Skip to main content
Top
Published in: Investigational New Drugs 6/2010

01-12-2010 | PRECLINICAL STUDIES

MT7, a novel compound from a combinatorial library, arrests mitosis via inhibiting the polymerization of microtubules

Authors: Zhixiang Zhang, Tao Meng, Jingxue He, Ming Li, Lin-Jiang Tong, Bing Xiong, Liping Lin, Jingkang Shen, Ze-Hong Miao, Jian Ding

Published in: Investigational New Drugs | Issue 6/2010

Login to get access

Summary

Targeting cellular mitosis is an attractive antitumor strategy. Here, we reported MT7, a novel compound from the 6H-Pyrido[2′,1′:2,3]imidazo [4,5-c]isoquinolin- 5(6H)-one library generated by using the multi-component reaction strategy, as a new mitotic inhibitor. MT7 elicited apparent inhibition of cell proliferation by arresting mitosis specifically and reversibly in various tumor cell lines originating from different human tissues. Detailed mechanistic studies revealed that MT7 induced typical gene expression profiles related to mitotic arrest shown by cDNA microarray assays. Connectivity Map was used to analyze the microarray data and suggested that MT7 was possibly a tubulin inhibitor due to its similar gene expression profiles to those of the known tubulin inhibitors demecolcine, celastrol and paclitaxel. Further analyses demonstrated that MT7 inhibited the polymerization of cellular microtubules although it was not detectable to bind to purified tubulin. The inhibition of cellular tubulin polymerization by MT7 subsequently resulted in the disruption of mitotic spindle formation, activated the spindle assembly checkpoint and consequently arrested the cells at mitosis. The persistent mitotic arrest by the treatment with MT7 led the tested tumor cells to apoptosis. Our data indicate that MT7 could act as a promising lead for further optimization, in hopes of developing new anticancer therapeutics and being used to probe the biology of mitosis, specifically, the mode of interference with microtubules.
Literature
2.
go back to reference Castedo M, Perfettini J-L, Roumier T et al (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837CrossRefPubMed Castedo M, Perfettini J-L, Roumier T et al (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837CrossRefPubMed
3.
go back to reference Wood KW (2001) Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol. 1:370–377CrossRefPubMed Wood KW (2001) Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol. 1:370–377CrossRefPubMed
4.
go back to reference Jackson JR, Patrick DR, Dar MM et al (2007) Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 7:107–117CrossRefPubMed Jackson JR, Patrick DR, Dar MM et al (2007) Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 7:107–117CrossRefPubMed
5.
go back to reference Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265CrossRefPubMed Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265CrossRefPubMed
6.
go back to reference Pinguet F, Mavel S, Galtier C et al (1999) Synthesis and cytotoxicity of novel pyrido[1, 2-e]purines on multidrug resistant human MCF7 cells. Pharmazie 54:876–878PubMed Pinguet F, Mavel S, Galtier C et al (1999) Synthesis and cytotoxicity of novel pyrido[1, 2-e]purines on multidrug resistant human MCF7 cells. Pharmazie 54:876–878PubMed
7.
go back to reference Adhikary PF, Das SK, Hess BA Jr (1976) Synthesis and antihypertensive activity of some imidazoindole derivatives. J Med Chem 19:1352–1354CrossRefPubMed Adhikary PF, Das SK, Hess BA Jr (1976) Synthesis and antihypertensive activity of some imidazoindole derivatives. J Med Chem 19:1352–1354CrossRefPubMed
8.
