Skip to main content
Top
Published in: BMC Neurology 1/2022

Open Access 01-12-2022 | Motor Evoked Potential | Research

Normal parameters for diagnostic transcranial magnetic stimulation using a parabolic coil with biphasic pulse stimulation

Authors: Pimthong Jitsakulchaidej, Pakorn Wivatvongvana, Kittipong Kitisak

Published in: BMC Neurology | Issue 1/2022

Login to get access

Abstract

Background

TMS is being used to aid in the diagnosis of central nervous system (CNS) illnesses. It is useful in planning rehabilitation programs and setting appropriate goals for patients. We used a parabolic coil with biphasic pulse stimulation to find normal values for diagnostic TMS parameters.

Objectives

1. To determine the normal motor threshold (MT), motor evoked potentials (MEP), central motor conduction time (CMCT), intracortical facilitation (ICF), short-interval intracortical inhibition (SICI), and silent period (SP) values. 2. To measure the MEP latencies of abductor pollicis brevis (APB) and extensor digitorum brevis (EDB) at various ages, heights, and arm and leg lengths.

Study design

Descriptive Study.

Setting

Department of Rehabilitation Medicine, Chiang Mai University, Thailand.

Subjects

Forty-eight healthy participants volunteered for the study.

Methods

All participants received a single diagnostic TMS using a parabolic coil with biphasic pulse stimulation on the left primary motor cortex (M1). All parameters: MT, MEP, CMCT, ICF, SICI, and SP were recorded through surface EMGs at the right APB and EDB. Outcome parameters were reported by the mean and standard deviation (SD) or median and interquartile range (IQR), according to data distribution. MEP latencies of APB and EDB were also measured at various ages, heights, and arm and leg lengths.

Results

APB-MEP latencies at 120% and 140% MT were 21.77 ± 1.47 and 21.17 ± 1.44 ms. APB-CMCT at 120% and 140% MT were 7.81 ± 1.32 and 7.19 ± 1.21 ms. APB-MEP amplitudes at 120% and 140% MT were 1.04 (0.80–1.68) and 2.24 (1.47–3.52) mV. EDB-MEP latencies at 120% and 140% MT were 37.14 ± 2.85 and 36.46 ± 2.53 ms. EDB-CMCT at 120% and 140% MT were 14.33 ± 2.50 and 13.63 ± 2.57 ms. EDB-MEP amplitudes at 120% and 140% MT were 0.60 (0.38–0.98) and 0.95 (0.69–1.55) mV. ICF amplitudes of APB and EDB were 2.26 (1.61–3.49) and 1.26 (0.88–1.98) mV. SICI amplitudes of APB and EDB were 0.21 (0.13–0.51) and 0.18 (0.09–0.29) mV. MEP latencies of APB at 120% and 140% MT were different between heights < 160 cm and ≥ 160 cm (p < 0.001 and p < 0.001) and different between arm lengths < 65 and ≥ 65 cm (p = 0.022 and p = 0.002).

Conclusion

We established diagnostic TMS measurements using a parabolic coil with a biphasic pulse configuration. EDB has a higher MT than APB. The 140/120 MEP ratio of APB and EDB is two-fold. The optimal MEP recording for APB is 120%, whereas EDB is 140% of MT. CMCT by the F-wave is more convenient and tolerable for patients. ICF provides a twofold increase in MEP amplitude. SICI provides a ¼-fold of MEP amplitude. SP from APB and EDB are 121.58 ± 21.50 and 181.01 ± 40.99 ms, respectively. Height and MEP latencies have a modest relationship, whereas height and arm length share a strong positive correlation.
Literature
1.
go back to reference Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;325(8437):1106–7.CrossRef Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;325(8437):1106–7.CrossRef
2.
go back to reference Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145–56.CrossRef Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145–56.CrossRef
3.
go back to reference Rossini PM, Rossi S. Transcranial magnetic stimulation Diagnostic, therapeutic, and research potential. Neurology. 2007;68(7):484–8.CrossRef Rossini PM, Rossi S. Transcranial magnetic stimulation Diagnostic, therapeutic, and research potential. Neurology. 2007;68(7):484–8.CrossRef
4.
go back to reference Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiology. 2015;126(6):1071–107.CrossRef Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiology. 2015;126(6):1071–107.CrossRef
5.
go back to reference Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen L, Mall V, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2012;123(5):858–82.CrossRef Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen L, Mall V, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2012;123(5):858–82.CrossRef
6.
go back to reference Rossini PM, Barker A, Berardelli A, Caramia M, Caruso G, Cracco R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.CrossRef Rossini PM, Barker A, Berardelli A, Caramia M, Caruso G, Cracco R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.CrossRef
7.
go back to reference Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur J-P, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2008;119(3):504–32.CrossRef Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur J-P, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2008;119(3):504–32.CrossRef
8.
go back to reference Rossini PM, Burke D, Chen R, Cohen L, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiology. 2015;126(6):1071–107.CrossRef Rossini PM, Burke D, Chen R, Cohen L, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiology. 2015;126(6):1071–107.CrossRef
9.
go back to reference Vucic S, Kiernan MC. Transcranial magnetic stimulation for the assessment of neurodegenerative disease. Neurotherapeutics. 2017;14(1):91–106.CrossRef Vucic S, Kiernan MC. Transcranial magnetic stimulation for the assessment of neurodegenerative disease. Neurotherapeutics. 2017;14(1):91–106.CrossRef
10.
11.
go back to reference Claus D. Central motor conduction: method and normal results. Muscle Nerve. 1990;13(12):1125–32.CrossRef Claus D. Central motor conduction: method and normal results. Muscle Nerve. 1990;13(12):1125–32.CrossRef
12.
go back to reference Lanza G, Puglisi V, Vinciguerra L, Fisicaro F, Vagli C, Cantone M, et al. TMS correlates of pyramidal tract signs and clinical motor status in patients with cervical spondylotic myelopathy. Brain Sci. 2020;10(11):806.CrossRef Lanza G, Puglisi V, Vinciguerra L, Fisicaro F, Vagli C, Cantone M, et al. TMS correlates of pyramidal tract signs and clinical motor status in patients with cervical spondylotic myelopathy. Brain Sci. 2020;10(11):806.CrossRef
13.
go back to reference Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, et al. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol. 2021;132(10):2568–607.CrossRef Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, et al. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol. 2021;132(10):2568–607.CrossRef
14.
go back to reference Escudero JV, Sancho J, Bautista D, Escudero M, López Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke. 1998;29(9):1854–9.CrossRef Escudero JV, Sancho J, Bautista D, Escudero M, López Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke. 1998;29(9):1854–9.CrossRef
15.
go back to reference Cantone M, Lanza G, Ranieri F, Opie GM, Terranova C. Non-invasive brain stimulation in the study and modulation of metaplasticity in neurological disorders. Front Neurol. 2021;12:721906.CrossRef Cantone M, Lanza G, Ranieri F, Opie GM, Terranova C. Non-invasive brain stimulation in the study and modulation of metaplasticity in neurological disorders. Front Neurol. 2021;12:721906.CrossRef
16.
go back to reference Karabanov A, Ziemann U, Hamada M, George MS, Quartarone A, Classen J, et al. Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation. Brain Stimul. 2015;8(3):442–54.CrossRef Karabanov A, Ziemann U, Hamada M, George MS, Quartarone A, Classen J, et al. Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation. Brain Stimul. 2015;8(3):442–54.CrossRef
17.
