Skip to main content
Top
Published in: Pediatric Radiology 5/2010

01-05-2010 | Technical Innovation

MR urography in children. Part 2: how to use ImageJ MR urography processing software

Authors: Pierre-Hugues Vivier, Michael Dolores, Melissa Taylor, Jean-Nicolas Dacher

Published in: Pediatric Radiology | Issue 5/2010

Login to get access

Abstract

MR urography (MRU) is an emerging technique particularly useful in paediatric uroradiology. The most common indication is the investigation of hydronephrosis. Combined static and dynamic contrast-enhanced MRU (DCE-MRU) provides both morphological and functional information in a single examination. However, specific post-processing must be performed and to our knowledge, dedicated software is not available in conventional workstations. Investigators involved in MRU classically use homemade software that is not freely accessible. For these reasons, we have developed a software program that is freely downloadable on the National Institute of Health (NIH) website. We report and describe in this study the features of this software program.
Literature
1.
go back to reference Avni FE, Nicaise N, Hall M et al (2001) The role of MR imaging for the assessment of complicated duplex kidneys in children: preliminary report. Pediatr Radiol 31:215–223CrossRefPubMed Avni FE, Nicaise N, Hall M et al (2001) The role of MR imaging for the assessment of complicated duplex kidneys in children: preliminary report. Pediatr Radiol 31:215–223CrossRefPubMed
2.
go back to reference Grattan-Smith JD, Perez-Bayfield MR, Jones RA et al (2003) MR imaging of kidneys: functional evaluation using F-15 perfusion imaging. Pediatr Radiol 33:293–304PubMed Grattan-Smith JD, Perez-Bayfield MR, Jones RA et al (2003) MR imaging of kidneys: functional evaluation using F-15 perfusion imaging. Pediatr Radiol 33:293–304PubMed
3.
go back to reference Riccabona M, Fritz GA, Schollnast H et al (2005) Hydronephrotic kidney: pediatric three-dimensional US for relative renal size assessment—initial experience. Radiology 236:276–283CrossRefPubMed Riccabona M, Fritz GA, Schollnast H et al (2005) Hydronephrotic kidney: pediatric three-dimensional US for relative renal size assessment—initial experience. Radiology 236:276–283CrossRefPubMed
4.
go back to reference van den Dool SW, Wasser MN, de Fijter JW et al (2005) Functional renal volume: quantitative analysis at gadolinium-enhanced MR angiography—feasibility study in healthy potential kidney donors. Radiology 236:189–195CrossRefPubMed van den Dool SW, Wasser MN, de Fijter JW et al (2005) Functional renal volume: quantitative analysis at gadolinium-enhanced MR angiography—feasibility study in healthy potential kidney donors. Radiology 236:189–195CrossRefPubMed
5.
go back to reference Vivier PH, Dolores M, Gardin I et al (2008) In vitro assessment of a 3D segmentation algorithm based on the belief functions theory in calculating renal volumes by MRI. AJR 191:W127–134CrossRefPubMed Vivier PH, Dolores M, Gardin I et al (2008) In vitro assessment of a 3D segmentation algorithm based on the belief functions theory in calculating renal volumes by MRI. AJR 191:W127–134CrossRefPubMed
6.
go back to reference Grattan-Smith JD, Little SB, Jones RA (2008) MR urography evaluation of obstructive uropathy. Pediatr Radiol 38(Suppl 1):S49–69CrossRefPubMed Grattan-Smith JD, Little SB, Jones RA (2008) MR urography evaluation of obstructive uropathy. Pediatr Radiol 38(Suppl 1):S49–69CrossRefPubMed
7.
go back to reference Lee VS, Rusinek H, Noz ME et al (2003) Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience. Radiology 227:289–294CrossRefPubMed Lee VS, Rusinek H, Noz ME et al (2003) Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience. Radiology 227:289–294CrossRefPubMed
8.
go back to reference Bokacheva L, Rusinek H, Chen Q et al (2007) Quantitative determination of Gd-DTPA concentration in T1-weighted MR renography studies. Magn Reson Med 57:1012–1018CrossRefPubMed Bokacheva L, Rusinek H, Chen Q et al (2007) Quantitative determination of Gd-DTPA concentration in T1-weighted MR renography studies. Magn Reson Med 57:1012–1018CrossRefPubMed