go back to reference Meng T, Zhang Z, Hu D et al (2007) Three-component combinatorial synthesis of a substituted 6H-pyrido[2′, 1′:2, 3]imidazo- [4, 5-c]isoquinolin-5(6H)-one library with cytotoxic activity. J Comb Chem 9:739–741CrossRefPubMed Meng T, Zhang Z, Hu D et al (2007) Three-component combinatorial synthesis of a substituted 6H-pyrido[2′, 1′:2, 3]imidazo- [4, 5-c]isoquinolin-5(6H)-one library with cytotoxic activity. J Comb Chem 9:739–741CrossRefPubMed
9.
go back to reference Ditchfield C, Johnson VL, Tighe A et al (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol. 161:267–280CrossRefPubMed Ditchfield C, Johnson VL, Tighe A et al (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol. 161:267–280CrossRefPubMed
10.
go back to reference Andreassen PR, Skoufias DA, Margolis RL (2004) Analysis of the spindle-assembly checkpoint in HeLa cells. Methods Mol Biol 281:213–225PubMed Andreassen PR, Skoufias DA, Margolis RL (2004) Analysis of the spindle-assembly checkpoint in HeLa cells. Methods Mol Biol 281:213–225PubMed
11.
go back to reference Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A 70:765–768CrossRefPubMed Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A 70:765–768CrossRefPubMed
12.
go back to reference Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550CrossRefPubMed Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550CrossRefPubMed
13.
go back to reference Mootha VK, Lindgren CM, Eriksson K-F et al (2003) PGC-1[alpha]-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273CrossRefPubMed Mootha VK, Lindgren CM, Eriksson K-F et al (2003) PGC-1[alpha]-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273CrossRefPubMed
14.
go back to reference Lamb J, Crawford ED, Peck D et al (2006) The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science 313:1929–1935CrossRefPubMed Lamb J, Crawford ED, Peck D et al (2006) The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science 313:1929–1935CrossRefPubMed
15.
16.
go back to reference Yamashita Y, Fujii N, Murakata C et al (1992) Induction of mammalian DNA topoisomerase I mediated DNA cleavage by antitumor indolocarbazole derivatives. Biochemistry 31:12069–12075CrossRefPubMed Yamashita Y, Fujii N, Murakata C et al (1992) Induction of mammalian DNA topoisomerase I mediated DNA cleavage by antitumor indolocarbazole derivatives. Biochemistry 31:12069–12075CrossRefPubMed
17.
go back to reference Meng LH, Zhang JS, Ding J (2001) Salvicine, a novel DNA topoisomerase II inhibitor, exerting its effects by trapping enzyme-DNA cleavage complexes. Biochem Pharmacol 62:733–741CrossRefPubMed Meng LH, Zhang JS, Ding J (2001) Salvicine, a novel DNA topoisomerase II inhibitor, exerting its effects by trapping enzyme-DNA cleavage complexes. Biochem Pharmacol 62:733–741CrossRefPubMed
18.
go back to reference Qin Y, Meng L, Hu C et al (2007) Gambogic acid inhibits the catalytic activity of human topoisomerase IIalpha by binding to its ATPase domain. Mol Cancer Ther 6:2429–2440CrossRefPubMed Qin Y, Meng L, Hu C et al (2007) Gambogic acid inhibits the catalytic activity of human topoisomerase IIalpha by binding to its ATPase domain. Mol Cancer Ther 6:2429–2440CrossRefPubMed
19.
go back to reference Tanabe K, Ikegami Y, Ishida R et al (1991) Inhibition of topoisomerase II by antitumor agents bis(2, 6-dioxopiperazine) derivatives. Cancer Res 51:4903–4908PubMed Tanabe K, Ikegami Y, Ishida R et al (1991) Inhibition of topoisomerase II by antitumor agents bis(2, 6-dioxopiperazine) derivatives. Cancer Res 51:4903–4908PubMed
20.
go back to reference Bruce Alberts AJ, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular Biology of the Cell. Garland Science, New York Bruce Alberts AJ, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular Biology of the Cell. Garland Science, New York
21.
go back to reference Pagano M, Pepperkok R, Verde F et al (1992) Cyclin A is required at two points in the human cell cycle. EMBO J 11:961–971PubMed Pagano M, Pepperkok R, Verde F et al (1992) Cyclin A is required at two points in the human cell cycle. EMBO J 11:961–971PubMed
