb movements. Ergonomics 2007, 50: 647-659. 10.1080/00140130601164490CrossRefPubMed
7.
go back to reference Dipietro L, Sabatini AM, Dario P: Evaluation of an instrumented glove for hand-movement acquisition. J Rehabil Res Dev 2003, 40: 179-189.CrossRefPubMed Dipietro L, Sabatini AM, Dario P: Evaluation of an instrumented glove for hand-movement acquisition. J Rehabil Res Dev 2003, 40: 179-189.CrossRefPubMed
8.
go back to reference Lang CE, DeJong SL, Beebe JA: Recovery of thumb and finger extension and its relation to grasp performance after stroke. J Neurophysiol 2009, 102: 451-459. 10.1152/jn.91310.2008PubMedCentralCrossRefPubMed Lang CE, DeJong SL, Beebe JA: Recovery of thumb and finger extension and its relation to grasp performance after stroke. J Neurophysiol 2009, 102: 451-459. 10.1152/jn.91310.2008PubMedCentralCrossRefPubMed
9.
go back to reference Chiu HY, Lin SC, Su FC, Wang ST, Hsu HY: The use of the motion analysis system for evaluation of loss of movement in the finger. J Hand Surg Br 2000, 25: 195-199. 10.1054/jhsb.1999.0344CrossRefPubMed Chiu HY, Lin SC, Su FC, Wang ST, Hsu HY: The use of the motion analysis system for evaluation of loss of movement in the finger. J Hand Surg Br 2000, 25: 195-199. 10.1054/jhsb.1999.0344CrossRefPubMed
10.
go back to reference Degeorges R, Parasie J, Mitton D, Imbert N, Goubier JN, Lavaste F: Three-dimensional rotations of human three-joint fingers: an optoelectronic measurement. Preliminary results. Surg Radiol Anat 2005, 27: 43-50. 10.1007/s00276-004-0277-4CrossRefPubMed Degeorges R, Parasie J, Mitton D, Imbert N, Goubier JN, Lavaste F: Three-dimensional rotations of human three-joint fingers: an optoelectronic measurement. Preliminary results. Surg Radiol Anat 2005, 27: 43-50. 10.1007/s00276-004-0277-4CrossRefPubMed
11.
go back to reference Carpinella I, Mazzoleni P, Rabuffetti M, Thorsen R, Ferrarin M: Experimental protocol for the kinematic analysis of the hand: definition and repeatability. Gait Posture 2006, 23: 445-454. 10.1016/j.gaitpost.2005.05.001CrossRefPubMed Carpinella I, Mazzoleni P, Rabuffetti M, Thorsen R, Ferrarin M: Experimental protocol for the kinematic analysis of the hand: definition and repeatability. Gait Posture 2006, 23: 445-454. 10.1016/j.gaitpost.2005.05.001CrossRefPubMed
12.
go back to reference Metcalf CD, Notley SV, Chappell PH, Burridge JH, Yule VT: Validation and application of a computational model for wrist and hand movements using surface markers. IEEE Trans Biomed Eng 2008, 55: 1199-1210.CrossRefPubMed Metcalf CD, Notley SV, Chappell PH, Burridge JH, Yule VT: Validation and application of a computational model for wrist and hand movements using surface markers. IEEE Trans Biomed Eng 2008, 55: 1199-1210.CrossRefPubMed
13.
go back to reference Ferrarin M, Rabuffetti M, Ramella M, Osio M, Mailland E, Converti R: Does instrumented movement analysis alter, objectively confirm, or not affect clinical decision-making in musicians with focal dystonia? Med Probl Perform Art 2008, 23: 99-106. Ferrarin M, Rabuffetti M, Ramella M, Osio M, Mailland E, Converti R: Does instrumented movement analysis alter, objectively confirm, or not affect clinical decision-making in musicians with focal dystonia? Med Probl Perform Art 2008, 23: 99-106.
