Skip to main content
Top
Published in: European Radiology 11/2009

01-11-2009 | Neuro

MR imaging of late radiation therapy- and chemotherapy-induced injury: a pictorial essay

Authors: Ľ. Pružincová, J. Šteňo, M. Srbecký, P. Kalina, B. Rychlý, E. Bolješíková, M. Chorváth, M. Novotný, V. Pročka, I. Makaiová, V. Belan

Published in: European Radiology | Issue 11/2009

Login to get access

Abstract

Radiation to the brain and adjuvant chemotherapy may produce late delayed changes from several months to years after treatment of intracranial malignancies with a reported prevalence of 5–24%. The pattern of treatment-related injury may vary from diffuse periventricular white matter lesions to focal or multifocal lesions. Differentiation of treatment-related injury from tumor progression/recurrence may be difficult with conventional MR imaging (MRI). With both disease processes, the characteristic but nonspecific imaging features are vasogenic edema, contrast enhancement, and mass effect. This pictorial essay presents MRI spectra of late therapy-induced injuries in the brain with a particular emphasis on radiation necrosis, the most common and severe form. Novel MRI techniques, such as diffusion-weighted imaging (DWI), proton MR spectroscopy (MRS), and perfusion MRI, improve the possibilities of better characterization of treatment-related changes. Advanced MRI techniques allow for the assessment of metabolism and physiology and may increase specificity for therapy-induced changes.
Literature
1.
go back to reference Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6:1215–1228PubMed Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6:1215–1228PubMed
2.
go back to reference Ruben JD, Dally M, Bailey M, Smith R, McLean CA et al (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiation Oncology Biol Phys 65:499–508 Ruben JD, Dally M, Bailey M, Smith R, McLean CA et al (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiation Oncology Biol Phys 65:499–508
3.
go back to reference Johannesen TB, Lien HH, Hole KH, Lote K (2003) Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother Oncol 69:169–176CrossRefPubMed Johannesen TB, Lien HH, Hole KH, Lote K (2003) Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother Oncol 69:169–176CrossRefPubMed
4.
go back to reference Marks JE, Baglan RJ, Prassad SC, Blank WF (1981) Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys 7:243–252PubMed Marks JE, Baglan RJ, Prassad SC, Blank WF (1981) Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys 7:243–252PubMed
5.
go back to reference Perry A, Schmidt RE (2006) Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 111:197–212CrossRefPubMed Perry A, Schmidt RE (2006) Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 111:197–212CrossRefPubMed
6.
go back to reference Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41:1861–1867PubMed Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41:1861–1867PubMed
7.
go back to reference Spaeth N, Wyss MT, Weber B, Scheidegger S et al (2004) Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med 45:1931–1938PubMed Spaeth N, Wyss MT, Weber B, Scheidegger S et al (2004) Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med 45:1931–1938PubMed
8.
go back to reference Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I et al (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21:901–909PubMed Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I et al (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21:901–909PubMed
9.
go back to reference Morris JG, Grattan-Smith P, Panegyres PK, O’Neill P, Soo YS, Langlands AO (1994) Delayed cerebral radiation necrosis. Q J Med 87:119–129PubMed Morris JG, Grattan-Smith P, Panegyres PK, O’Neill P, Soo YS, Langlands AO (1994) Delayed cerebral radiation necrosis. Q J Med 87:119–129PubMed
10.
go back to reference Burger PC, Mahley MS Jr, Dudka L, Vogel FS (1979) The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 44:1256–1272CrossRefPubMed Burger PC, Mahley MS Jr, Dudka L, Vogel FS (1979) The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 44:1256–1272CrossRefPubMed
11.
go back to reference Kumar AJ, Leeds NE, Fuller GN, Tassel PV, Maor MH et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384PubMed Kumar AJ, Leeds NE, Fuller GN, Tassel PV, Maor MH et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384PubMed
12.
go back to reference Schultheiss TE, Kun LE, Ang KK, Stephens LC (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112PubMed Schultheiss TE, Kun LE, Ang KK, Stephens LC (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112PubMed
13.
go back to reference Burger PC, Boyko OB (1991) The pathology of central nervous system radiation injury. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiation injury to the nervous system. Raven, New York, pp 191–208 Burger PC, Boyko OB (1991) The pathology of central nervous system radiation injury. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiation injury to the nervous system. Raven, New York, pp 191–208
14.
go back to reference Burger PC, Scheithauer BW (2007) Tumors of the central nervous system. American Registry of Pathology, Washington Burger PC, Scheithauer BW (2007) Tumors of the central nervous system. American Registry of Pathology, Washington
15.
go back to reference Ironside JW, Moss TH, Louis DN, Lowe JS, Weller RO (2002) Diagnostic pathology of nervous system tumours. Churchill Livingstone, New York Ironside JW, Moss TH, Louis DN, Lowe JS, Weller RO (2002) Diagnostic pathology of nervous system tumours. Churchill Livingstone, New York
16.
go back to reference Belka C, Budach W, Kortmann RD, Bamberg M (2001) Radiation induced CNS toxicity-molecular and cellular mechanisms. Br J Cancer 85:1233–1239CrossRefPubMed Belka C, Budach W, Kortmann RD, Bamberg M (2001) Radiation induced CNS toxicity-molecular and cellular mechanisms. Br J Cancer 85:1233–1239CrossRefPubMed
17.
go back to reference Lampert PW, Davis RL (1964) Delayed effects of radiation on the human central nervous system: “early” and “late” delayed reactions. Neurology 14:912–917PubMed Lampert PW, Davis RL (1964) Delayed effects of radiation on the human central nervous system: “early” and “late” delayed reactions. Neurology 14:912–917PubMed
18.
go back to reference Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T et al (1999) Usefulness of diffusion-weighted MRI with echoplanar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60CrossRefPubMed Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T et al (1999) Usefulness of diffusion-weighted MRI with echoplanar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60CrossRefPubMed
19.
go back to reference Asao CH, Korogi Y, Kitajima M, Hirai T, Baba Y et al (2005) Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 26:1455–1460PubMed Asao CH, Korogi Y, Kitajima M, Hirai T, Baba Y et al (2005) Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 26:1455–1460PubMed
20.
go back to reference Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088PubMed Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088PubMed
21.
go back to reference Hayashida Y, Hirai T, Morishita S, Kitajima M, Murakami R et al (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol 27:1419–1425PubMed Hayashida Y, Hirai T, Morishita S, Kitajima M, Murakami R et al (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol 27:1419–1425PubMed
22.
go back to reference Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25:201–209PubMed Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25:201–209PubMed
23.
go back to reference Zeng QS, Li CF, Liu H, Zhen JH, Feng DC (2007) Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Int J Radiation Oncology Biol Phys 68:151–158 Zeng QS, Li CF, Liu H, Zhen JH, Feng DC (2007) Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Int J Radiation Oncology Biol Phys 68:151–158
24.
go back to reference Tung GA, Evangelista P, Rogg JM, Duncan JA (2001) Diffusion-weighted MR imaging of rim-enhancing brain masses: is markedly decreased water diffusion specific for brain abscess? AJR Am J Roentgenol 177:709–712PubMed Tung GA, Evangelista P, Rogg JM, Duncan JA (2001) Diffusion-weighted MR imaging of rim-enhancing brain masses: is markedly decreased water diffusion specific for brain abscess? AJR Am J Roentgenol 177:709–712PubMed
25.
go back to reference Le Bihan D, Douek P, Argyropoulou M (1993) Diffusion and perfusion magnetic resonance imaging in brain tumors. Top Magn Reson Imaging 5:25–31CrossRefPubMed Le Bihan D, Douek P, Argyropoulou M (1993) Diffusion and perfusion magnetic resonance imaging in brain tumors. Top Magn Reson Imaging 5:25–31CrossRefPubMed
26.
go back to reference Moritani T, Ekholm S, Westesson P-L (2004) Diffusion-weighted MR imaging of the brain. Springer Verlag, Berlin Heidelberg New York Moritani T, Ekholm S, Westesson P-L (2004) Diffusion-weighted MR imaging of the brain. Springer Verlag, Berlin Heidelberg New York
27.
go back to reference Ebisu T, Tanaka C, Umeda M et al (1996) Discrimination of brain abscess from necrotic or cystic tumors by echo planar imaging. Magn Reson Imaging 14:1113–1116CrossRefPubMed Ebisu T, Tanaka C, Umeda M et al (1996) Discrimination of brain abscess from necrotic or cystic tumors by echo planar imaging. Magn Reson Imaging 14:1113–1116CrossRefPubMed
28.
go back to reference Fredman DP, Goldman HW, Flanders AE (1997) MR imaging of stereotaxic palidotomy and thalamotomy. AJR Am J Roentgenol 169:894–896 Fredman DP, Goldman HW, Flanders AE (1997) MR imaging of stereotaxic palidotomy and thalamotomy. AJR Am J Roentgenol 169:894–896
29.
go back to reference Tien RD, Flesberg GJ, Friedman H, Brown M, MacFall J (1994) MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am J Roentgenol 162:671–677PubMed Tien RD, Flesberg GJ, Friedman H, Brown M, MacFall J (1994) MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am J Roentgenol 162:671–677PubMed
30.
go back to reference Hakyemez B, Erdogan C, Yildirim N, Parlak M (2005) Glioblastoma multiforme with atypical diffusion-weighted MR findings. Br J Radiol 78:989–992CrossRefPubMed Hakyemez B, Erdogan C, Yildirim N, Parlak M (2005) Glioblastoma multiforme with atypical diffusion-weighted MR findings. Br J Radiol 78:989–992CrossRefPubMed
31.
go back to reference Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51PubMed Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51PubMed
32.
go back to reference Covarrubias DJ, Rosen BR, Lev MH (2004) Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 9:528–537CrossRefPubMed Covarrubias DJ, Rosen BR, Lev MH (2004) Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 9:528–537CrossRefPubMed
33.
go back to reference Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223:11–29CrossRefPubMed Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223:11–29CrossRefPubMed
34.
go back to reference Cotton F, Hermier M (2006) The advantage of high relaxivity contrast agents in brain perfusion. Eur Radio1 Suppl 16(Suppl 7):M 16–M 26 Cotton F, Hermier M (2006) The advantage of high relaxivity contrast agents in brain perfusion. Eur Radio1 Suppl 16(Suppl 7):M 16–M 26
35.
go back to reference Wong JC, Provenzale JM, Petrella JR (2000) Perfusion MR imaging of brain neoplasms. AJR 174:1147–1157PubMed Wong JC, Provenzale JM, Petrella JR (2000) Perfusion MR imaging of brain neoplasms. AJR 174:1147–1157PubMed
36.
go back to reference Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486PubMed Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486PubMed
37.
go back to reference Aksoy FG, Lev MH (2000) Dynamic contrast- enhanced brain perfusion imaging: technique and clinical applications. Semin Ultrasound CT MR 21:462–477CrossRefPubMed Aksoy FG, Lev MH (2000) Dynamic contrast- enhanced brain perfusion imaging: technique and clinical applications. Semin Ultrasound CT MR 21:462–477CrossRefPubMed
38.
go back to reference Sorensen AG, Reimer P (2000) Cerebral MR perfusion imaging. Thieme, Stuttgart Sorensen AG, Reimer P (2000) Cerebral MR perfusion imaging. Thieme, Stuttgart
39.
go back to reference Kimura T, Sako K, Tohyama Y, Aizawa S, Yoshida H et al (2003) Diagnosis and treatment of progressive space-occupying radiation necrosis following stereotactic radiosurgery for brain metastasis: value of proton magnetic resonance spectroscopy. Acta Neurochir (Wien) 145:557–564CrossRef Kimura T, Sako K, Tohyama Y, Aizawa S, Yoshida H et al (2003) Diagnosis and treatment of progressive space-occupying radiation necrosis following stereotactic radiosurgery for brain metastasis: value of proton magnetic resonance spectroscopy. Acta Neurochir (Wien) 145:557–564CrossRef
40.
go back to reference Ge Y, Law M, Johnson G et al (2005) Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol 26:1539–1547PubMed Ge Y, Law M, Johnson G et al (2005) Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol 26:1539–1547PubMed
41.
go back to reference Chong VF-H, Rumpel H, Fan Y-F, Mukherji SK (2001) Temporal lobe changes following radiation therapy: imaging and proton MR spectroscopic findings. Eur Radiol 11:317–324CrossRefPubMed Chong VF-H, Rumpel H, Fan Y-F, Mukherji SK (2001) Temporal lobe changes following radiation therapy: imaging and proton MR spectroscopic findings. Eur Radiol 11:317–324CrossRefPubMed
42.
go back to reference Edelman RR, Hesselink JR, Zlatkin MB, Crues JV (2006) Clinical magnetic resonance imaging. Saunders, Philadelphia Edelman RR, Hesselink JR, Zlatkin MB, Crues JV (2006) Clinical magnetic resonance imaging. Saunders, Philadelphia
43.
go back to reference Hollingworth W, Medina LS, Lenkinski RE, Shibata DK, Bernal B et al (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR 27:1404–1411PubMed Hollingworth W, Medina LS, Lenkinski RE, Shibata DK, Bernal B et al (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR 27:1404–1411PubMed
44.
go back to reference Lichy MP, Plathow CH, Schulz-Ertner D, Kauczor HU, Schlemmer H-P (2005) Follow-up gliomas after radiotherapy: 1H MR spectroscopic imaging for increasing diagnostic accuracy. Neuroradiology 47:826–834CrossRefPubMed Lichy MP, Plathow CH, Schulz-Ertner D, Kauczor HU, Schlemmer H-P (2005) Follow-up gliomas after radiotherapy: 1H MR spectroscopic imaging for increasing diagnostic accuracy. Neuroradiology 47:826–834CrossRefPubMed
