Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Mpox Virus | Review

Human monkeypox: a comparison of the characteristics of the new epidemic to the endemic disease

Authors: Sharon Sukhdeo, Sharmistha Mishra, Sharon Walmsley

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

In May 2022, a new global outbreak of mpox (formerly, human monkeypox) emerged that was declared a public health emergency of international concern by the World Health Organization on July 23, 2022. With new patterns of person-to-person spread within sexual networks in nonendemic countries and several differences from the classic disease course, we performed a comprehensive review of existing literature on human monkeypox to discuss epidemiology, modes of transmission, clinical presentation and asymptomatic infection, diagnostics, therapeutics, and vaccines with the primary aim to identify important areas for future research of this new epidemic form of the disease. A comprehensive literature search was performed of all published literature to August 15, 2022. Historically, in regions of monkeypox virus endemicity, human outbreaks have occurred related to discrete zoonotic events. The animal reservoir is unknown, but the virus has been isolated from rodents. Traditionally, transmission occurred by direct or indirect contact with an infected animal. In nonendemic countries affected in the 2022 outbreak, almost exclusive person-to-person spread has been observed, and most cases are connected to sexual networks of gay, bisexual, and other men who have sex with men. After an incubation period of approximately 13 days, in traditional human cases affected persons developed a febrile prodrome preceding a rash that started on the face and body, spread centrifugally to the palms and soles and healed monomorphically over two to four weeks. However, in the 2022 outbreak, the febrile illness is often absent or occurs after the onset of the rash. The rash presents primarily in the anogenital region and face before disseminating throughout the body, with lesions displaying regional pleomorphism. There is a paucity of data for the role of antiviral agents or vaccines. The epidemiology and clinical course of mpox has changed in the 2022 epidemic from that observed with the endemic disease. There is an urgent need to establish rapid and collaborative research platforms to diagnose, treat and prevent disease and inform important public health and other strategies to stop the spread of disease.
Literature
2.
go back to reference Doshi RH, Guagliardo SAJ, Doty JB, Babeaux AD, Matheny A, Burgado J, et al. Epidemiologic and ecologic investigations of Monkeypox, Likouala Department, Republic of the Congo, 2017. Emerg Infect Dis. 2019;25(2):273–81.CrossRef Doshi RH, Guagliardo SAJ, Doty JB, Babeaux AD, Matheny A, Burgado J, et al. Epidemiologic and ecologic investigations of Monkeypox, Likouala Department, Republic of the Congo, 2017. Emerg Infect Dis. 2019;25(2):273–81.CrossRef
3.
go back to reference Khodakevich L, Jezek Z, Kinzanzka K. Isolation of monkeypox virus from wild squirrel infected in nature. Lancet Lond Engl. 1986;11(8472):98–9.CrossRef Khodakevich L, Jezek Z, Kinzanzka K. Isolation of monkeypox virus from wild squirrel infected in nature. Lancet Lond Engl. 1986;11(8472):98–9.CrossRef
4.
go back to reference Khodakevich L, Jezek Z, Messinger D. Monkeypox virus: ecology and public health significance. Bull World Health Organ. 1988;66(6):747–52. Khodakevich L, Jezek Z, Messinger D. Monkeypox virus: ecology and public health significance. Bull World Health Organ. 1988;66(6):747–52.
5.
go back to reference Von Magnus P, Andersen EK, Petersen KB, Birch-Andersen A. A pox-like disease in cynomolgus monkeys. Acta Patholog Microbiolog Scand. 1959;46(2):156–76.CrossRef Von Magnus P, Andersen EK, Petersen KB, Birch-Andersen A. A pox-like disease in cynomolgus monkeys. Acta Patholog Microbiolog Scand. 1959;46(2):156–76.CrossRef
6.
7.
go back to reference Arita I, Gispen R, Kalter SS, Wah LT, Marennikova SS, Netter R, et al. Outbreaks of monkeypox and serological surveys in nonhuman primates. Bull World Health Organ. 1972;46(5):625–31. Arita I, Gispen R, Kalter SS, Wah LT, Marennikova SS, Netter R, et al. Outbreaks of monkeypox and serological surveys in nonhuman primates. Bull World Health Organ. 1972;46(5):625–31.