22.
go back to reference Clute P, Pines J (1999) Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1:82–87CrossRefPubMed Clute P, Pines J (1999) Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1:82–87CrossRefPubMed
23.
go back to reference di Bernardo D, Thompson MJ, Gardner TS et al (2005) Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 23:377–383CrossRefPubMed di Bernardo D, Thompson MJ, Gardner TS et al (2005) Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 23:377–383CrossRefPubMed
24.
go back to reference Cho RJ, Campbell MJ, Winzeler EA et al (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2:65–73CrossRefPubMed Cho RJ, Campbell MJ, Winzeler EA et al (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2:65–73CrossRefPubMed
25.
go back to reference Whitfield ML, Sherlock G, Saldanha AJ et al (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000CrossRefPubMed Whitfield ML, Sherlock G, Saldanha AJ et al (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000CrossRefPubMed
26.
go back to reference Jiang Y, Liu M, Spencer CA et al (2004) Involvement of transcription termination factor 2 in mitotic repression of transcription elongation. Mol Cell 14:375–385CrossRefPubMed Jiang Y, Liu M, Spencer CA et al (2004) Involvement of transcription termination factor 2 in mitotic repression of transcription elongation. Mol Cell 14:375–385CrossRefPubMed
27.
go back to reference Parsons GG, Spencer CA (1997) Mitotic repression of RNA polymerase II transcription is accompanied by release of transcription elongation complexes. Mol Cell Biol 17:5791–5802PubMed Parsons GG, Spencer CA (1997) Mitotic repression of RNA polymerase II transcription is accompanied by release of transcription elongation complexes. Mol Cell Biol 17:5791–5802PubMed
28.
go back to reference Gottesfeld JM, Forbes DJ (1997) Mitotic repression of the transcriptional machinery. Trends Biochem Sci 22:197–202CrossRefPubMed Gottesfeld JM, Forbes DJ (1997) Mitotic repression of the transcriptional machinery. Trends Biochem Sci 22:197–202CrossRefPubMed
29.
go back to reference Hartl P, Gottesfeld J, Forbes DJ (1993) Mitotic repression of transcription in vitro. J Cell Biol 120:613–624CrossRefPubMed Hartl P, Gottesfeld J, Forbes DJ (1993) Mitotic repression of transcription in vitro. J Cell Biol 120:613–624CrossRefPubMed
30.
go back to reference Spencer CA, Kruhlak MJ, Jenkins HL et al (2000) Mitotic transcription repression in vivo in the absence of nucleosomal chromatin condensation. J Cell Biol 150:13–26CrossRefPubMed Spencer CA, Kruhlak MJ, Jenkins HL et al (2000) Mitotic transcription repression in vivo in the absence of nucleosomal chromatin condensation. J Cell Biol 150:13–26CrossRefPubMed
31.
go back to reference Vivanco I, Palaskas N, Tran C et al (2007) Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 11:555–569CrossRefPubMed Vivanco I, Palaskas N, Tran C et al (2007) Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 11:555–569CrossRefPubMed
32.
go back to reference Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342CrossRefPubMed Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342CrossRefPubMed
33.
go back to reference Cabral F, Sobel ME, Gottesman MM (1980) CHO mutants resistant to colchicine, colcemid or griseofulvin have an altered beta-tubulin. Cell 20:29–36CrossRefPubMed Cabral F, Sobel ME, Gottesman MM (1980) CHO mutants resistant to colchicine, colcemid or griseofulvin have an altered beta-tubulin. Cell 20:29–36CrossRefPubMed
34.
go back to reference Banerjee AC, Bhattacharyya B (1979) Colcemid and colchicine binding to tubulin. Similarity and dissimilarity. FEBS Lett 99:333–336CrossRefPubMed Banerjee AC, Bhattacharyya B (1979) Colcemid and colchicine binding to tubulin. Similarity and dissimilarity. FEBS Lett 99:333–336CrossRefPubMed
