Skip to main content
Top
Published in: BMC Medical Imaging 1/2017

Open Access 01-12-2017 | Research article

Multi-contrast brain magnetic resonance image super-resolution using the local weight similarity

Authors: Hong Zheng, Xiaobo Qu, Zhengjian Bai, Yunsong Liu, Di Guo, Jiyang Dong, Xi Peng, Zhong Chen

Published in: BMC Medical Imaging | Issue 1/2017

Login to get access

Abstract

Background

Low-resolution images may be acquired in magnetic resonance imaging (MRI) due to limited data acquisition time or other physical constraints, and their resolutions can be improved with super-resolution methods. Since MRI can offer images of an object with different contrasts, e.g., T1-weighted or T2-weighted, the shared information between inter-contrast images can be used to benefit super-resolution.

Methods

In this study, an MRI image super-resolution approach to enhance in-plane resolution is proposed by exploring the statistical information estimated from another contrast MRI image that shares similar anatomical structures. We assume some edge structures are shown both in T1-weighted and T2-weighted MRI brain images acquired of the same subject, and the proposed approach aims to recover such kind of structures to generate a high-resolution image from its low-resolution counterpart.

Results

The statistical information produces a local weight of image that are found to be nearly invariant to the image contrast and thus this weight can be used to transfer the shared information from one contrast to another. We analyze this property with comprehensive mathematics as well as numerical experiments.

Conclusion

Experimental results demonstrate that the image quality of low-resolution images can be remarkably improved with the proposed method if this weight is borrowed from a high resolution image with another contrast.