8.
go back to reference Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. Chapter 29— human monkeypox virus and other Poxvirus Infections of Man. In: Smallpox and its eradication. Geneva: World Health Organization; 1988. p. p1297. Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. Chapter 29— human monkeypox virus and other Poxvirus Infections of Man. In: Smallpox and its eradication. Geneva: World Health Organization; 1988. p. p1297.
9.
go back to reference Damon IK, Roth CE, Chowdhary V. Discovery of monkeypox in Sudan. N Engl J Med. 2006;31(9):962–3.CrossRef Damon IK, Roth CE, Chowdhary V. Discovery of monkeypox in Sudan. N Engl J Med. 2006;31(9):962–3.CrossRef
10.
go back to reference Nakazawa Y, Emerson GL, Carroll DS, Zhao H, Li Y, Reynolds MG, et al. Phylogenetic and ecologic perspectives of a monkeypox outbreak, southern Sudan, 2005. Emerg Infect Dis. 2013;19(2):237–45.CrossRef Nakazawa Y, Emerson GL, Carroll DS, Zhao H, Li Y, Reynolds MG, et al. Phylogenetic and ecologic perspectives of a monkeypox outbreak, southern Sudan, 2005. Emerg Infect Dis. 2013;19(2):237–45.CrossRef
11.
go back to reference World Health Organization. Global Commission for the Certification of Smallpox Eradication. Organization WH. The global eradication of smallpox: final report of the Global Commission for the Certification of Smallpox Eradication, Geneva, December 1979 [Internet]. World Health Organization; 1980 [cited 2022 Aug 7]. Available from: https://apps.who.int/iris/handle/10665/39253. World Health Organization. Global Commission for the Certification of Smallpox Eradication. Organization WH. The global eradication of smallpox: final report of the Global Commission for the Certification of Smallpox Eradication, Geneva, December 1979 [Internet]. World Health Organization; 1980 [cited 2022 Aug 7]. Available from: https://​apps.​who.​int/​iris/​handle/​10665/​39253.
12.
go back to reference Jezek Z, Szczeniowski M, Paluku KM, Mutombo M. Human monkeypox: clinical features of 282 patients. J Infect Dis. 1987;156(2):293–8.CrossRef Jezek Z, Szczeniowski M, Paluku KM, Mutombo M. Human monkeypox: clinical features of 282 patients. J Infect Dis. 1987;156(2):293–8.CrossRef
13.
go back to reference Reed KD, Melski JW, Graham MB, Regnery RL, Sotir MJ, Wegner MV, et al. The detection of monkeypox in humans in the western hemisphere. N Engl J Med. 2004;22(4):342–50.CrossRef Reed KD, Melski JW, Graham MB, Regnery RL, Sotir MJ, Wegner MV, et al. The detection of monkeypox in humans in the western hemisphere. N Engl J Med. 2004;22(4):342–50.CrossRef
14.
go back to reference Reynolds MG, Yorita KL, Kuehnert MJ, Davidson WB, Huhn GD, Holman RC, et al. Clinical manifestations of human monkeypox influenced by route of infection. J Infect Dis. 2006;194(6):773–80.CrossRef Reynolds MG, Yorita KL, Kuehnert MJ, Davidson WB, Huhn GD, Holman RC, et al. Clinical manifestations of human monkeypox influenced by route of infection. J Infect Dis. 2006;194(6):773–80.CrossRef
15.
go back to reference Jezek Z, Grab B, Dixon H. Stochastic model for interhuman spread of monkeypox. Am J Epidemiol. 1987;126(6):1082–92.CrossRef Jezek Z, Grab B, Dixon H. Stochastic model for interhuman spread of monkeypox. Am J Epidemiol. 1987;126(6):1082–92.CrossRef
16.
go back to reference Fine PE, Jezek Z, Grab B, Dixon H. The transmission potential of monkeypox virus in human populations. Int J Epidemiol. 1988;17(3):643–50.CrossRef Fine PE, Jezek Z, Grab B, Dixon H. The transmission potential of monkeypox virus in human populations. Int J Epidemiol. 1988;17(3):643–50.CrossRef
17.
go back to reference Morbidity and Mortality Weekly Report Vol52 (27). CDC; 2003. Morbidity and Mortality Weekly Report Vol52 (27). CDC; 2003.