35.
go back to reference Morita H, Hirasawa Y, Muto A et al (2008) Antimitotic quinoid triterpenes from Maytenus chuchuhuasca. Bioorg Med Chem Lett 18:1050–1052CrossRefPubMed Morita H, Hirasawa Y, Muto A et al (2008) Antimitotic quinoid triterpenes from Maytenus chuchuhuasca. Bioorg Med Chem Lett 18:1050–1052CrossRefPubMed
36.
go back to reference Peters NT, Logan KO, Miller AC et al (2007) Phospholipase D signaling regulates microtubule organization in the fucoid alga Silvetia compressa. Plant Cell Physiol 48:1764–1774CrossRefPubMed Peters NT, Logan KO, Miller AC et al (2007) Phospholipase D signaling regulates microtubule organization in the fucoid alga Silvetia compressa. Plant Cell Physiol 48:1764–1774CrossRefPubMed
37.
go back to reference Dhonukshe P, Laxalt AM, Goedhart J et al (2003) Phospholipase D Activation Correlates with Microtubule Reorganization in Living Plant Cells. Plant Cell 15:2666–2679CrossRefPubMed Dhonukshe P, Laxalt AM, Goedhart J et al (2003) Phospholipase D Activation Correlates with Microtubule Reorganization in Living Plant Cells. Plant Cell 15:2666–2679CrossRefPubMed
38.
go back to reference Kadura S, Sazer S (2005) SAC-ing mitotic errors: how the spindle assembly checkpoint (SAC) plays defense against chromosome mis-segregation. Cell Motil Cytoskeleton 61:145–160CrossRefPubMed Kadura S, Sazer S (2005) SAC-ing mitotic errors: how the spindle assembly checkpoint (SAC) plays defense against chromosome mis-segregation. Cell Motil Cytoskeleton 61:145–160CrossRefPubMed
39.
go back to reference Yamada HY, Gorbsky GJ (2006) Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Mol Cancer Ther 5:2963–2969CrossRefPubMed Yamada HY, Gorbsky GJ (2006) Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Mol Cancer Ther 5:2963–2969CrossRefPubMed
40.
go back to reference Rieder CL, Maiato H (2004) Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7:637–651CrossRefPubMed Rieder CL, Maiato H (2004) Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7:637–651CrossRefPubMed
41.
go back to reference Steegmaier M (2005) BI 2536, a potent and highly selective inhibitor of Polo-like kinase 1 (Plk1), induces mitotic arrest and apoptosis in a broad spectrum of tumor cell lines. Clin. Cancer Res. 11:9147 Steegmaier M (2005) BI 2536, a potent and highly selective inhibitor of Polo-like kinase 1 (Plk1), induces mitotic arrest and apoptosis in a broad spectrum of tumor cell lines. Clin. Cancer Res. 11:9147
42.
go back to reference Mayer TU (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286:971–974CrossRefPubMed Mayer TU (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286:971–974CrossRefPubMed
43.
go back to reference Tao W (2005) Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell 8:49–59CrossRefPubMed Tao W (2005) Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell 8:49–59CrossRefPubMed
44.
go back to reference Keen N, Taylor S (2004) Aurora-kinase inhibitors as anticancer agents. Nature Rev. Cancer 4:927–936CrossRef Keen N, Taylor S (2004) Aurora-kinase inhibitors as anticancer agents. Nature Rev. Cancer 4:927–936CrossRef
45.
go back to reference Soncini C, Carpinelli P, Gianellini L et al (2006) PHA-680632, a novel Aurora kinase inhibitor with potent antitumoral activity. Clin Cancer Res 12:4080–4089CrossRefPubMed Soncini C, Carpinelli P, Gianellini L et al (2006) PHA-680632, a novel Aurora kinase inhibitor with potent antitumoral activity. Clin Cancer Res 12:4080–4089CrossRefPubMed
46.
go back to reference Donaldson MM, Tavares AA, Hagan IM et al (2001) The mitotic roles of Polo-like kinase. J Cell Sci 114:2357–2358PubMed Donaldson MM, Tavares AA, Hagan IM et al (2001) The mitotic roles of Polo-like kinase. J Cell Sci 114:2357–2358PubMed