14.
go back to reference Raghavan P, Santello M, Gordon AM, Krakauer JW: Compensatory motor control after stroke: an alternative joint strategy for object-dependent shaping of hand posture. J Neurophysiol 2010, 103: 3034-3043. 10.1152/jn.00936.2009PubMedCentralCrossRefPubMed Raghavan P, Santello M, Gordon AM, Krakauer JW: Compensatory motor control after stroke: an alternative joint strategy for object-dependent shaping of hand posture. J Neurophysiol 2010, 103: 3034-3043. 10.1152/jn.00936.2009PubMedCentralCrossRefPubMed
15.
go back to reference Wenzelburger R, Kopper F, Frenzel A, Stolze H, Klebe S, Brossmann A, Kuhtz-Buschbeck J, Golge M, Illert M, Deuschl G: Hand coordination following capsular stroke. Brain 2005, 128: 64-74.CrossRefPubMed Wenzelburger R, Kopper F, Frenzel A, Stolze H, Klebe S, Brossmann A, Kuhtz-Buschbeck J, Golge M, Illert M, Deuschl G: Hand coordination following capsular stroke. Brain 2005, 128: 64-74.CrossRefPubMed
16.
go back to reference Somia N, Rash GS, Wachowiak M, Gupta A: The initiation and sequence of digital joint motion. A three-dimensional motion analysis. J Hand Surg Br 1998, 23: 792-795.CrossRefPubMed Somia N, Rash GS, Wachowiak M, Gupta A: The initiation and sequence of digital joint motion. A three-dimensional motion analysis. J Hand Surg Br 1998, 23: 792-795.CrossRefPubMed
17.
go back to reference Nakamura M, Miyawaki C, Matsushita N, Yagi R, Handa Y: Analysis of voluntary finger movements during hand tasks by a motion analyzer. J Electromyogr Kinesiol 1998, 8: 295-303. 10.1016/S1050-6411(97)00040-0CrossRefPubMed Nakamura M, Miyawaki C, Matsushita N, Yagi R, Handa Y: Analysis of voluntary finger movements during hand tasks by a motion analyzer. J Electromyogr Kinesiol 1998, 8: 295-303. 10.1016/S1050-6411(97)00040-0CrossRefPubMed
18.
go back to reference Braido P, Zhang X: Quantitative analysis of finger motion coordination in hand manipulative and gestic acts. Hum Mov Sci 2004, 22: 661-678. 10.1016/j.humov.2003.10.001CrossRefPubMed Braido P, Zhang X: Quantitative analysis of finger motion coordination in hand manipulative and gestic acts. Hum Mov Sci 2004, 22: 661-678. 10.1016/j.humov.2003.10.001CrossRefPubMed
19.
go back to reference Santello M, Flanders M, Soechting JF: Patterns of hand motion during grasping and the influence of sensory guidance. J Neurosci 2002, 22: 1426-1435.PubMed Santello M, Flanders M, Soechting JF: Patterns of hand motion during grasping and the influence of sensory guidance. J Neurosci 2002, 22: 1426-1435.PubMed
20.
go back to reference Smania N, Paolucci S, Tinazzi M, Borghero A, Manganotti P, Fiaschi A, Moretto G, Bovi P, Gambarin M: Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke. Stroke 2007, 38: 1088-1090. 10.1161/01.STR.0000258077.88064.a3CrossRefPubMed Smania N, Paolucci S, Tinazzi M, Borghero A, Manganotti P, Fiaschi A, Moretto G, Bovi P, Gambarin M: Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke. Stroke 2007, 38: 1088-1090. 10.1161/01.STR.0000258077.88064.a3CrossRefPubMed
21.
go back to reference Lyle RC: A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res 1981, 4: 483-492. 10.1097/00004356-198112000-00001CrossRefPubMed Lyle RC: A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res 1981, 4: 483-492. 10.1097/00004356-198112000-00001CrossRefPubMed
22.
go back to reference Bohannon RW, Smith MB: Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 1987, 67: 206-207.PubMed Bohannon RW, Smith MB: Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 1987, 67: 206-207.PubMed
23.
go back to reference O'Dwyer NJ, Ada L, Neilson PD: Spasticity and muscle contracture following stroke. Brain 1996,119(Pt 5):1737-1749.CrossRefPubMed O'Dwyer NJ, Ada L, Neilson PD: Spasticity and muscle contracture following stroke. Brain 1996,119(Pt 5):1737-1749.CrossRefPubMed
24.
go back to reference Zhang X, Chaffin D: The effects of speed variation on joint kinematics during multisegment reaching movements. Hum Mov Sci 1999, 18: 741-757. 10.1016/S0167-9457(99)00038-XCrossRef Zhang X, Chaffin D: The effects of speed variation on joint kinematics during multisegment reaching movements. Hum Mov Sci 1999, 18: 741-757. 10.1016/S0167-9457(99)00038-XCrossRef
25.
go back to reference McGraw KO, Wong SP: Forming inferences about some intraclass correlation coefficients. Psychol Methods 1996, 1: 30-46.CrossRef McGraw KO, Wong SP: Forming inferences about some intraclass correlation coefficients. Psychol Methods 1996, 1: 30-46.CrossRef
26.
go back to reference Wagner JM, Rhodes JA, Patten C: Reproducibility and minimal detectable change of three-dimensional kinematic analysis of reaching tasks in people with hemiparesis after stroke. Phys Ther 2008, 88: 652-663. 10.2522/ptj.20070255CrossRefPubMed Wagner JM, Rhodes JA, Patten C: Reproducibility and minimal detectable change of three-dimensional kinematic analysis of reaching tasks in people with hemiparesis after stroke. Phys Ther 2008, 88: 652-663. 10.2522/ptj.20070255CrossRefPubMed
27.
go back to reference Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1: 307-310.CrossRefPubMed Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1: 307-310.CrossRefPubMed
28.
go back to reference Pham QC, Hicheur H, Arechavaleta G, Laumond JP, Berthoz A: The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model. Eur J Neurosci 2007, 26: 2391-2403. 10.1111/j.1460-9568.2007.05835.xCrossRefPubMed Pham QC, Hicheur H, Arechavaleta G, Laumond JP, Berthoz A: The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model. Eur J Neurosci 2007, 26: 2391-2403. 10.1111/j.1460-9568.2007.05835.xCrossRefPubMed
29.
go back to reference Ellis B, Bruton A: A study to compare the reliability of composite finger flexion with goniometry for measurement of range of motion in the hand. Clin Rehabil 2002, 16: 562-570. 10.1191/0269215502cr513oaCrossRefPubMed Ellis B, Bruton A: A study to compare the reliability of composite finger flexion with goniometry for measurement of range of motion in the hand. Clin Rehabil 2002, 16: 562-570. 10.1191/0269215502cr513oaCrossRefPubMed
30.
go back to reference Long C, Bown ME: Electromyographic kinesiology of the hand: muscles moving the long finger. J Bone Joint Surg Am 1964, 46: 1683-1706.PubMed Long C, Bown ME: Electromyographic kinesiology of the hand: muscles moving the long finger. J Bone Joint Surg Am 1964, 46: 1683-1706.PubMed
31.
go back to reference Darling WG, Cole KJ, Miller GF: Coordination of index finger movements. J Biomech 1994, 27: 479-491. 10.1016/0021-9290(94)90023-XCrossRefPubMed Darling WG, Cole KJ, Miller GF: Coordination of index finger movements. J Biomech 1994, 27: 479-491. 10.1016/0021-9290(94)90023-XCrossRefPubMed
32.
go back to reference Hu XL, Tong KY, Li L: The mechanomyography of persons after stroke during isometric voluntary contractions. J Electromyogr Kinesiol 2007, 17: 473-483. 10.1016/j.jelekin.2006.01.015CrossRefPubMed Hu XL, Tong KY, Li L: The mechanomyography of persons after stroke during isometric voluntary contractions. J Electromyogr Kinesiol 2007, 17: 473-483. 10.1016/j.jelekin.2006.01.015CrossRefPubMed
33.
