Skip to main content
Top
Published in: Annals of Nuclear Medicine 1/2017

01-01-2017 | Original Article

MR-guided attenuation map for prostate PET-MRI: an intensity and morphologic-based segmentation approach for generating a five-class attenuation map in pelvic region

Authors: M. Shirin Shandiz, H. Saligheh Rad, P. Ghafarian, M. Bakhshayesh Karam, Afshin Akbarzadeh, Mohammad Reza Ay

Published in: Annals of Nuclear Medicine | Issue 1/2017

Login to get access

Abstract

Purpose

Prostate imaging is one of the major application of hybrid PET/MRI systems. Inaccurate attenuation maps (µ-maps) derived by direct segmentation (SEG) in which the cortical bone is ignored and the volume of the air in cavities is underestimated is the main challenge of commercial PET/MRI systems for the quantitative analysis of the pelvic region. The present study considered the cortical bone and air cavity along with soft tissue, fat, and background air in the µ-map of the pelvic region using a method based on SEG. The proposed method uses a dedicated imaging technique that increases the contrast between regions and a hybrid segmentation method to classify MR images based on intensity and morphologic characteristics of tissues, such as symmetry and similarity of bony structures.

Procedures

Ten healthy volunteers underwent MRI and ultra-low dose CT imaging. The dedicated MR imaging technique uses the short echo time (STE) based on the conventional sequencing implemented on a clinical 1.5T MRI scanner. The generation of a µ-map comprises the following steps: (1) bias field correction; (2) hybrid segmentation (HSEG), including segmenting images into clusters of cortical bone-air, soft tissue, and fat using spatial fuzzy c-means (SFCM), and separation of cortical bone and internal air cavities using morphologic characteristics; (3) the active contour approach for the separation of background air; and (4) the generation of a five-class μ-map for cortical bone, internal air cavity, soft tissue, fat tissue, and background air. Validation was done by comparison with segmented CT images.

Results

The Dice and sensitivity metrics of cortical bone structures and internal air cavities were 72 ± 11 and 66 ± 13 and 73 ± 10 and 68 ± 20 %, respectively. High correlation was observed between CT and HSEG-based µ-maps (R 2 > 0.99) and the corresponding sinograms (R 2 > 0.98).

Conclusions

Currently, pelvis µ-maps provided by the current PET/MRI systems and the ultra-short echo time and atlas-based methods tend to be inaccurate. The proposed method acceptably generated a five-class μ-map using only one image.
Literature
1.
go back to reference Disselhorst JA, Bezrukov I, Kolb A, Parl C, Pichler BJ. Principles of PET/MR imaging. J Nucl Med. 2014;55(Suppl 2):2S–10S.CrossRefPubMed Disselhorst JA, Bezrukov I, Kolb A, Parl C, Pichler BJ. Principles of PET/MR imaging. J Nucl Med. 2014;55(Suppl 2):2S–10S.CrossRefPubMed
2.
go back to reference Zaidi H, Del Guerra A. An outlook on future design of hybrid PET/MRI systems. Med Phys. 2011;38:5667–89.CrossRefPubMed Zaidi H, Del Guerra A. An outlook on future design of hybrid PET/MRI systems. Med Phys. 2011;38:5667–89.CrossRefPubMed
3.
go back to reference Souvatzoglou M, Eiber M, Martinez-Moeller A, Fürst S, Holzapfel K, Maurer T, et al. PET/MR in prostate cancer: technical aspects and potential diagnostic value. Eur J Nucl Med Mol Imaging. 2013;40:79–88.CrossRef Souvatzoglou M, Eiber M, Martinez-Moeller A, Fürst S, Holzapfel K, Maurer T, et al. PET/MR in prostate cancer: technical aspects and potential diagnostic value. Eur J Nucl Med Mol Imaging. 2013;40:79–88.CrossRef
4.
go back to reference Bezrukov I, Mantlik F, Schmidt H, Schölkopf B, Pichler BJ. MR-based PET attenuation correction for PET/MR imaging. Semin Nucl Med. 2013;43:45–59.CrossRefPubMed Bezrukov I, Mantlik F, Schmidt H, Schölkopf B, Pichler BJ. MR-based PET attenuation correction for PET/MR imaging. Semin Nucl Med. 2013;43:45–59.CrossRefPubMed
5.
go back to reference Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.CrossRefPubMed Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.CrossRefPubMed
6.
go back to reference Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138–52.CrossRefPubMed Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138–52.CrossRefPubMed
7.
go back to reference Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation-and atlas-based methods. J Nucl Med. 2011;52:1392–9.CrossRefPubMed Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation-and atlas-based methods. J Nucl Med. 2011;52:1392–9.CrossRefPubMed
8.
go back to reference Ay MR, Akbarzadeh A, Ahmadian A, Zaidi H. Classification of bones from MR images in torso PET-MR imaging using a statistical shape model. Nucl Instrum Meth A. 2014;734:196–200.CrossRef Ay MR, Akbarzadeh A, Ahmadian A, Zaidi H. Classification of bones from MR images in torso PET-MR imaging using a statistical shape model. Nucl Instrum Meth A. 2014;734:196–200.CrossRef
9.
go back to reference Martinez-Möller A, Nekolla SG. Attenuation correction for PET/MR: problems, novel approaches and practical solutions. Z Med Phys. 2012;22:299–310.CrossRefPubMed Martinez-Möller A, Nekolla SG. Attenuation correction for PET/MR: problems, novel approaches and practical solutions. Z Med Phys. 2012;22:299–310.CrossRefPubMed
10.
go back to reference Keereman V, Van Holen R, Mollet P, Vandenberghe S. The effect of errors in segmented attenuation maps on PET quantification. Med Phys. 2011;38:6010–9.CrossRefPubMed Keereman V, Van Holen R, Mollet P, Vandenberghe S. The effect of errors in segmented attenuation maps on PET quantification. Med Phys. 2011;38:6010–9.CrossRefPubMed
11.
go back to reference Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med. 2013;27:152–62.CrossRefPubMed Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med. 2013;27:152–62.CrossRefPubMed
12.
go back to reference Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, et al. PET/MR imaging of bone lesions–implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39:1154–60.CrossRefPubMed Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, et al. PET/MR imaging of bone lesions–implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39:1154–60.CrossRefPubMed
13.
go back to reference Berker Y, Franke J, Salomon A, Palmowski M, Donker HC, Temur Y, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med. 2012;53:796–804.CrossRefPubMed Berker Y, Franke J, Salomon A, Palmowski M, Donker HC, Temur Y, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med. 2012;53:796–804.CrossRefPubMed
14.
go back to reference Boellaard R, Quick HH. Current image acquisition options in PET/MR. Semin Nucl Med. 2015;45:192–200.CrossRefPubMed Boellaard R, Quick HH. Current image acquisition options in PET/MR. Semin Nucl Med. 2015;45:192–200.CrossRefPubMed
15.
go back to reference Delso G, Carl M, Wiesinger F, Sacolick L, Porto M, Hüllner M, et al. Anatomic evaluation of 3-dimensional ultrashort-echo-time bone maps for PET/MR attenuation correction. J Nucl Med. 2014;55:780–5.CrossRefPubMed Delso G, Carl M, Wiesinger F, Sacolick L, Porto M, Hüllner M, et al. Anatomic evaluation of 3-dimensional ultrashort-echo-time bone maps for PET/MR attenuation correction. J Nucl Med. 2014;55:780–5.CrossRefPubMed
16.
go back to reference Keereman V, Mollet P, Berker Y, Schulz V, Vandenberghe S. Challenges and current methods for attenuation correction in PET/MR. Magn Reson Mater Mhy. 2013;26:81–98.CrossRef Keereman V, Mollet P, Berker Y, Schulz V, Vandenberghe S. Challenges and current methods for attenuation correction in PET/MR. Magn Reson Mater Mhy. 2013;26:81–98.CrossRef
17.
go back to reference Khateri P, Rad HS, Fathi A, Ay MR. Generation of attenuation map for MR-based attenuation correction of PET data in the head area employing 3D short echo time MR imaging. Nucl Instrum Meth A. 2013;702:133–6.CrossRef Khateri P, Rad HS, Fathi A, Ay MR. Generation of attenuation map for MR-based attenuation correction of PET data in the head area employing 3D short echo time MR imaging. Nucl Instrum Meth A. 2013;702:133–6.CrossRef