47.
48.
go back to reference Huang M, Gao H, Chen Y et al (2007) Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clin Cancer Res 13:1298–1307CrossRefPubMed Huang M, Gao H, Chen Y et al (2007) Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clin Cancer Res 13:1298–1307CrossRefPubMed
49.
go back to reference Bhat KM, Setaluri V (2007) Microtubule-associated proteins as targets in cancer chemotherapy. Clin Cancer Res 13:2849–2854CrossRefPubMed Bhat KM, Setaluri V (2007) Microtubule-associated proteins as targets in cancer chemotherapy. Clin Cancer Res 13:2849–2854CrossRefPubMed
50.
go back to reference Charbaut E, Curmi PA, Ozon S et al (2001) Stathmin Family Proteins Display Specific Molecular and Tubulin Binding Properties. J. Biol. Chem. 276:16146–16154CrossRefPubMed Charbaut E, Curmi PA, Ozon S et al (2001) Stathmin Family Proteins Display Specific Molecular and Tubulin Binding Properties. J. Biol. Chem. 276:16146–16154CrossRefPubMed
51.
go back to reference Wignall SM, Gray NS, Chang YT et al (2004) Identification of a novel protein regulating microtubule stability through a chemical approach. Chem Biol 11:135–146PubMed Wignall SM, Gray NS, Chang YT et al (2004) Identification of a novel protein regulating microtubule stability through a chemical approach. Chem Biol 11:135–146PubMed
52.
go back to reference Fourest-Lieuvin A, Peris L, Gache V et al (2006) Microtubule Regulation in Mitosis: Tubulin Phosphorylation by the Cyclin-dependent Kinase Cdk1. Mol Biol Cell 17:1041–1050CrossRefPubMed Fourest-Lieuvin A, Peris L, Gache V et al (2006) Microtubule Regulation in Mitosis: Tubulin Phosphorylation by the Cyclin-dependent Kinase Cdk1. Mol Biol Cell 17:1041–1050CrossRefPubMed
53.
go back to reference Matsuyama A, Shimazu T, Sumida Y et al (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 21:6820–6831CrossRefPubMed Matsuyama A, Shimazu T, Sumida Y et al (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 21:6820–6831CrossRefPubMed
54.
go back to reference Zhang Y, Li N, Caron C et al (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22:1168–1179CrossRefPubMed Zhang Y, Li N, Caron C et al (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22:1168–1179CrossRefPubMed
55.
go back to reference Schiff PB, Horwitz SB (1981) Taxol assembles tubulin in the absence of exogenous guanosine 5′-triphosphate or microtubule-associated proteins. Biochemistry 20:3247–3252CrossRefPubMed Schiff PB, Horwitz SB (1981) Taxol assembles tubulin in the absence of exogenous guanosine 5′-triphosphate or microtubule-associated proteins. Biochemistry 20:3247–3252CrossRefPubMed
56.
go back to reference Edsall AB, Mohanakrishnan AK, Yang D et al (2004) Effects of Altering the Electronics of 2-Methoxyestradiol on Cell Proliferation, on Cytotoxicity in Human Cancer Cell Cultures, and on Tubulin Polymerization. J Med Chem 47:5126–5139CrossRefPubMed Edsall AB, Mohanakrishnan AK, Yang D et al (2004) Effects of Altering the Electronics of 2-Methoxyestradiol on Cell Proliferation, on Cytotoxicity in Human Cancer Cell Cultures, and on Tubulin Polymerization. J Med Chem 47:5126–5139CrossRefPubMed
Metadata
Title
MT7, a novel compound from a combinatorial library, arrests mitosis via inhibiting the polymerization of microtubules
Authors
Zhixiang Zhang
Tao Meng
Jingxue He
Ming Li
Lin-Jiang Tong
Bing Xiong
Liping Lin
Jingkang Shen
Ze-Hong Miao
Jian Ding
Publication date
01-12-2010
Publisher
Springer US
Published in
Investigational New Drugs / Issue 6/2010
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-009-9303-z

Other articles of this Issue 6/2010

Investigational New Drugs 6/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine