Skip to main content
Top
Published in: European Spine Journal 5/2018

01-05-2018 | Original Article

MRI kinematic analysis of T1 sagittal motion between cervical flexion and extension positions in 145 patients

Authors: Koji Tamai, Zorica Buser, Permsak Paholpak, Kittipong Sessumpun, Patrick C. Hsieh, Hiroaki Nakamura, Jeffrey C. Wang

Published in: European Spine Journal | Issue 5/2018

Login to get access

Abstract

Purpose

Although the T1 vertebra is considered as an important factor of cervical balance, little is known about its motion between flexion and extension. The purpose of present study was to analyze the T1 sagittal motion using kinematic magnetic resonance imaging (kMRI), and to identify factors that relate to T1 sagittal motion.

Methods

We retrospectively analyzed 145 kMR images taken in weight-bearing neutral, flexion and extension positions. Cervical balance parameters were evaluated in each position. The degree of T1 sagittal motion was defined as [(T1 slope at extension) − (T1 slope at flexion)]. All patients were divided into three groups: Positive group (T1 followed the head motion, T1 sagittal motion > 5°), Stable group (5 ≥, ≥ − 5) and Negative group (T1 moved in the opposite direction from the head motion, > − 5). The groups were compared and multivariate logistic regression analysis was calculated.

Results

There were 57 (40%) patients in the positive, 56 (39%) in the stable and 32 (22%) in the negative group. The positive group had the largest C2–7 sagittal vertical axis in flexion (p < 0.001) and the shortest in the extension (p = 0.023). Similar trends were seen in cranial tilt and cervical tilt. The value of T1 height < 27 mm was a significant independent factor for the negative group (p = 0.008, adjusted odds ratio = 5.958).