Graphical Abstract

Multi-contrast MRI Image Super-resolution with Contrast-invariant Regression Weights
Appendix
Available only for authorised users
Literature
1.
go back to reference Peled S, Yeshurun Y. Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med. 2001;45:29–35.CrossRefPubMed Peled S, Yeshurun Y. Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med. 2001;45:29–35.CrossRefPubMed
2.
go back to reference Scherrer B, Gholipour A, Warfield SK. Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions. Med Image Anal. 2012;16:1465–76.CrossRefPubMedPubMedCentral Scherrer B, Gholipour A, Warfield SK. Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions. Med Image Anal. 2012;16:1465–76.CrossRefPubMedPubMedCentral
3.
go back to reference Poot DHJ, Jeurissen B, Bastiaensen Y, Veraart J, Van Hecke W, Parizel PM, Sijbers J. Super-resolution for multislice diffusion tensor imaging. Magn Reson Med. 2013;69:103–13.CrossRefPubMed Poot DHJ, Jeurissen B, Bastiaensen Y, Veraart J, Van Hecke W, Parizel PM, Sijbers J. Super-resolution for multislice diffusion tensor imaging. Magn Reson Med. 2013;69:103–13.CrossRefPubMed
4.
go back to reference Kornprobst P, Peeters R, Nikolova M, Deriche R, Ng M, Van Hecke P. A superresolution framework for fMRI sequences and its impact on resulting activation maps. Med Image Comput Computering-Assisted Intervention (MICCAI’03) (Montreal, Canada). 2003;2879:117–25. Kornprobst P, Peeters R, Nikolova M, Deriche R, Ng M, Van Hecke P. A superresolution framework for fMRI sequences and its impact on resulting activation maps. Med Image Comput Computering-Assisted Intervention (MICCAI’03) (Montreal, Canada). 2003;2879:117–25.
5.
go back to reference Manjón JV, Coupé P, Buades A, Collins DL, Robles M. MRI Superresolution using self-similarity and image priors. Int J Biomed Imaging. 2010;2010:425891–901.CrossRefPubMedPubMedCentral Manjón JV, Coupé P, Buades A, Collins DL, Robles M. MRI Superresolution using self-similarity and image priors. Int J Biomed Imaging. 2010;2010:425891–901.CrossRefPubMedPubMedCentral
6.
go back to reference Yang B, Yuan M, Ma Y, Zhang J, Zhan K. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain. BMC Med Imaging. 2015;15:28.CrossRefPubMedPubMedCentral Yang B, Yuan M, Ma Y, Zhang J, Zhan K. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain. BMC Med Imaging. 2015;15:28.CrossRefPubMedPubMedCentral
7.
go back to reference Qu X, Hou Y, Lam F, Guo D, Zhong J, Chen Z. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med Image Anal. 2014;18:843–56.CrossRefPubMed Qu X, Hou Y, Lam F, Guo D, Zhong J, Chen Z. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med Image Anal. 2014;18:843–56.CrossRefPubMed
8.
go back to reference Wong A, Liu C, Wang X, Fieguth P, Bie H. Homotopic non-local regularized reconstruction from sparse positron emission tomography measurements. BMC Med Imaging. 2015;15:10.CrossRefPubMedPubMedCentral Wong A, Liu C, Wang X, Fieguth P, Bie H. Homotopic non-local regularized reconstruction from sparse positron emission tomography measurements. BMC Med Imaging. 2015;15:10.CrossRefPubMedPubMedCentral
9.
go back to reference Wang TT, Cao L, Yang W, Feng QJ, Chen WF, Zhang Y. Adaptive patch-based POCS approach for super resolution reconstruction of 4D-CT lung data. Phys Med Biol. 2015;60:5939–54.CrossRefPubMed Wang TT, Cao L, Yang W, Feng QJ, Chen WF, Zhang Y. Adaptive patch-based POCS approach for super resolution reconstruction of 4D-CT lung data. Phys Med Biol. 2015;60:5939–54.CrossRefPubMed
10.
go back to reference Ding HJ, Gao H, Zhao B, Cho HM, Molloi S. A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction. Phys Med Biol. 2014;59:6005–17.CrossRefPubMedPubMedCentral Ding HJ, Gao H, Zhao B, Cho HM, Molloi S. A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction. Phys Med Biol. 2014;59:6005–17.CrossRefPubMedPubMedCentral
11.
go back to reference Huang JH, Guo L, Feng QJ, Chen WF, Feng YQ. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data. Phys Med Biol. 2015;60:5359–80.CrossRefPubMed Huang JH, Guo L, Feng QJ, Chen WF, Feng YQ. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data. Phys Med Biol. 2015;60:5359–80.CrossRefPubMed
12.
13.
go back to reference Greenspan H. Super-resolution in medical imaging. Comput J. 2009;52:43–63.CrossRef Greenspan H. Super-resolution in medical imaging. Comput J. 2009;52:43–63.CrossRef
14.
go back to reference Mark AB, Richard CS. MRI Basic Principles and Applications. Wiley-Liss 2003. Mark AB, Richard CS. MRI Basic Principles and Applications. Wiley-Liss 2003.
15.
go back to reference Rousseau F. Brain hallucination. In Prceedings of the European Conference on Computer Vision (ECCV'08) (New York, USA). 2008; Part 1. p. 497–508. Rousseau F. Brain hallucination. In Prceedings of the European Conference on Computer Vision (ECCV'08) (New York, USA). 2008; Part 1. p. 497–508.