45.
go back to reference Kimura T, Sako K, Tanaka K, Gotoh T, Yoshida H et al (2004) Evaluation of the response of metastatic brain tumors to stereotactic radiosurgery by proton magnetic resonance spectroscopy, 201TICI single-photon emission computerized tomography, and gadolinium-enhanced magnetic resonance imaging. J Neurosurg 100:835–841CrossRefPubMed Kimura T, Sako K, Tanaka K, Gotoh T, Yoshida H et al (2004) Evaluation of the response of metastatic brain tumors to stereotactic radiosurgery by proton magnetic resonance spectroscopy, 201TICI single-photon emission computerized tomography, and gadolinium-enhanced magnetic resonance imaging. J Neurosurg 100:835–841CrossRefPubMed
46.
go back to reference Lichy MP, Henze M, Plathow C et al (2004) Metabolic imaging to follow stereotactic radiation of gliomas—the role of 1H MR spectroscopy in comparison to FDG-PET and IMT-SPECT. Rofo 176:1114–1121PubMed Lichy MP, Henze M, Plathow C et al (2004) Metabolic imaging to follow stereotactic radiation of gliomas—the role of 1H MR spectroscopy in comparison to FDG-PET and IMT-SPECT. Rofo 176:1114–1121PubMed
47.
go back to reference Ando K, Ishikura R, Nagami et al (2004) Usefulness of Cho/Cr ratio in proton MR spectroscopy for differentiating residual/recurrent glioma from non-neoplastic lesions. Nippon Igaku Hoshasen Gakkai Zasshi 64:121–126PubMed Ando K, Ishikura R, Nagami et al (2004) Usefulness of Cho/Cr ratio in proton MR spectroscopy for differentiating residual/recurrent glioma from non-neoplastic lesions. Nippon Igaku Hoshasen Gakkai Zasshi 64:121–126PubMed
48.
go back to reference Schlemmer HP, Bachert P, Herfarth K, Zuna I, Debus J et al (2001) Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic readiotherapy. AJNR Am J Neuroradiol 22:1316–1324PubMed Schlemmer HP, Bachert P, Herfarth K, Zuna I, Debus J et al (2001) Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic readiotherapy. AJNR Am J Neuroradiol 22:1316–1324PubMed
50.
go back to reference Plotkin M, Eisenacher J, Brunh H et al (2004) 123I-IMT SPECT and 1H MR-spectroscopy at 3.0 T in the differential diagnosis of recurrent or residual gliomas: a comparative study. Neurooncol 70:49–58CrossRef Plotkin M, Eisenacher J, Brunh H et al (2004) 123I-IMT SPECT and 1H MR-spectroscopy at 3.0 T in the differential diagnosis of recurrent or residual gliomas: a comparative study. Neurooncol 70:49–58CrossRef
51.
go back to reference Kimura T, Sako K, Tanaka K, Gotoh T, Tanaka T (2001) In vivo single-voxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR in Biomed 14:339–349CrossRef Kimura T, Sako K, Tanaka K, Gotoh T, Tanaka T (2001) In vivo single-voxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR in Biomed 14:339–349CrossRef
52.
go back to reference Traber F, Block W, Flacke S et al (2002) 1H MR spectroscopy of brain tumors in the course of radiation therapy: use of fast spectroscopic imaging and single-voxel spectroscopy for diagnosing recurrence. Rofo 174:33–42PubMed Traber F, Block W, Flacke S et al (2002) 1H MR spectroscopy of brain tumors in the course of radiation therapy: use of fast spectroscopic imaging and single-voxel spectroscopy for diagnosing recurrence. Rofo 174:33–42PubMed
53.
go back to reference Rabinov JD, Lee PL, Barker FG, Louis DN, Harsh GR et al (2002) In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology 225:871–879CrossRefPubMed Rabinov JD, Lee PL, Barker FG, Louis DN, Harsh GR et al (2002) In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology 225:871–879CrossRefPubMed
54.
go back to reference Rock JP, Scarpace L, Hearshen D, Gutierrez J et al (2004) Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image guided histopathology with special attention to radiation necrosis. Neurosurgery 54:1111–1119CrossRefPubMed Rock JP, Scarpace L, Hearshen D, Gutierrez J et al (2004) Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image guided histopathology with special attention to radiation necrosis. Neurosurgery 54:1111–1119CrossRefPubMed
Metadata
Title
MR imaging of late radiation therapy- and chemotherapy-induced injury: a pictorial essay
Authors
Ľ. Pružincová
J. Šteňo
M. Srbecký
P. Kalina
B. Rychlý
E. Bolješíková
M. Chorváth
M. Novotný
V. Pročka
I. Makaiová
V. Belan
Publication date
01-11-2009
Publisher
Springer-Verlag
Published in
European Radiology / Issue 11/2009
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-009-1449-8

Other articles of this Issue 11/2009

European Radiology 11/2009 Go to the issue