9.
go back to reference Taylor J, Summers PE, Keevil SF et al (1997) Magnetic resonance renography: optimisation of pulse sequence parameters and Gd-DTPA dose, and comparison with radionuclide renography. Magn Reson Imaging 15:637–649CrossRefPubMed Taylor J, Summers PE, Keevil SF et al (1997) Magnetic resonance renography: optimisation of pulse sequence parameters and Gd-DTPA dose, and comparison with radionuclide renography. Magn Reson Imaging 15:637–649CrossRefPubMed
10.
go back to reference Teh HS, Ang ES, Wong WC et al (2003) MR renography using a dynamic gradient-echo sequence and low-dose gadopentetate dimeglumine as an alternative to radionuclide renography. AJR 181:441–450PubMed Teh HS, Ang ES, Wong WC et al (2003) MR renography using a dynamic gradient-echo sequence and low-dose gadopentetate dimeglumine as an alternative to radionuclide renography. AJR 181:441–450PubMed
11.
go back to reference Rohrschneider WK, Becker K, Hoffend J et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. II. Findings in experimentally induced ureteric stenosis. Pediatr Radiol 30:523–532CrossRefPubMed Rohrschneider WK, Becker K, Hoffend J et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. II. Findings in experimentally induced ureteric stenosis. Pediatr Radiol 30:523–532CrossRefPubMed
12.
go back to reference Rohrschneider WK, Hoffend J, Becker K et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. I. Evaluation of the normal status in an animal model. Pediatr Radiol 30:511–522CrossRefPubMed Rohrschneider WK, Hoffend J, Becker K et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. I. Evaluation of the normal status in an animal model. Pediatr Radiol 30:511–522CrossRefPubMed
13.
go back to reference Rohrschneider WK, Haufe S, Wiesel M et al (2002) Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static-dynamic MR urography: findings in kidneys with a single collecting system. Radiology 224:683–694CrossRefPubMed Rohrschneider WK, Haufe S, Wiesel M et al (2002) Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static-dynamic MR urography: findings in kidneys with a single collecting system. Radiology 224:683–694CrossRefPubMed
14.
go back to reference Gordon I, Colarinha P, Fettich J et al (2001) Guidelines for standard and diuretic renography in children. Eur J Nucl Med 28:BP21-30PubMed Gordon I, Colarinha P, Fettich J et al (2001) Guidelines for standard and diuretic renography in children. Eur J Nucl Med 28:BP21-30PubMed
15.
go back to reference O’Reilly PH (2003) Standardization of the renogram technique for investigating the dilated upper urinary tract and assessing the results of surgery. BJU Int 91:239–243CrossRefPubMed O’Reilly PH (2003) Standardization of the renogram technique for investigating the dilated upper urinary tract and assessing the results of surgery. BJU Int 91:239–243CrossRefPubMed
16.
go back to reference Prigent A, Cosgriff P, Gates GF et al (1999) Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med 29:146–159CrossRefPubMed Prigent A, Cosgriff P, Gates GF et al (1999) Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med 29:146–159CrossRefPubMed
17.
go back to reference Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7PubMed Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7PubMed
18.
go back to reference Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging 18:714–725CrossRefPubMed Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging 18:714–725CrossRefPubMed
19.
go back to reference Zhang JL, Rusinek H, Bokacheva L et al (2009) Use of cardiac output to improve measurement of input function in quantitative dynamic contrast-enhanced MRI. J Magn Reson Imaging 30:656–665CrossRefPubMed Zhang JL, Rusinek H, Bokacheva L et al (2009) Use of cardiac output to improve measurement of input function in quantitative dynamic contrast-enhanced MRI. J Magn Reson Imaging 30:656–665CrossRefPubMed