go back to reference Pipatsrisawat S, Klaphajone J, Kitisak K, Sungkarat S, Wivatvongvana P. Effects of combining two techniques of non-invasive brain stimulation in subacute stroke patients: a pilot study. BMC Neurol. 2022;22(1):98.CrossRef Pipatsrisawat S, Klaphajone J, Kitisak K, Sungkarat S, Wivatvongvana P. Effects of combining two techniques of non-invasive brain stimulation in subacute stroke patients: a pilot study. BMC Neurol. 2022;22(1):98.CrossRef
18.
go back to reference Furby A, Bourriez J, Jacquesson J, Mounier-Vehier F, Guieu J. Motor evoked potentials to magnetic stimulation: technical considerations and normative data from 50 subjects. J Neurol. 1992;239(3):152–6.CrossRef Furby A, Bourriez J, Jacquesson J, Mounier-Vehier F, Guieu J. Motor evoked potentials to magnetic stimulation: technical considerations and normative data from 50 subjects. J Neurol. 1992;239(3):152–6.CrossRef
19.
go back to reference Eisen AA, Shtybel W. Clinical experience with transcranial magnetic stimulation. Muscle Nerve. 1990;13:995–1011.CrossRef Eisen AA, Shtybel W. Clinical experience with transcranial magnetic stimulation. Muscle Nerve. 1990;13:995–1011.CrossRef
20.
go back to reference Triggs WJ, Calvanio R, Macdonell RA, Cros D, Chiappa KH. Physiological motor asymmetry in human handedness: evidence from transcranial magnetic stimulation. Brain Res. 1994;636(2):270–6.CrossRef Triggs WJ, Calvanio R, Macdonell RA, Cros D, Chiappa KH. Physiological motor asymmetry in human handedness: evidence from transcranial magnetic stimulation. Brain Res. 1994;636(2):270–6.CrossRef
21.
go back to reference Garassus P, Charles N, Mauguere F. Assessment of motor conduction times using magnetic stimulation of brain, spinal cord and peripheral nerves. Electromyogr Clin Neurophysiol. 1993;33(1):3–10. Garassus P, Charles N, Mauguere F. Assessment of motor conduction times using magnetic stimulation of brain, spinal cord and peripheral nerves. Electromyogr Clin Neurophysiol. 1993;33(1):3–10.
23.
go back to reference Cantone M, Lanza G, Vinciguerra L, Puglisi V, Ricceri R, Fisicaro F, et al. Age, height, and sex on motor evoked potentials: translational data from a large italian cohort in a clinical environment. Front Hum Neurosci. 2019;13:185.CrossRef Cantone M, Lanza G, Vinciguerra L, Puglisi V, Ricceri R, Fisicaro F, et al. Age, height, and sex on motor evoked potentials: translational data from a large italian cohort in a clinical environment. Front Hum Neurosci. 2019;13:185.CrossRef
24.
go back to reference Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin neurophysiol. 2009;120(12):2008–39.CrossRef Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin neurophysiol. 2009;120(12):2008–39.CrossRef
25.
go back to reference Nilchaikovit T. Development of Thai version of Hospital Anxiety and Depression Scale in cancer patients. J Psychiatr Assoc Thai. 1996;4:18–30. Nilchaikovit T. Development of Thai version of Hospital Anxiety and Depression Scale in cancer patients. J Psychiatr Assoc Thai. 1996;4:18–30.
26.
go back to reference TtBF C. Thai mental state examination (TMSE). Siriraj Hospital Gazette. 1993;45:661–74. TtBF C. Thai mental state examination (TMSE). Siriraj Hospital Gazette. 1993;45:661–74.
27.
go back to reference Holmes NP, Tamè L, Beeching P, Medford M, Rakova M, Stuart A, et al. Locating primary somatosensory cortex in human brain stimulation studies: experimental evidence. J Neurophysiol. 2019;121(1):336–44.CrossRef Holmes NP, Tamè L, Beeching P, Medford M, Rakova M, Stuart A, et al. Locating primary somatosensory cortex in human brain stimulation studies: experimental evidence. J Neurophysiol. 2019;121(1):336–44.CrossRef
28.
go back to reference Möller C, Arai N, Lücke J, Ziemann U. Hysteresis effects on the input-output curve of motor evoked potentials. Clin Neurophysiol. 2009;120(5):1003–8.CrossRef Möller C, Arai N, Lücke J, Ziemann U. Hysteresis effects on the input-output curve of motor evoked potentials. Clin Neurophysiol. 2009;120(5):1003–8.CrossRef
29.
go back to reference Valls-Sole J, Pascual-Leone A, Brasil-Neto J, Cammarota A, McShane L, Hallett M. Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease. Neurology. 1994;44(4):735.CrossRef Valls-Sole J, Pascual-Leone A, Brasil-Neto J, Cammarota A, McShane L, Hallett M. Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease. Neurology. 1994;44(4):735.CrossRef
30.
go back to reference Siniatchkin M, Groppa S, Siebner H, Stephani U. A single dose of sulthiame induces a selective increase in resting motor threshold in human motor cortex: A transcranial magnetic stimulation study. Epilepsy Res. 2006;72(1):18–24.CrossRef Siniatchkin M, Groppa S, Siebner H, Stephani U. A single dose of sulthiame induces a selective increase in resting motor threshold in human motor cortex: A transcranial magnetic stimulation study. Epilepsy Res. 2006;72(1):18–24.CrossRef
31.
go back to reference Lazzaro VD, Oliviero A, Profice P, Pennisi M, Pilato F, Zito G, et al. Ketamine increases human motor cortex excitability to transcranial magnetic stimulation. J Physiol. 2003;547(2):485–96.CrossRef Lazzaro VD, Oliviero A, Profice P, Pennisi M, Pilato F, Zito G, et al. Ketamine increases human motor cortex excitability to transcranial magnetic stimulation. J Physiol. 2003;547(2):485–96.CrossRef
32.
go back to reference Stokes MG, Chambers CD, Gould IC, English T, McNaught E, McDonald O, et al. Distance-adjusted motor threshold for transcranial magnetic stimulation. Clin Neurophysiol. 2007;118(7):1617–25.CrossRef Stokes MG, Chambers CD, Gould IC, English T, McNaught E, McDonald O, et al. Distance-adjusted motor threshold for transcranial magnetic stimulation. Clin Neurophysiol. 2007;118(7):1617–25.CrossRef
33.
go back to reference Chen R, Corwell B, Yaseen Z, Hallett M, Cohen LG. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci. 1998;18(9):3443–50.CrossRef Chen R, Corwell B, Yaseen Z, Hallett M, Cohen LG. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci. 1998;18(9):3443–50.CrossRef
34.
go back to reference Lefaucheur J, Drouot X, Menard-Lefaucheur I, Keravel Y, Nguyen J. Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology. 2006;67(9):1568–74.CrossRef Lefaucheur J, Drouot X, Menard-Lefaucheur I, Keravel Y, Nguyen J. Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology. 2006;67(9):1568–74.CrossRef
35.
go back to reference Specterman M, Bhuiya A, Kuppuswamy A, Strutton PH, Catley M, Davey NJ. The effect of an energy drink containing glucose and caffeine on human corticospinal excitability. Physiol Behav. 2005;83(5):723–8.CrossRef Specterman M, Bhuiya A, Kuppuswamy A, Strutton PH, Catley M, Davey NJ. The effect of an energy drink containing glucose and caffeine on human corticospinal excitability. Physiol Behav. 2005;83(5):723–8.CrossRef
36.
go back to reference Civardi C, Boccagni C, Vicentini R, Bolamperti L, Tarletti R, Varrasi C, et al. Cortical excitability and sleep deprivation: a transcranial magnetic stimulation study. J Neurol Neurosur Ps. 2001;71(6):809–12.CrossRef Civardi C, Boccagni C, Vicentini R, Bolamperti L, Tarletti R, Varrasi C, et al. Cortical excitability and sleep deprivation: a transcranial magnetic stimulation study. J Neurol Neurosur Ps. 2001;71(6):809–12.CrossRef
37.
go back to reference Livingston SC, Goodkin HP, Ingersoll CD. The Influence of Gender, Hand Dominance, and Upper Extremity Length on Motor Evoked Potentials. J Clin Monit Comput. 2010;24(6):427–36.CrossRef Livingston SC, Goodkin HP, Ingersoll CD. The Influence of Gender, Hand Dominance, and Upper Extremity Length on Motor Evoked Potentials. J Clin Monit Comput. 2010;24(6):427–36.CrossRef
38.
go back to reference Rossini PM, Caramia MD. Central conduction studies and magnetic stimulation. Curr Opin Neurol Neurosurg. 1992;5(5):697–703. Rossini PM, Caramia MD. Central conduction studies and magnetic stimulation. Curr Opin Neurol Neurosurg. 1992;5(5):697–703.
39.
go back to reference Jaiser SR, Barnes JD, Baker SN, Baker MR. A multiple regression model of normal central and peripheral motor conduction times. Muscle Nerve. 2015;51(5):706–12.CrossRef Jaiser SR, Barnes JD, Baker SN, Baker MR. A multiple regression model of normal central and peripheral motor conduction times. Muscle Nerve. 2015;51(5):706–12.CrossRef
40.
go back to reference Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, et al. State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul. 2008;1(3):151–63.CrossRef Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, et al. State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul. 2008;1(3):151–63.CrossRef
41.
go back to reference Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, et al. TMS and drugs revisited 2014. Clin Neurophysiol. 2015;126(10):1847–68.CrossRef Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, et al. TMS and drugs revisited 2014. Clin Neurophysiol. 2015;126(10):1847–68.CrossRef
42.
go back to reference Reeves S, Varakamin C, Henry C. The relationship between arm-span measurement and height with special reference to gender and ethnicity. Eur J Clin Nutr. 1996;50(6):398–400. Reeves S, Varakamin C, Henry C. The relationship between arm-span measurement and height with special reference to gender and ethnicity. Eur J Clin Nutr. 1996;50(6):398–400.
43.
go back to reference Akilan K, Kumar S, Zomorrodi R, Blumberger DM, Daskalakis ZJ, Rajji TK. Gender impact on transcranial magnetic stimulation-based cortical excitability and cognition relationship in healthy individuals. NeuroReport. 2020;31(4):287–92.CrossRef Akilan K, Kumar S, Zomorrodi R, Blumberger DM, Daskalakis ZJ, Rajji TK. Gender impact on transcranial magnetic stimulation-based cortical excitability and cognition relationship in healthy individuals. NeuroReport. 2020;31(4):287–92.CrossRef
44.
go back to reference Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol. 2021;132(1):269–306.CrossRef Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol. 2021;132(1):269–306.CrossRef
Metadata
Title
Normal parameters for diagnostic transcranial magnetic stimulation using a parabolic coil with biphasic pulse stimulation
Authors
Pimthong Jitsakulchaidej
Pakorn Wivatvongvana
Kittipong Kitisak
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2022
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-02977-8

Other articles of this Issue 1/2022

BMC Neurology 1/2022 Go to the issue