go back to reference Kamper DG, Rymer WZ: Quantitative features of the stretch response of extrinsic finger muscles in hemiparetic stroke. Muscle Nerve 2000, 23: 954-961. 10.1002/(SICI)1097-4598(200006)23:6<954::AID-MUS17>3.0.CO;2-0CrossRefPubMed Kamper DG, Rymer WZ: Quantitative features of the stretch response of extrinsic finger muscles in hemiparetic stroke. Muscle Nerve 2000, 23: 954-961. 10.1002/(SICI)1097-4598(200006)23:6<954::AID-MUS17>3.0.CO;2-0CrossRefPubMed
34.
go back to reference Pandyan AD, Gregoric M, Barnes MP, Wood D, Van Wijck F, Burridge J, Hermens H, Johnson GR: Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil 2005, 27: 2-6. 10.1080/09638280400014576CrossRefPubMed Pandyan AD, Gregoric M, Barnes MP, Wood D, Van Wijck F, Burridge J, Hermens H, Johnson GR: Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil 2005, 27: 2-6. 10.1080/09638280400014576CrossRefPubMed
35.
go back to reference Kamper DG, Rymer WZ: Impairment of voluntary control of finger motion following stroke: role of inappropriate muscle coactivation. Muscle Nerve 2001, 24: 673-681. 10.1002/mus.1054CrossRefPubMed Kamper DG, Rymer WZ: Impairment of voluntary control of finger motion following stroke: role of inappropriate muscle coactivation. Muscle Nerve 2001, 24: 673-681. 10.1002/mus.1054CrossRefPubMed
36.
go back to reference Kamper DG, Fischer HC, Cruz EG, Rymer WZ: Weakness is the primary contributor to finger impairment in chronic stroke. Arch Phys Med Rehabil 2006, 87: 1262-1269. 10.1016/j.apmr.2006.05.013CrossRefPubMed Kamper DG, Fischer HC, Cruz EG, Rymer WZ: Weakness is the primary contributor to finger impairment in chronic stroke. Arch Phys Med Rehabil 2006, 87: 1262-1269. 10.1016/j.apmr.2006.05.013CrossRefPubMed
37.
go back to reference Crone C, Nielsen J: Central control of disynaptic reciprocal inhibition in humans. Acta Physiol Scand 1994, 152: 351-363. 10.1111/j.1748-1716.1994.tb09817.xCrossRefPubMed Crone C, Nielsen J: Central control of disynaptic reciprocal inhibition in humans. Acta Physiol Scand 1994, 152: 351-363. 10.1111/j.1748-1716.1994.tb09817.xCrossRefPubMed
38.
go back to reference Raghavan P, Petra E, Krakauer JW, Gordon AM: Patterns of impairment in digit independence after subcortical stroke. J Neurophysiol 2006, 95: 369-378.CrossRefPubMed Raghavan P, Petra E, Krakauer JW, Gordon AM: Patterns of impairment in digit independence after subcortical stroke. J Neurophysiol 2006, 95: 369-378.CrossRefPubMed
39.
40.
go back to reference Carr J, Shepherd R: Stroke Rehabilitation: Guidelines for Exercise and Training to Optimize Motor Skill. Edinburgh: Butterworth-Heinemann Medical; 2003. Carr J, Shepherd R: Stroke Rehabilitation: Guidelines for Exercise and Training to Optimize Motor Skill. Edinburgh: Butterworth-Heinemann Medical; 2003.
Metadata
Title
Multi-finger coordination in healthy subjects and stroke patients: a mathematical modelling approach
Authors
Ilaria Carpinella
Johanna Jonsdottir
Maurizio Ferrarin
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2011
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-8-19

Other articles of this Issue 1/2011

Journal of NeuroEngineering and Rehabilitation 1/2011 Go to the issue