20.
go back to reference Attenberger UI, Sourbron SP, Notohamiprodjo M et al (2008) MR-based semi-automated quantification of renal functional parameters with a two-compartment model—an interobserver analysis. Eur J Radiol 65:59–65CrossRefPubMed Attenberger UI, Sourbron SP, Notohamiprodjo M et al (2008) MR-based semi-automated quantification of renal functional parameters with a two-compartment model—an interobserver analysis. Eur J Radiol 65:59–65CrossRefPubMed
21.
go back to reference Mendichovszky IA, Cutajar M, Gordon I (2008) Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study. Eur J Radiol 71:576–581CrossRefPubMed Mendichovszky IA, Cutajar M, Gordon I (2008) Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study. Eur J Radiol 71:576–581CrossRefPubMed
22.
go back to reference Buckley DL, Shurrab AE, Cheung CM et al (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123CrossRefPubMed Buckley DL, Shurrab AE, Cheung CM et al (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123CrossRefPubMed
23.
go back to reference Mendichovszky I, Pedersen M, Frokiaer J et al (2008) How accurate is dynamic contrast-enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imaging 27:925–931CrossRefPubMed Mendichovszky I, Pedersen M, Frokiaer J et al (2008) How accurate is dynamic contrast-enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imaging 27:925–931CrossRefPubMed
24.
go back to reference Koff SA (1987) Problematic ureteropelvic junction obstruction. J Urol 138:390PubMed Koff SA (1987) Problematic ureteropelvic junction obstruction. J Urol 138:390PubMed
25.
go back to reference Durand E, Blaufox MD, Britton KE et al (2008) International Scientific Committee of Radionuclides in Nephrourology (ISCORN) consensus on renal transit time measurements. Semin Nucl Med 38:82–102CrossRefPubMed Durand E, Blaufox MD, Britton KE et al (2008) International Scientific Committee of Radionuclides in Nephrourology (ISCORN) consensus on renal transit time measurements. Semin Nucl Med 38:82–102CrossRefPubMed
26.
go back to reference O’Reilly PH, Lawson RS, Shields RA et al (1979) Idiopathic hydronephrosis—the diuresis renogram: a new non-invasive method of assessing equivocal pelvioureteral junction obstruction. J Urol 121:153–155PubMed O’Reilly PH, Lawson RS, Shields RA et al (1979) Idiopathic hydronephrosis—the diuresis renogram: a new non-invasive method of assessing equivocal pelvioureteral junction obstruction. J Urol 121:153–155PubMed
27.
go back to reference Vivier PH, Blondiaux E, Dolores M et al (2009) Functional MR urography in children. J Radiol 90:11–19CrossRefPubMed Vivier PH, Blondiaux E, Dolores M et al (2009) Functional MR urography in children. J Radiol 90:11–19CrossRefPubMed
28.
go back to reference Amarante J, Anderson PJ, Gordon I (2003) Impaired drainage on diuretic renography using half-time or pelvic excretion efficiency is not a sign of obstruction in children with a prenatal diagnosis of unilateral renal pelvic dilatation. J Urol 169:1828–1831CrossRefPubMed Amarante J, Anderson PJ, Gordon I (2003) Impaired drainage on diuretic renography using half-time or pelvic excretion efficiency is not a sign of obstruction in children with a prenatal diagnosis of unilateral renal pelvic dilatation. J Urol 169:1828–1831CrossRefPubMed
29.
go back to reference Jones RA, Perez-Brayfield MR, Kirsch AJ et al (2004) Renal transit time with MR urography in children. Radiology 233:41–50CrossRefPubMed Jones RA, Perez-Brayfield MR, Kirsch AJ et al (2004) Renal transit time with MR urography in children. Radiology 233:41–50CrossRefPubMed
Metadata
Title
MR urography in children. Part 2: how to use ImageJ MR urography processing software
Authors
Pierre-Hugues Vivier
Michael Dolores
Melissa Taylor
Jean-Nicolas Dacher
Publication date
01-05-2010
Publisher
Springer-Verlag
Published in
Pediatric Radiology / Issue 5/2010
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-009-1536-7

Other articles of this Issue 5/2010

Pediatric Radiology 5/2010 Go to the issue