17.
go back to reference Jafari-Khouzani K. MRI upsampling using feature-based nonlocal means approach. IEEE Trans Med Imag. 2014;33:1969–85.CrossRef Jafari-Khouzani K. MRI upsampling using feature-based nonlocal means approach. IEEE Trans Med Imag. 2014;33:1969–85.CrossRef
18.
19.
go back to reference Timofte R, De Smet V, Van Gool L. Anchored neighborhood regression for fast example-based super-resolution. IEEE Int Conf Comput Vis (ICCV’13) (Sydney, Australia). 2013:1920–7. Timofte R, De Smet V, Van Gool L. Anchored neighborhood regression for fast example-based super-resolution. IEEE Int Conf Comput Vis (ICCV’13) (Sydney, Australia). 2013:1920–7.
20.
go back to reference Yang CY, Yang MH. Fast direct super-resolution by simple functions. IEEE Int Conf Comput Vis (ICCV’13) (Sydney, Australia). 2013:561–8. Yang CY, Yang MH. Fast direct super-resolution by simple functions. IEEE Int Conf Comput Vis (ICCV’13) (Sydney, Australia). 2013:561–8.
21.
go back to reference Dai D, Timofte R, Van Gool L. Jointly optimized regressors for image super-resolution. Comput Graph Forum. 2015;34:95–104.CrossRef Dai D, Timofte R, Van Gool L. Jointly optimized regressors for image super-resolution. Comput Graph Forum. 2015;34:95–104.CrossRef
22.
go back to reference Cocosco CA, Kollokian V, Kwan RKS, Evans AC. BrainWeb: online interface to a 3D MRI simulated brain database. Neuroimage. 1997;5:S425. Cocosco CA, Kollokian V, Kwan RKS, Evans AC. BrainWeb: online interface to a 3D MRI simulated brain database. Neuroimage. 1997;5:S425.
23.
go back to reference Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13:600–12.CrossRefPubMed Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13:600–12.CrossRefPubMed
24.
go back to reference Manjo’n JV, Caballero JC, Lull JJ, Martı’ GG, Bonmatı’ LM, Robles M. MRI denoising using Non-local means. Med Image Anal. 2008;12:514–23.CrossRef Manjo’n JV, Caballero JC, Lull JJ, Martı’ GG, Bonmatı’ LM, Robles M. MRI denoising using Non-local means. Med Image Anal. 2008;12:514–23.CrossRef
26.
go back to reference Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging. 2011;30:1028–41.CrossRefPubMed Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging. 2011;30:1028–41.CrossRefPubMed
27.
go back to reference Ravishankar S, Bresler Y. Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to magnetic resonance imaging. SIAM J Imaging Sci. 2015;8:2519–57.CrossRef Ravishankar S, Bresler Y. Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to magnetic resonance imaging. SIAM J Imaging Sci. 2015;8:2519–57.CrossRef
28.
go back to reference Liu Y, Zhan Z, Cai JF, Guo D, Chen Z, Qu X. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging. IEEE Trans Med Imaging. 2016;35:2130–40.CrossRef Liu Y, Zhan Z, Cai JF, Guo D, Chen Z, Qu X. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging. IEEE Trans Med Imaging. 2016;35:2130–40.CrossRef
29.
go back to reference Zhan Z, Cai JF, Guo D, Liu Y, Chen Z, Qu X. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. IEEE Trans Biomed Eng. 2016;63:1850–61.CrossRef Zhan Z, Cai JF, Guo D, Liu Y, Chen Z, Qu X. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. IEEE Trans Biomed Eng. 2016;63:1850–61.CrossRef
30.
go back to reference Qu X, Guo D, Ning B, Hou Y, Lin Y, Cai S, Chen Z. Undersampled MRI reconstruction with patch-based directional wavelets. Magn Reson Imaging. 2012;30:964–77.CrossRefPubMed Qu X, Guo D, Ning B, Hou Y, Lin Y, Cai S, Chen Z. Undersampled MRI reconstruction with patch-based directional wavelets. Magn Reson Imaging. 2012;30:964–77.CrossRefPubMed
31.
go back to reference Ning B, Qu X, Guo D, Hu C, Chen Z. Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization. Magn Reson Imaging. 2013;31:1611–22.CrossRefPubMed Ning B, Qu X, Guo D, Hu C, Chen Z. Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization. Magn Reson Imaging. 2013;31:1611–22.CrossRefPubMed
32.
go back to reference Lai Z, Qu X, Liu Y, Guo D, Ye J, Zhan Z, Chen Z. Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med Image Anal. 2016;27:93–104.CrossRefPubMed Lai Z, Qu X, Liu Y, Guo D, Ye J, Zhan Z, Chen Z. Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med Image Anal. 2016;27:93–104.CrossRefPubMed
Metadata
Title
Multi-contrast brain magnetic resonance image super-resolution using the local weight similarity
Authors
Hong Zheng
Xiaobo Qu
Zhengjian Bai
Yunsong Liu
Di Guo
Jiyang Dong
Xi Peng
Zhong Chen
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2017
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-016-0176-2

Other articles of this Issue 1/2017

BMC Medical Imaging 1/2017 Go to the issue