19.
go back to reference Faye O, Pratt CB, Faye M, Fall G, Chitty JA, Diagne MM, et al. Genomic characterisation of human monkeypox virus in Nigeria. Lancet Infect Dis. 2018;18(3):246.CrossRef Faye O, Pratt CB, Faye M, Fall G, Chitty JA, Diagne MM, et al. Genomic characterisation of human monkeypox virus in Nigeria. Lancet Infect Dis. 2018;18(3):246.CrossRef
21.
go back to reference Yinka-Ogunleye A, Aruna O, Dalhat M, Ogoina D, McCollum A, Disu Y, et al. Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. Lancet Infect Dis. 2019;19(8):872–9.CrossRef Yinka-Ogunleye A, Aruna O, Dalhat M, Ogoina D, McCollum A, Disu Y, et al. Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. Lancet Infect Dis. 2019;19(8):872–9.CrossRef
24.
go back to reference Isidro J, Borges V, Pinto M, Sobral D, Santos JD, Nunes A, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med. 2022. Isidro J, Borges V, Pinto M, Sobral D, Santos JD, Nunes A, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med. 2022.
25.
go back to reference Firth C, Kitchen A, Shapiro B, Suchard MA, Holmes EC, Rambaut A. Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol. 2010;27(9):2038–51.CrossRef Firth C, Kitchen A, Shapiro B, Suchard MA, Holmes EC, Rambaut A. Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol. 2010;27(9):2038–51.CrossRef
26.
go back to reference Mbala PK, Huggins JW, Riu-Rovira T, Ahuka SM, Mulembakani P, Rimoin AW, et al. Maternal and fetal outcomes among pregnant women with human monkeypox infection in the Democratic Republic of Congo. J Infect Dis. 2017;216(7):824–8.CrossRef Mbala PK, Huggins JW, Riu-Rovira T, Ahuka SM, Mulembakani P, Rimoin AW, et al. Maternal and fetal outcomes among pregnant women with human monkeypox infection in the Democratic Republic of Congo. J Infect Dis. 2017;216(7):824–8.CrossRef
27.
go back to reference Fleischauer AT, Kile JC, Davidson M, Fischer M, Karem KL, Teclaw R, et al. Evaluation of human-to-human transmission of monkeypox from infected patients to health care workers. Clin Infect Dis Off Publ Infect Dis Soc Am. 2005;40(5):689–94.CrossRef Fleischauer AT, Kile JC, Davidson M, Fischer M, Karem KL, Teclaw R, et al. Evaluation of human-to-human transmission of monkeypox from infected patients to health care workers. Clin Infect Dis Off Publ Infect Dis Soc Am. 2005;40(5):689–94.CrossRef
28.
go back to reference Nakoune E, Lampaert E, Ndjapou SG, Janssens C, Zuniga I, Van Herp M, et al. A nosocomial outbreak of human monkeypox in the central African Republic. Open Forum Infect Dis. 2017;4(4):ofx168.CrossRef Nakoune E, Lampaert E, Ndjapou SG, Janssens C, Zuniga I, Van Herp M, et al. A nosocomial outbreak of human monkeypox in the central African Republic. Open Forum Infect Dis. 2017;4(4):ofx168.CrossRef
29.
go back to reference Vaughan A, Aarons E, Astbury J, Brooks T, Chand M, Flegg P, et al. Human-to-human transmission of Monkeypox Virus, United Kingdom, October 2018. Emerg Infect Dis. 2020;26(4):782–5.CrossRef Vaughan A, Aarons E, Astbury J, Brooks T, Chand M, Flegg P, et al. Human-to-human transmission of Monkeypox Virus, United Kingdom, October 2018. Emerg Infect Dis. 2020;26(4):782–5.CrossRef
30.
go back to reference Thornhill JP, Barkati S, Walmsley S, Rockstroh J, Antinori A, Harrison LB, et al. Monkeypox virus infection in humans across 16 Countries—April–June 2022. N Engl J Med. 2022. Thornhill JP, Barkati S, Walmsley S, Rockstroh J, Antinori A, Harrison LB, et al. Monkeypox virus infection in humans across 16 Countries—April–June 2022. N Engl J Med. 2022.
31.
go back to reference Martínez JI, Montalbán EG, Bueno SJ, Martínez FM, Juliá AN, Díaz JS, et al. Monkeypox outbreak predominantly affecting men who have sex with men, Madrid, Spain, 26 April to 16 June 2022. Eurosurveillance. 2022;7(27):2200471. Martínez JI, Montalbán EG, Bueno SJ, Martínez FM, Juliá AN, Díaz JS, et al. Monkeypox outbreak predominantly affecting men who have sex with men, Madrid, Spain, 26 April to 16 June 2022. Eurosurveillance. 2022;7(27):2200471.
32.
go back to reference Lapa D, Carletti F, Mazzotta V, Matusali G, Pinnetti C, Meschi S, et al. Monkeypox virus isolation from a semen sample collected in the early phase of infection in a patient with prolonged seminal viral shedding. Lancet Infect Dis [Internet]. 2022 Aug 2 [cited 2022 Aug 9];0(0). Available from: https://www.thelancet.com/journals/laninf/article/PIIS14733099(22)00513-8/fulltext. Lapa D, Carletti F, Mazzotta V, Matusali G, Pinnetti C, Meschi S, et al. Monkeypox virus isolation from a semen sample collected in the early phase of infection in a patient with prolonged seminal viral shedding. Lancet Infect Dis [Internet]. 2022 Aug 2 [cited 2022 Aug 9];0(0). Available from: https://​www.​thelancet.​com/​journals/​laninf/​article/​PIIS14733099(22)00513-8/fulltext.
33.
go back to reference Huhn GD, Bauer AM, Yorita K, Graham MB, Sejvar J, Likos A, et al. Clinical characteristics of human monkeypox, and risk factors for severe disease. Clin Infect Dis Off Publ Infect Dis Soc Am. 2005;15(12):1742–51.CrossRef Huhn GD, Bauer AM, Yorita K, Graham MB, Sejvar J, Likos A, et al. Clinical characteristics of human monkeypox, and risk factors for severe disease. Clin Infect Dis Off Publ Infect Dis Soc Am. 2005;15(12):1742–51.CrossRef
34.
go back to reference Miura F, van Ewijk CE, Backer JA, Xiridou M, Franz E, Op de Coul E, et al. Estimated incubation period for monkeypox cases confirmed in the Netherlands May, 2022. Eurosurveillance. 2022;27(24):2200448.CrossRef Miura F, van Ewijk CE, Backer JA, Xiridou M, Franz E, Op de Coul E, et al. Estimated incubation period for monkeypox cases confirmed in the Netherlands May, 2022. Eurosurveillance. 2022;27(24):2200448.CrossRef
35.
go back to reference Jezek Z, Marennikova SS, Mutumbo M, Nakano JH, Paluku KM, Szczeniowski M. Human monkeypox: a study of 2,510 contacts of 214 patients. J Infect Dis. 1986;154(4):551–5.CrossRef Jezek Z, Marennikova SS, Mutumbo M, Nakano JH, Paluku KM, Szczeniowski M. Human monkeypox: a study of 2,510 contacts of 214 patients. J Infect Dis. 1986;154(4):551–5.CrossRef
36.
go back to reference Rimoin AW, Mulembakani PM, Johnston SC, Lloyd Smith JO, Kisalu NK, Kinkela TL, et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc Natl Acad Sci USA. 2010;14(37):16262–7.CrossRef Rimoin AW, Mulembakani PM, Johnston SC, Lloyd Smith JO, Kisalu NK, Kinkela TL, et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc Natl Acad Sci USA. 2010;14(37):16262–7.CrossRef
37.
go back to reference Magnuson HJ, Thomas EW, Olansky S, Kaplan BI, De Mello L, Cutler JC. Inoculation syphilis in human volunteers. Medicine (Baltimore). 1956;35(1):33–82.CrossRef Magnuson HJ, Thomas EW, Olansky S, Kaplan BI, De Mello L, Cutler JC. Inoculation syphilis in human volunteers. Medicine (Baltimore). 1956;35(1):33–82.CrossRef
38.
go back to reference Tan DHS, Jaeranny S, Li M, Sukhdeo SS, Monge JC, Callejas MF, et al. Atypical clinical presentation of monkeypox complicated by myopericarditis. Open Forum Infect Dis. 2022;ofac394. Tan DHS, Jaeranny S, Li M, Sukhdeo SS, Monge JC, Callejas MF, et al. Atypical clinical presentation of monkeypox complicated by myopericarditis. Open Forum Infect Dis. 2022;ofac394.
39.
go back to reference Weinstein RA, Nalca A, Rimoin AW, Bavari S, Whitehouse CA. Reemergence of monkeypox: prevalence, diagnostics, and countermeasures. Clin Infect Dis. 2005;41(12):1765–71.CrossRef Weinstein RA, Nalca A, Rimoin AW, Bavari S, Whitehouse CA. Reemergence of monkeypox: prevalence, diagnostics, and countermeasures. Clin Infect Dis. 2005;41(12):1765–71.CrossRef
40.
go back to reference Bayer-Garner IB. Monkeypox virus: histologic, immunohistochemical and electron-microscopic findings. J Cutan Pathol. 2005;32(1):28–34.CrossRef Bayer-Garner IB. Monkeypox virus: histologic, immunohistochemical and electron-microscopic findings. J Cutan Pathol. 2005;32(1):28–34.CrossRef
41.
go back to reference McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis. 2014;58(2):260–7.CrossRef McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis. 2014;58(2):260–7.CrossRef
42.
go back to reference Aden TA, Blevins P, York SW, Rager S, Balachandran D, Hutson CL, et al. Rapid Diagnostic Testing for response to the Monkeypox Outbreak - Laboratory Response Network, United States, May 17-June 30, 2022. MMWR Morb Mortal Wkly Rep. 2022;71(28):904–7.CrossRef Aden TA, Blevins P, York SW, Rager S, Balachandran D, Hutson CL, et al. Rapid Diagnostic Testing for response to the Monkeypox Outbreak - Laboratory Response Network, United States, May 17-June 30, 2022. MMWR Morb Mortal Wkly Rep. 2022;71(28):904–7.CrossRef
43.
go back to reference Sukhdeo SS, Aldhaheri K, Lam PW, Walmsley S. A case of human monkeypox in Canada. CMAJ Can Med Assoc J J Assoc Med Can. 2022;cmaj.220886. Sukhdeo SS, Aldhaheri K, Lam PW, Walmsley S. A case of human monkeypox in Canada. CMAJ Can Med Assoc J J Assoc Med Can. 2022;cmaj.220886.
44.
go back to reference Yang G, Pevear DC, Davies MH, Collett MS, Bailey T, Rippen S, et al. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. J Virol. 2005;79(20):13139–49.CrossRef Yang G, Pevear DC, Davies MH, Collett MS, Bailey T, Rippen S, et al. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. J Virol. 2005;79(20):13139–49.CrossRef
45.
go back to reference Duraffour S, Snoeck R, de Vos R, van Den Oord JJ, Crance JM, Garin D, et al. Activity of the anti-orthopoxvirus compound ST-246 against vaccinia, cowpox and camelpox viruses in cell monolayers and organotypic raft cultures. Antivir Ther. 2007;12(8):1205–16.CrossRef Duraffour S, Snoeck R, de Vos R, van Den Oord JJ, Crance JM, Garin D, et al. Activity of the anti-orthopoxvirus compound ST-246 against vaccinia, cowpox and camelpox viruses in cell monolayers and organotypic raft cultures. Antivir Ther. 2007;12(8):1205–16.CrossRef
46.
go back to reference Tecovirimat Capsules—Product Monograph. 2020;28. Tecovirimat Capsules—Product Monograph. 2020;28.
47.
go back to reference Lederman ER, Davidson W, Groff HL, Smith SK, Warkentien T, Li Y, et al. Progressive vaccinia: case description and laboratory-guided therapy with vaccinia immune globulin, ST-246, and CMX001. J Infect Dis. 2012;206(9):1372–85.CrossRef Lederman ER, Davidson W, Groff HL, Smith SK, Warkentien T, Li Y, et al. Progressive vaccinia: case description and laboratory-guided therapy with vaccinia immune globulin, ST-246, and CMX001. J Infect Dis. 2012;206(9):1372–85.CrossRef
48.
go back to reference Chan-Tack KM, Harrington PR, Choi SY, Myers L, O’Rear J, Seo S, et al. Assessing a drug for an eradicated human disease: US Food and Drug Administration review of tecovirimat for the treatment of smallpox. Lancet Infect Dis. 2019;19(6):e221-4.CrossRef Chan-Tack KM, Harrington PR, Choi SY, Myers L, O’Rear J, Seo S, et al. Assessing a drug for an eradicated human disease: US Food and Drug Administration review of tecovirimat for the treatment of smallpox. Lancet Infect Dis. 2019;19(6):e221-4.CrossRef
49.
go back to reference Grosenbach DW, Honeychurch K, Rose EA, Chinsangaram J, Frimm A, Maiti B, et al. Oral Tecovirimat for the treatment of Smallpox. N Engl J Med. 2018;5(1):44–53.CrossRef Grosenbach DW, Honeychurch K, Rose EA, Chinsangaram J, Frimm A, Maiti B, et al. Oral Tecovirimat for the treatment of Smallpox. N Engl J Med. 2018;5(1):44–53.CrossRef
50.
go back to reference Grosenbach DW, Berhanu A, King DS, Mosier S, Jones KF, Jordan RA, et al. Efficacy of ST-246 versus lethal poxvirus challenge in immunodeficient mice. Proc Natl Acad Sci USA. 2010;107(2):838–43.CrossRef Grosenbach DW, Berhanu A, King DS, Mosier S, Jones KF, Jordan RA, et al. Efficacy of ST-246 versus lethal poxvirus challenge in immunodeficient mice. Proc Natl Acad Sci USA. 2010;107(2):838–43.CrossRef
51.
go back to reference Zaitseva M, Shotwell E, Scott J, Cruz S, King LR, Manischewitz J, et al. Effects of postchallenge administration of ST-246 on dissemination of IHD-J-Luc vaccinia virus in normal mice and in immune-deficient mice reconstituted with T cells. J Virol. 2013;87(10):5564–76.CrossRef Zaitseva M, Shotwell E, Scott J, Cruz S, King LR, Manischewitz J, et al. Effects of postchallenge administration of ST-246 on dissemination of IHD-J-Luc vaccinia virus in normal mice and in immune-deficient mice reconstituted with T cells. J Virol. 2013;87(10):5564–76.CrossRef
52.
go back to reference Rao AK, Schulte J, Chen TH, Hughes CM, Davidson W, Neff JM, et al. Monkeypox in a traveler returning from Nigeria—Dallas, Texas, July 2021. Morb Mortal Wkly Rep. 2022;71(14):509–16.CrossRef Rao AK, Schulte J, Chen TH, Hughes CM, Davidson W, Neff JM, et al. Monkeypox in a traveler returning from Nigeria—Dallas, Texas, July 2021. Morb Mortal Wkly Rep. 2022;71(14):509–16.CrossRef
53.
go back to reference Adler H, Gould S, Hine P, Snell LB, Wong W, Houlihan CF, et al. Clinical features and management of human monkeypox: a retrospective observational study in the UK. Lancet Infect Dis. 2022;22(8):1153–62.CrossRef Adler H, Gould S, Hine P, Snell LB, Wong W, Houlihan CF, et al. Clinical features and management of human monkeypox: a retrospective observational study in the UK. Lancet Infect Dis. 2022;22(8):1153–62.CrossRef
54.
go back to reference Russo AT, Berhanu A, Bigger CB, Prigge J, Silvera PM, Grosenbach DW, et al. Co-administration of tecovirimat and ACAM2000TM in non-human primates: effect of tecovirimat treatment on ACAM2000 immunogenicity and efficacy versus lethal monkeypox virus challenge. Vaccine. 2020;38(3):644–54.CrossRef Russo AT, Berhanu A, Bigger CB, Prigge J, Silvera PM, Grosenbach DW, et al. Co-administration of tecovirimat and ACAM2000TM in non-human primates: effect of tecovirimat treatment on ACAM2000 immunogenicity and efficacy versus lethal monkeypox virus challenge. Vaccine. 2020;38(3):644–54.CrossRef
55.
go back to reference Quenelle DC, Prichard MN, Keith KA, Hruby DE, Jordan R, Painter GR, et al. Synergistic efficacy of the combination of ST-246 with CMX001 against orthopoxviruses. Antimicrob Agents Chemother. 2007;51(11):4118–24.CrossRef Quenelle DC, Prichard MN, Keith KA, Hruby DE, Jordan R, Painter GR, et al. Synergistic efficacy of the combination of ST-246 with CMX001 against orthopoxviruses. Antimicrob Agents Chemother. 2007;51(11):4118–24.CrossRef
57.
go back to reference Buller RM, Owens G, Schriewer J, Melman L, Beadle JR, Hostetler KY. Efficacy of oral active ether lipid analogs of cidofovir in a lethal mousepox model. Virology. 2004;20(2):474–81.CrossRef Buller RM, Owens G, Schriewer J, Melman L, Beadle JR, Hostetler KY. Efficacy of oral active ether lipid analogs of cidofovir in a lethal mousepox model. Virology. 2004;20(2):474–81.CrossRef
58.
go back to reference Ciesla SL, Trahan J, Wan WB, Beadle JR, Aldern KA, Painter GR, et al. Esterification of cidofovir with alkoxyalkanols increases oral bioavailability and diminishes drug accumulation in kidney. Antiviral Res. 2003;59(3):163–71.CrossRef Ciesla SL, Trahan J, Wan WB, Beadle JR, Aldern KA, Painter GR, et al. Esterification of cidofovir with alkoxyalkanols increases oral bioavailability and diminishes drug accumulation in kidney. Antiviral Res. 2003;59(3):163–71.CrossRef
59.
go back to reference Parker S, Touchette E, Oberle C, Almond M, Robertson A, Trost LC, et al. Efficacy of therapeutic intervention with an oral ether-lipid analogue of cidofovir (CMX001) in a lethal mousepox model. Antiviral Res. 2008;77(1):39–49.CrossRef Parker S, Touchette E, Oberle C, Almond M, Robertson A, Trost LC, et al. Efficacy of therapeutic intervention with an oral ether-lipid analogue of cidofovir (CMX001) in a lethal mousepox model. Antiviral Res. 2008;77(1):39–49.CrossRef
60.
go back to reference Trost LC, Rose ML, Khouri J, Keilholz L, Long J, Godin SJ, et al. The efficacy and pharmacokinetics of brincidofovir for the treatment of lethal rabbitpox virus infection: a model of smallpox disease. Antiviral Res. 2015;117:115–21.CrossRef Trost LC, Rose ML, Khouri J, Keilholz L, Long J, Godin SJ, et al. The efficacy and pharmacokinetics of brincidofovir for the treatment of lethal rabbitpox virus infection: a model of smallpox disease. Antiviral Res. 2015;117:115–21.CrossRef
61.
go back to reference Marty FM, Winston DJ, Chemaly RF, Mullane KM, Shore TB, Papanicolaou GA, et al. A Randomized, Double-Blind, placebo-controlled phase 3 trial of oral Brincidofovir for Cytomegalovirus Prophylaxis in Allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2019;25(2):369–81.CrossRef Marty FM, Winston DJ, Chemaly RF, Mullane KM, Shore TB, Papanicolaou GA, et al. A Randomized, Double-Blind, placebo-controlled phase 3 trial of oral Brincidofovir for Cytomegalovirus Prophylaxis in Allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2019;25(2):369–81.CrossRef
62.
go back to reference Chittick G, Morrison M, Brundage T, Nichols WG. Short-term clinical safety profile of brincidofovir: a favorable benefit-risk proposition in the treatment of smallpox. Antiviral Res. 2017;143:269–77.CrossRef Chittick G, Morrison M, Brundage T, Nichols WG. Short-term clinical safety profile of brincidofovir: a favorable benefit-risk proposition in the treatment of smallpox. Antiviral Res. 2017;143:269–77.CrossRef
64.
go back to reference Monath TP, Caldwell JR, Mundt W, Fusco J, Johnson CS, Buller M, et al. ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)—a second-generation smallpox vaccine for biological defense. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2004;8(Suppl 2):31–44. Monath TP, Caldwell JR, Mundt W, Fusco J, Johnson CS, Buller M, et al. ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)—a second-generation smallpox vaccine for biological defense. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2004;8(Suppl 2):31–44.
65.
go back to reference Frey SE, Newman FK, Kennedy JS, Ennis F, Abate G, Hoft DF, et al. Comparison of the safety and immunogenicity of ACAM1000, ACAM2000 and dryvax in healthy vaccinia-naive adults. Vaccine. 2009;27(10):1637–44.CrossRef Frey SE, Newman FK, Kennedy JS, Ennis F, Abate G, Hoft DF, et al. Comparison of the safety and immunogenicity of ACAM1000, ACAM2000 and dryvax in healthy vaccinia-naive adults. Vaccine. 2009;27(10):1637–44.CrossRef
66.
go back to reference Fulginiti VA, Papier A, Lane JM, Neff JM, Henderson DA, et al. Smallpox vaccination: a review, Part I. Background, vaccination technique, normal vaccination and revaccination, and expected normal reactions. Clin Infect Dis. 2003;37(2):241–50.CrossRef Fulginiti VA, Papier A, Lane JM, Neff JM, Henderson DA, et al. Smallpox vaccination: a review, Part I. Background, vaccination technique, normal vaccination and revaccination, and expected normal reactions. Clin Infect Dis. 2003;37(2):241–50.CrossRef
67.
go back to reference Beachkofsky TM, Carrizales SC, Bidinger JJ, Hrncir DE, Whittemore DE, Hivnor CM. Adverse events following smallpox vaccination with ACAM2000 in a military population. Arch Dermatol. 2010;146(6):656–61.CrossRef Beachkofsky TM, Carrizales SC, Bidinger JJ, Hrncir DE, Whittemore DE, Hivnor CM. Adverse events following smallpox vaccination with ACAM2000 in a military population. Arch Dermatol. 2010;146(6):656–61.CrossRef
68.
go back to reference McNeil MM, Cano M, Miller R, Petersen E, Engler BW, Bryant-Genevier RJM. Ischemic cardiac events and other adverse events following ACAM2000(®) smallpox vaccine in the vaccine adverse event reporting system. Vaccine. 2014;32(37):4758–65.CrossRef McNeil MM, Cano M, Miller R, Petersen E, Engler BW, Bryant-Genevier RJM. Ischemic cardiac events and other adverse events following ACAM2000(®) smallpox vaccine in the vaccine adverse event reporting system. Vaccine. 2014;32(37):4758–65.CrossRef
69.
go back to reference Decker MD, Garman PM, Hughes H, Yacovone MA, Collins LC, Fegley CD, et al. Enhanced safety surveillance study of ACAM2000 smallpox vaccine among US military service members. Vaccine. 2021;15(39):5541–7.CrossRef Decker MD, Garman PM, Hughes H, Yacovone MA, Collins LC, Fegley CD, et al. Enhanced safety surveillance study of ACAM2000 smallpox vaccine among US military service members. Vaccine. 2021;15(39):5541–7.CrossRef
72.
go back to reference Pittman PR, Hahn M, Lee HS, Koca C, Samy N, Schmidt D, et al. Phase 3 efficacy trial of modified Vaccinia Ankara as a vaccine against Smallpox. N Engl J Med. 2019;14(20):1897–908.CrossRef Pittman PR, Hahn M, Lee HS, Koca C, Samy N, Schmidt D, et al. Phase 3 efficacy trial of modified Vaccinia Ankara as a vaccine against Smallpox. N Engl J Med. 2019;14(20):1897–908.CrossRef
Metadata
Title
Human monkeypox: a comparison of the characteristics of the new epidemic to the endemic disease
Authors
Sharon Sukhdeo
Sharmistha Mishra
Sharon Walmsley
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07900-7

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine