Skip to main content
Top
Published in: Experimental Brain Research 3/2023

Open Access 01-03-2023 | Motor Evoked Potential | Research Article

Covariation of the amplitude and latency of motor evoked potentials elicited by transcranial magnetic stimulation in a resting hand muscle

Authors: A. M. Vallence, B. K. Rurak, H. Fujiyama, G. R. Hammond

Published in: Experimental Brain Research | Issue 3/2023

Login to get access

Abstract

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique used to study human neurophysiology. A single TMS pulse delivered to the primary motor cortex can elicit a motor evoked potential (MEP) in a target muscle. MEP amplitude is a measure of corticospinal excitability and MEP latency is a measure of the time taken for intracortical processing, corticofugal conduction, spinal processing, and neuromuscular transmission. Although MEP amplitude is known to vary across trials with constant stimulus intensity, little is known about MEP latency variation. To investigate MEP amplitude and latency variation at the individual level, we scored single-pulse MEP amplitude and latency in a resting hand muscle from two datasets. MEP latency varied from trial to trial in individual participants with a median range of 3.9 ms. Shorter MEP latencies were associated with larger MEP amplitudes for most individuals (median r = − 0.47), showing that latency and amplitude are jointly determined by the excitability of the corticospinal system when TMS is delivered. TMS delivered during heightened excitability could discharge a greater number of cortico-cortical and corticospinal cells, increasing the amplitude and, by recurrent activation of corticospinal cells, the number of descending indirect waves. An increase in the amplitude and number of indirect waves would progressively recruit larger spinal motor neurons with large-diameter fast-conducting fibers, which would shorten MEP onset latency and increase MEP amplitude. In addition to MEP amplitude variability, understanding MEP latency variability is important given that these parameters are used to help characterize pathophysiology of movement disorders.
Literature
go back to reference Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107PubMedCrossRef Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107PubMedCrossRef
go back to reference Bastani A, Jaberzadeh S (2012) A higher number of tms-elicited mep from a combined hotspot improves intra- and inter-session reliability of the upper limb muscles in healthy individuals. PLoS ONE 7(10):e47582PubMedPubMedCentralCrossRef Bastani A, Jaberzadeh S (2012) A higher number of tms-elicited mep from a combined hotspot improves intra- and inter-session reliability of the upper limb muscles in healthy individuals. PLoS ONE 7(10):e47582PubMedPubMedCentralCrossRef
go back to reference Bergmann TO, Mölle M, Schmidt MA, Lindner C, Marshall L, Born J, Siebner HR (2012) EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation. J Neurosci 32(1):243–253PubMedPubMedCentralCrossRef Bergmann TO, Mölle M, Schmidt MA, Lindner C, Marshall L, Born J, Siebner HR (2012) EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation. J Neurosci 32(1):243–253PubMedPubMedCentralCrossRef
go back to reference Bergmann TO, Lie A, Zrenner C, Ziemann U (2019) Pulsed facilitation of corticospinal excitability by the sensorimotor mu-alpha rhythm. J Neurosci 39(50):10034–10043PubMedPubMedCentralCrossRef Bergmann TO, Lie A, Zrenner C, Ziemann U (2019) Pulsed facilitation of corticospinal excitability by the sensorimotor mu-alpha rhythm. J Neurosci 39(50):10034–10043PubMedPubMedCentralCrossRef
go back to reference Biabani M, Farrell M, Zoghi M, Egan G, Jaberzadeh S (2018) The minimal number of TMS trials required for the reliable assessment of corticospinal excitability, short interval intracortical inhibition, and intracortical facilitation. Neurosci Lett 674:94–100PubMedCrossRef Biabani M, Farrell M, Zoghi M, Egan G, Jaberzadeh S (2018) The minimal number of TMS trials required for the reliable assessment of corticospinal excitability, short interval intracortical inhibition, and intracortical facilitation. Neurosci Lett 674:94–100PubMedCrossRef
go back to reference Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420PubMedPubMedCentralCrossRef Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420PubMedPubMedCentralCrossRef
go back to reference Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929PubMedCrossRef Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929PubMedCrossRef
go back to reference Day BL, Rothwell JC, Thompson PD, Dick JP, Cowan JM, Berardelli A, Marsden CD (1987) Motor cortex stimulation in intact man. 2. Multiple descending volleys. Brain 110(Pt 5):1191–1209PubMedCrossRef Day BL, Rothwell JC, Thompson PD, Dick JP, Cowan JM, Berardelli A, Marsden CD (1987) Motor cortex stimulation in intact man. 2. Multiple descending volleys. Brain 110(Pt 5):1191–1209PubMedCrossRef
go back to reference Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989) Electric and magnetic stimulation of human motor cortex: Surface EMG and single motor unit responses. J Physiol 412:449–473PubMedPubMedCentralCrossRef Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989) Electric and magnetic stimulation of human motor cortex: Surface EMG and single motor unit responses. J Physiol 412:449–473PubMedPubMedCentralCrossRef
go back to reference Desideri D, Zrenner C, Ziemann U, Belardinelli P (2019) Phase of sensorimotor mu-oscillation modulates cortical responses to transcranial magnetic stimulation of the human motor cortex. J Physiol-London 597(23):5671–5686PubMedCrossRef Desideri D, Zrenner C, Ziemann U, Belardinelli P (2019) Phase of sensorimotor mu-oscillation modulates cortical responses to transcranial magnetic stimulation of the human motor cortex. J Physiol-London 597(23):5671–5686PubMedCrossRef
go back to reference Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 109(397–401):397–401PubMedCrossRef Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 109(397–401):397–401PubMedCrossRef
go back to reference Di Lazzaro V, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, Profice P, Tonali P, Rothwell JC (2001) The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Exp Brain Res 138(2):268–273PubMedCrossRef Di Lazzaro V, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, Profice P, Tonali P, Rothwell JC (2001) The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Exp Brain Res 138(2):268–273PubMedCrossRef
go back to reference Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, Oliviero A, Pilato F (2012) I-wave origin and modulation. Brain Stimul 5(4):512–525PubMedCrossRef Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, Oliviero A, Pilato F (2012) I-wave origin and modulation. Brain Stimul 5(4):512–525PubMedCrossRef
go back to reference Goldsworthy M, Hordacre B, Ridding M (2016) Minimum number of trials required for within-and between-session reliability of TMS measures of corticospinal excitability. Neuroscience 320:205–209PubMedCrossRef Goldsworthy M, Hordacre B, Ridding M (2016) Minimum number of trials required for within-and between-session reliability of TMS measures of corticospinal excitability. Neuroscience 320:205–209PubMedCrossRef
go back to reference Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Sole J, Siebner HR (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123(5):858–882PubMedPubMedCentralCrossRef Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Sole J, Siebner HR (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123(5):858–882PubMedPubMedCentralCrossRef
go back to reference Hordacre B, Goldsworthy MR, Vallence A-M, Darvishi S, Moezzi B, Hamada M, Rothwell JC, Ridding MC (2017) Variability in neural excitability and plasticity induction in the human cortex: a brain stimulation study. Brain Stimul 10(3):588–595PubMedCrossRef Hordacre B, Goldsworthy MR, Vallence A-M, Darvishi S, Moezzi B, Hamada M, Rothwell JC, Ridding MC (2017) Variability in neural excitability and plasticity induction in the human cortex: a brain stimulation study. Brain Stimul 10(3):588–595PubMedCrossRef
go back to reference Huang G, Mouraux A (2015) MEP latencies predict the neuromodulatory effect of ctbs delivered to the ipsilateral and contralateral sensorimotor cortex. PLoS ONE 10(8):e0133893PubMedPubMedCentralCrossRef Huang G, Mouraux A (2015) MEP latencies predict the neuromodulatory effect of ctbs delivered to the ipsilateral and contralateral sensorimotor cortex. PLoS ONE 10(8):e0133893PubMedPubMedCentralCrossRef
go back to reference İşcan Z, Schurger A, Vernet M, Sitt JD, Valero-Cabré A (2018) Pre-stimulus theta power is correlated with variation of motor evoked potential latency: a single-pulse TMS study. Exp Brain Res 236(11):3003–3014PubMedCrossRef İşcan Z, Schurger A, Vernet M, Sitt JD, Valero-Cabré A (2018) Pre-stimulus theta power is correlated with variation of motor evoked potential latency: a single-pulse TMS study. Exp Brain Res 236(11):3003–3014PubMedCrossRef
go back to reference Julkunen P, Säisänen L, Danner N, Niskanen E, Hukkanen T, Mervaala E, Könönen M (2009) Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 44(3):790–795PubMedCrossRef Julkunen P, Säisänen L, Danner N, Niskanen E, Hukkanen T, Mervaala E, Könönen M (2009) Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 44(3):790–795PubMedCrossRef
go back to reference Khademi F, Royter V, Gharabaghi A (2019) State-dependent brain stimulation: power or phase? Brain Stimul 12(2):296–299PubMedCrossRef Khademi F, Royter V, Gharabaghi A (2019) State-dependent brain stimulation: power or phase? Brain Stimul 12(2):296–299PubMedCrossRef
go back to reference Livingston SC, Ingersoll CD (2008) intra-rater reliability of a transcranial magnetic stimulation technique to obtain motor evoked potentials. Int J Neurosci 118(2):239–256PubMedCrossRef Livingston SC, Ingersoll CD (2008) intra-rater reliability of a transcranial magnetic stimulation technique to obtain motor evoked potentials. Int J Neurosci 118(2):239–256PubMedCrossRef
go back to reference Opie GM, Semmler JG (2021) Preferential activation of unique motor cortical networks with transcranial magnetic stimulation: a review of the physiological, functional, and clinical evidence. Neuromodulation 24(5):813–828PubMedCrossRef Opie GM, Semmler JG (2021) Preferential activation of unique motor cortical networks with transcranial magnetic stimulation: a review of the physiological, functional, and clinical evidence. Neuromodulation 24(5):813–828PubMedCrossRef
go back to reference Opie GM, Ridding MC, Semmler JG (2015) Age-related differences in pre-and post-synaptic motor cortex inhibition are task dependent. Brain Stimul 8(5):926–936PubMedCrossRef Opie GM, Ridding MC, Semmler JG (2015) Age-related differences in pre-and post-synaptic motor cortex inhibition are task dependent. Brain Stimul 8(5):926–936PubMedCrossRef
go back to reference Qasem H, Fujiyama H, Rurak BK, Vallence AM (2020) Good test–retest reliability of a paired-pulse transcranial magnetic stimulation protocol to measure short-interval intracortical facilitation. Exp Brain Res 238:2711–2723PubMedCrossRef Qasem H, Fujiyama H, Rurak BK, Vallence AM (2020) Good test–retest reliability of a paired-pulse transcranial magnetic stimulation protocol to measure short-interval intracortical facilitation. Exp Brain Res 238:2711–2723PubMedCrossRef
go back to reference Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2011) Screening questionnaire before TMS: an update. Clin Neurophysiol 122(8):1686PubMedCrossRef Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2011) Screening questionnaire before TMS: an update. Clin Neurophysiol 122(8):1686PubMedCrossRef
go back to reference Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015a) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126(6):1071–1107PubMedPubMedCentralCrossRef Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015a) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126(6):1071–1107PubMedPubMedCentralCrossRef
go back to reference Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015b) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiol 126(6):1071–1107PubMedPubMedCentralCrossRef Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015b) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiol 126(6):1071–1107PubMedPubMedCentralCrossRef
go back to reference Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76(2):159–200PubMedCrossRef Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76(2):159–200PubMedCrossRef
go back to reference Säisänen L, Pirinen E, Teitti S, Könönen M, Julkunen P, Määttä S, Karhu J (2008) Factors influencing cortical silent period: Optimized stimulus location, intensity and muscle contraction. J Neurosci Methods 169(1):231–238PubMedCrossRef Säisänen L, Pirinen E, Teitti S, Könönen M, Julkunen P, Määttä S, Karhu J (2008) Factors influencing cortical silent period: Optimized stimulus location, intensity and muscle contraction. J Neurosci Methods 169(1):231–238PubMedCrossRef
go back to reference Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Kanazawa I (1997) Preferential activation of different i waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp Brain Res 113(1):24–32PubMedCrossRef Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Kanazawa I (1997) Preferential activation of different i waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp Brain Res 113(1):24–32PubMedCrossRef
go back to reference Siebner HR, Hartwigsen G, Kassuba T, Rothwell JC (2009) How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex 45(9):1035–1042PubMedPubMedCentralCrossRef Siebner HR, Hartwigsen G, Kassuba T, Rothwell JC (2009) How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex 45(9):1035–1042PubMedPubMedCentralCrossRef
go back to reference Torrecillos F, Falato E, Pogosyan A, West T, Di Lazzaro V, Brown P (2020) Motor cortex inputs at the optimum phase of beta cortical oscillations undergo more rapid and less variable corticospinal propagation. J Neurosci 40(2):369PubMedPubMedCentralCrossRef Torrecillos F, Falato E, Pogosyan A, West T, Di Lazzaro V, Brown P (2020) Motor cortex inputs at the optimum phase of beta cortical oscillations undergo more rapid and less variable corticospinal propagation. J Neurosci 40(2):369PubMedPubMedCentralCrossRef
go back to reference Vallence A-M, Dansie K, Goldsworthy MR, McAllister SM, Yang R, Rothwell JC, Ridding MC (2021) Examining motor evoked potential amplitude and short-interval intracortical inhibition on the up-going and down-going phases of a transcranial alternating current stimulation (tacs) imposed alpha oscillation. Eur J Neurosci 53(8):2755–2762PubMedCrossRef Vallence A-M, Dansie K, Goldsworthy MR, McAllister SM, Yang R, Rothwell JC, Ridding MC (2021) Examining motor evoked potential amplitude and short-interval intracortical inhibition on the up-going and down-going phases of a transcranial alternating current stimulation (tacs) imposed alpha oscillation. Eur J Neurosci 53(8):2755–2762PubMedCrossRef
go back to reference van den Bos MA, Geevasinga N, Menon P, Burke D, Kiernan MC, Vucic S (2017) Physiological processes influencing motor-evoked potential duration with voluntary contraction. J Neurophysiol 117(3):1156–1162PubMedCrossRef van den Bos MA, Geevasinga N, Menon P, Burke D, Kiernan MC, Vucic S (2017) Physiological processes influencing motor-evoked potential duration with voluntary contraction. J Neurophysiol 117(3):1156–1162PubMedCrossRef
go back to reference van der Kamp W, Zwinderman AH, Ferrari MD, van Dijk JG (1996) Cortical excitability and response variability of transcranial magnetic stimulation. J Clin Neurophysiol 13(2):164–171PubMedCrossRef van der Kamp W, Zwinderman AH, Ferrari MD, van Dijk JG (1996) Cortical excitability and response variability of transcranial magnetic stimulation. J Clin Neurophysiol 13(2):164–171PubMedCrossRef
go back to reference Werhahn KJ, Fong JK, Meyer BU, Priori A, Rothwell JC, Day BL, Thompson PD (1994) The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr Clin Neurophysiol 93(138–46):138–146PubMedCrossRef Werhahn KJ, Fong JK, Meyer BU, Priori A, Rothwell JC, Day BL, Thompson PD (1994) The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr Clin Neurophysiol 93(138–46):138–146PubMedCrossRef
Metadata
Title
Covariation of the amplitude and latency of motor evoked potentials elicited by transcranial magnetic stimulation in a resting hand muscle
Authors
A. M. Vallence
B. K. Rurak
H. Fujiyama
G. R. Hammond
Publication date
01-03-2023
Publisher
Springer Berlin Heidelberg
Published in
Experimental Brain Research / Issue 3/2023
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-023-06575-z

Other articles of this Issue 3/2023

Experimental Brain Research 3/2023 Go to the issue