Conclusion

Based on T1 sagittal motion, 40% of the patients were classified in positive group (the T1 vertebra followed the head motion in flexion and extension), and 20% were classified in the negative group (the T1 vertebra moved in the opposite direction from the head motion). T1 height < 27 mm was a potential predictor of negative group.
Literature
1.
go back to reference Tang JA, Scheer JK, Smith JS, Deviren V, Bess S, Hart RA, Lafage V, Shaffrey CI, Schwab F, Ames CP, ISSG (2012) The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery. Neurosurgery 71:662–669. 10.1227/NEU.0b013e31826100c9 (discussion 669) CrossRefPubMed Tang JA, Scheer JK, Smith JS, Deviren V, Bess S, Hart RA, Lafage V, Shaffrey CI, Schwab F, Ames CP, ISSG (2012) The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery. Neurosurgery 71:662–669. 10.​1227/​NEU.​0b013e31826100c9​ (discussion 669) CrossRefPubMed
2.
go back to reference Sakai K, Yoshii T, Hirai T, Arai Y, Torigoe I, Tomori M, Sato H, Okawa A (2016) Cervical sagittal imbalance is a predictor of kyphotic deformity after laminoplasty in cervical spondylotic myelopathy patients without preoperative kyphotic alignment. Spine (Phila Pa 1976) 41:299–305. 10.1097/BRS.0000000000001206 CrossRef Sakai K, Yoshii T, Hirai T, Arai Y, Torigoe I, Tomori M, Sato H, Okawa A (2016) Cervical sagittal imbalance is a predictor of kyphotic deformity after laminoplasty in cervical spondylotic myelopathy patients without preoperative kyphotic alignment. Spine (Phila Pa 1976) 41:299–305. 10.​1097/​BRS.​0000000000001206​ CrossRef
3.
go back to reference Ames CP, Blondel B, Scheer JK, Schwab FJ, Le Huec JC, Massicotte EM, Patel AA, Traynelis VC, Kim HJ, Shaffrey CI, Smith JS, Lafage V (2013) Cervical radiographical alignment: comprehensive assessment techniques and potential importance in cervical myelopathy. Spine (Phila Pa 1976) 38:S149–S160. 10.1097/BRS.0b013e3182a7f449 CrossRef Ames CP, Blondel B, Scheer JK, Schwab FJ, Le Huec JC, Massicotte EM, Patel AA, Traynelis VC, Kim HJ, Shaffrey CI, Smith JS, Lafage V (2013) Cervical radiographical alignment: comprehensive assessment techniques and potential importance in cervical myelopathy. Spine (Phila Pa 1976) 38:S149–S160. 10.​1097/​BRS.​0b013e3182a7f449​ CrossRef
4.
go back to reference Weng C, Wang J, Tuchman A, Wang J, Fu C, Hsieh PC, Buser Z, Wang JC (2016) Influence of T1 slope on the cervical sagittal balance in degenerative cervical spine: an analysis using kinematic MRI. Spine (Phila Pa 1976) 41:185–190. 10.1097/BRS.0000000000001353 CrossRef Weng C, Wang J, Tuchman A, Wang J, Fu C, Hsieh PC, Buser Z, Wang JC (2016) Influence of T1 slope on the cervical sagittal balance in degenerative cervical spine: an analysis using kinematic MRI. Spine (Phila Pa 1976) 41:185–190. 10.​1097/​BRS.​0000000000001353​ CrossRef
6.
go back to reference Cho JH, Ha JK, Kim DG, Song KY, Kim YT, Hwang CJ, Lee CS, Lee DH (2014) Does preoperative T1 slope affect radiological and functional outcomes after cervical laminoplasty? Spine (Phila Pa 1976) 39:E1575–E1581. 10.1097/BRS.0000000000000614 CrossRef Cho JH, Ha JK, Kim DG, Song KY, Kim YT, Hwang CJ, Lee CS, Lee DH (2014) Does preoperative T1 slope affect radiological and functional outcomes after cervical laminoplasty? Spine (Phila Pa 1976) 39:E1575–E1581. 10.​1097/​BRS.​0000000000000614​ CrossRef
8.
go back to reference Oe S, Yamato Y, Togawa D, Kurosu K, Mihara Y, Banno T, Yasuda T, Kobayashi S, Hasegawa T, Matsuyama Y (2016) Preoperative T1 slope more than 40 degrees as a risk factor of correction loss in patients with adult spinal deformity. Spine (Phila Pa 1976) 41:E1168–E1176. 10.1097/BRS.0000000000001578 CrossRef Oe S, Yamato Y, Togawa D, Kurosu K, Mihara Y, Banno T, Yasuda T, Kobayashi S, Hasegawa T, Matsuyama Y (2016) Preoperative T1 slope more than 40 degrees as a risk factor of correction loss in patients with adult spinal deformity. Spine (Phila Pa 1976) 41:E1168–E1176. 10.​1097/​BRS.​0000000000001578​ CrossRef
9.
11.
go back to reference Singhatanadgige W, Kang DG, Luksanapruksa P, Peters C, Riew KD (2016) Correlation and reliability of cervical sagittal alignment parameters between lateral cervical radiograph and lateral whole-body EOS stereoradiograph. Global Spine J 6:548–554. 10.1055/s-0035-1569462 CrossRefPubMed Singhatanadgige W, Kang DG, Luksanapruksa P, Peters C, Riew KD (2016) Correlation and reliability of cervical sagittal alignment parameters between lateral cervical radiograph and lateral whole-body EOS stereoradiograph. Global Spine J 6:548–554. 10.​1055/​s-0035-1569462 CrossRefPubMed
12.
go back to reference Jun HS, Chang IB, Song JH, Kim TH, Park MS, Kim SW, Oh JK (2014) Is it possible to evaluate the parameters of cervical sagittal alignment on cervical computed tomographic scans? Spine (Phila Pa 1976) 39:E630–E636. 10.1097/BRS.0000000000000281 CrossRef Jun HS, Chang IB, Song JH, Kim TH, Park MS, Kim SW, Oh JK (2014) Is it possible to evaluate the parameters of cervical sagittal alignment on cervical computed tomographic scans? Spine (Phila Pa 1976) 39:E630–E636. 10.​1097/​BRS.​0000000000000281​ CrossRef
13.
go back to reference Suzuki A, Daubs MD, Inoue H, Hayashi T, Aghdasi B, Montgomery SR, Ruangchainikom M, Hu X, Lee CJ, Wang CJ, Wang BJ, Nakamura H (2013) Prevalence and motion characteristics of degenerative cervical spondylolisthesis in the symptomatic adult. Spine (Phila Pa 1976) 38:E1115–E1120. 10.1097/BRS.0b013e31829b1487 CrossRef Suzuki A, Daubs MD, Inoue H, Hayashi T, Aghdasi B, Montgomery SR, Ruangchainikom M, Hu X, Lee CJ, Wang CJ, Wang BJ, Nakamura H (2013) Prevalence and motion characteristics of degenerative cervical spondylolisthesis in the symptomatic adult. Spine (Phila Pa 1976) 38:E1115–E1120. 10.​1097/​BRS.​0b013e31829b1487​ CrossRef
14.
16.
go back to reference Cohen J (1962) The statistical power of abnormal-social psychological research: a review. J Abnorm Soc Psychol 65:145–153CrossRefPubMed Cohen J (1962) The statistical power of abnormal-social psychological research: a review. J Abnorm Soc Psychol 65:145–153CrossRefPubMed
17.
go back to reference Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878CrossRef Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878CrossRef
19.
20.
21.
go back to reference Haberman SJ (1973) The analysis of residuals in cross-classified tables. Biometrics 29:205–220CrossRef Haberman SJ (1973) The analysis of residuals in cross-classified tables. Biometrics 29:205–220CrossRef
23.
go back to reference Oe S, Togawa D, Nakai K, Yamada T, Arima H, Banno T, Yasuda T, Kobayasi S, Yamato Y, Hasegawa T, Yoshida G, Matsuyama Y (2015) The influence of age and sex on cervical spinal alignment among volunteers aged over 50. Spine (Phila Pa 1976) 40:1487–1494. 10.1097/BRS.0000000000001071 CrossRef Oe S, Togawa D, Nakai K, Yamada T, Arima H, Banno T, Yasuda T, Kobayasi S, Yamato Y, Hasegawa T, Yoshida G, Matsuyama Y (2015) The influence of age and sex on cervical spinal alignment among volunteers aged over 50. Spine (Phila Pa 1976) 40:1487–1494. 10.​1097/​BRS.​0000000000001071​ CrossRef
Metadata
Title
MRI kinematic analysis of T1 sagittal motion between cervical flexion and extension positions in 145 patients
Authors
Koji Tamai
Zorica Buser
Permsak Paholpak
Kittipong Sessumpun
Patrick C. Hsieh
Hiroaki Nakamura
Jeffrey C. Wang
Publication date
01-05-2018
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 5/2018
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-017-5385-z

Other articles of this Issue 5/2018

European Spine Journal 5/2018 Go to the issue