18.
go back to reference Manjón JV, Lull JJ, Carbonell-Caballero J, García-Martí G, Martí-Bonmatí L, Robles M. A nonparametric MRI inhomogeneity correction method. Med Image Anal. 2007;11(4):336–45.CrossRefPubMed Manjón JV, Lull JJ, Carbonell-Caballero J, García-Martí G, Martí-Bonmatí L, Robles M. A nonparametric MRI inhomogeneity correction method. Med Image Anal. 2007;11(4):336–45.CrossRefPubMed
19.
go back to reference Chuang K-S, Tzeng H-L, Chen S, Wu J, Chen T-J. Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph. 2006;30:9–15.CrossRefPubMed Chuang K-S, Tzeng H-L, Chen S, Wu J, Chen T-J. Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph. 2006;30:9–15.CrossRefPubMed
20.
go back to reference Russ JC. The image processing handbook. CRC press; 2015. Russ JC. The image processing handbook. CRC press; 2015.
21.
go back to reference Serra J. Morphological filtering: an overview. Sig Process. 1994;38(1):3–11.CrossRef Serra J. Morphological filtering: an overview. Sig Process. 1994;38(1):3–11.CrossRef
22.
go back to reference Khateri P, Rad HS, Jafari AH, Kazerooni AF, Akbarzadeh A, Moghadam MS, et al. Generation of a four-class attenuation map for MRI-based attenuation correction of PET data in the head area using a novel combination of STE/Dixon-MRI and FCM clustering. Mol Imaging and Biol. 2015; 1–9. Khateri P, Rad HS, Jafari AH, Kazerooni AF, Akbarzadeh A, Moghadam MS, et al. Generation of a four-class attenuation map for MRI-based attenuation correction of PET data in the head area using a novel combination of STE/Dixon-MRI and FCM clustering. Mol Imaging and Biol. 2015; 1–9.
23.
go back to reference Chan TF, Vese LA. Active contour and segmentation models using geometric PDE’s for medical imaging. Geometric methods in bio-medical image processing. USA: Springer; 2002. p. 63–75.CrossRef Chan TF, Vese LA. Active contour and segmentation models using geometric PDE’s for medical imaging. Geometric methods in bio-medical image processing. USA: Springer; 2002. p. 63–75.CrossRef
24.
go back to reference ICRU. International commission on radiation units and measure-ments. Report no. 44; 1989. ICRU. International commission on radiation units and measure-ments. Report no. 44; 1989.
25.
go back to reference Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A, editors. Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision. pp. 2272–2279. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A, editors. Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision. pp. 2272–2279.
26.
go back to reference Klein S, Staring M, Murphy K, Viergever M, Pluim JP. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205.CrossRefPubMed Klein S, Staring M, Murphy K, Viergever M, Pluim JP. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205.CrossRefPubMed
27.
go back to reference Akbarzadeh A, Gutierrez D, Baskin A, Ay MR, Ahmadian A, Alam NR, et al. Evaluation of whole-body MR to CT deformable image registration. J Appl Clin Med Phys. 2013; 14. Akbarzadeh A, Gutierrez D, Baskin A, Ay MR, Ahmadian A, Alam NR, et al. Evaluation of whole-body MR to CT deformable image registration. J Appl Clin Med Phys. 2013; 14.
28.
go back to reference Crum WR, Camara O, Hill DL. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging. 2006;25:1451–61.CrossRefPubMed Crum WR, Camara O, Hill DL. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging. 2006;25:1451–61.CrossRefPubMed
29.
go back to reference Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. Wiley; 2013. Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. Wiley; 2013.
30.
go back to reference Cabello J, Lukas M, Förster S, Pyka T, Nekolla SG, Ziegler SI. MR-based attenuation correction using ultrashort-echo-time pulse sequences in dementia patients. J Nucl Med. 2015;56:423–9.CrossRefPubMed Cabello J, Lukas M, Förster S, Pyka T, Nekolla SG, Ziegler SI. MR-based attenuation correction using ultrashort-echo-time pulse sequences in dementia patients. J Nucl Med. 2015;56:423–9.CrossRefPubMed
31.
go back to reference Aasheim LB, Karlberg A, Goa PE, Håberg A, Sørhaug S, Fagerli U-M, et al. PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction. Eur J Nucl Med Mol Imaging. 2015; 1–8. Aasheim LB, Karlberg A, Goa PE, Håberg A, Sørhaug S, Fagerli U-M, et al. PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction. Eur J Nucl Med Mol Imaging. 2015; 1–8.
32.
go back to reference Juttukonda MR, Mersereau BG, Chen Y, Su Y, Rubin BG, Benzinger TL, et al. MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units. NeuroImage. 2015;112:160–8.CrossRefPubMedPubMedCentral Juttukonda MR, Mersereau BG, Chen Y, Su Y, Rubin BG, Benzinger TL, et al. MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units. NeuroImage. 2015;112:160–8.CrossRefPubMedPubMedCentral
33.
go back to reference Arabi H, Zaidi H. Magnetic resonance imaging-guided attenuation correction in whole-body PET/MRI using a sorted atlas approach. Med Image Anal. 2016;31:1–15.CrossRefPubMed Arabi H, Zaidi H. Magnetic resonance imaging-guided attenuation correction in whole-body PET/MRI using a sorted atlas approach. Med Image Anal. 2016;31:1–15.CrossRefPubMed
Metadata
Title
MR-guided attenuation map for prostate PET-MRI: an intensity and morphologic-based segmentation approach for generating a five-class attenuation map in pelvic region
Authors
M. Shirin Shandiz
H. Saligheh Rad
P. Ghafarian
M. Bakhshayesh Karam
Afshin Akbarzadeh
Mohammad Reza Ay
Publication date
01-01-2017
Publisher
Springer Japan
Published in
Annals of Nuclear Medicine / Issue 1/2017
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-016-1128-1

Other articles of this Issue 1/2017

Annals of Nuclear Medicine 1/2017 Go to the issue