Skip to main content
Top
Published in: European Spine Journal 12/2016

01-12-2016 | Original Article

Morphometry of the lower lumbar intervertebral discs and endplates: comparative analyses of new MRI data with previous findings

Authors: Ruoliang Tang, Celal Gungor, Richard F. Sesek, Kenneth Bo Foreman, Sean Gallagher, Gerard A. Davis

Published in: European Spine Journal | Issue 12/2016

Login to get access

Abstract

Purpose

Variability of the human lower lumbar geometry is related to complications of disc arthroplasty surgery. Accurate morphometric descriptions are essential for the design of artificial intervertebral discs to ensure good prothesis-vertebra contact and better load distribution, and can improve spinal biomechanics. Unfortunately, current knowledge of the lower lumbar geometry is limited either in the representativeness of sample populations or the accuracy and comprehensiveness of measurements. The objective of this study was to establish an accurate and reliable measurement protocol, provide a comprehensive database of lower lumbar geometry, and compare and summarize geometric data as reported in the literature.

Methods

T2-weighted magnetic resonance imaging (MRI) scans of lower lumbar spine (L3–S1), taken from 109 adult subjects, were anonymized from the digital archive of a local hospital. A total of 318 intervertebral discs and 590 endplates met the inclusion criteria and were studied. Linear and planar measurements were performed using OsiriX software, and analyzed using split plot factorial (SPF) analysis of variance (ANOVA), independent student t tests, paired sample t tests, and Tukey’s honest significant difference (HSD) post hoc tests.

Results

Excellent intra- and inter-observer reliabilities were achieved using the proposed measurement protocol. The results of this study indicated that male subjects had significantly larger geometric dimensions. L5/S1 discs had the smallest geometric dimensions compared to the discs at other two levels. Significant craniocaudal differences were found in endplate morpohometry. The error associated with using ellipsoid methods was quantified at each lower lumbar level. A large comprehensive database compiling lower lumbar geometry from many studies was established. This study provides geometric data for the female subjects at the L5/S1 level, previously lacking in the literature.

Conclusion

This study demonstrates the potential of using MRI data to establish a standard measurement protocol for morphometric quantification of the lower lumbar intervertebral discs and vertebral endplates. These results are invaluable in characterizing comprehensive lower lumbar morphometry, which may provide crucial information for planning spinal surgeries, designing artificial intervertebral discs, and for biomechanical modeling of the low lack.
Literature
1.
go back to reference Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine (Phila Pa 1976) 14(6):606–610CrossRef Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine (Phila Pa 1976) 14(6):606–610CrossRef
2.
go back to reference Edmondston SJ, Singer KP, Day RE, Breidahl PD, Price RI (1994) In-vitro relationships between vertebral body density, size, and compressive strength in the elderly thoracolumbar spine. Clin Biomech (Bristol, Avon) 9(3):180–186CrossRef Edmondston SJ, Singer KP, Day RE, Breidahl PD, Price RI (1994) In-vitro relationships between vertebral body density, size, and compressive strength in the elderly thoracolumbar spine. Clin Biomech (Bristol, Avon) 9(3):180–186CrossRef
3.
go back to reference Gallagher S, Marras WS, Litsky AS, Burr D, Landoll J, Matkovic V (2007) A comparison of fatigue failure responses of old versus middle-aged lumbar motion segments in simulated flexed lifting. Spine (Phila Pa 1976) 32(17):1832–1839CrossRef Gallagher S, Marras WS, Litsky AS, Burr D, Landoll J, Matkovic V (2007) A comparison of fatigue failure responses of old versus middle-aged lumbar motion segments in simulated flexed lifting. Spine (Phila Pa 1976) 32(17):1832–1839CrossRef
4.
go back to reference Campbell-Kyureghyan N, Jorgensen M, Burr D, Marras W (2005) The prediction of lumbar spine geometry: method development and validation. Clin Biomech 20(5):455–464CrossRef Campbell-Kyureghyan N, Jorgensen M, Burr D, Marras W (2005) The prediction of lumbar spine geometry: method development and validation. Clin Biomech 20(5):455–464CrossRef
5.
go back to reference Chaffin DB (1969) A computerized biomechanical model-development of and use in studying gross body actions. J Biomech 2(4):429–441CrossRefPubMed Chaffin DB (1969) A computerized biomechanical model-development of and use in studying gross body actions. J Biomech 2(4):429–441CrossRefPubMed
6.
go back to reference Hussain M, Natarajan RN, An HS (2010) Andersson GB (2010) Motion changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: a poroelastic C3-T1 finite element model study. Spine (Phila Pa 1976) 35(9):939–947CrossRef Hussain M, Natarajan RN, An HS (2010) Andersson GB (2010) Motion changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: a poroelastic C3-T1 finite element model study. Spine (Phila Pa 1976) 35(9):939–947CrossRef
7.
go back to reference Natarajan RN, Andersson GB (1999) The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine Phila Pa 1976 24(18):1873–1881CrossRefPubMed Natarajan RN, Andersson GB (1999) The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine Phila Pa 1976 24(18):1873–1881CrossRefPubMed
8.
go back to reference Schmidt H, Reitmaier S (2013) Is the ovine intervertebral disc a small human one? J Mech Behav Biomed Mater 17:229–241CrossRefPubMed Schmidt H, Reitmaier S (2013) Is the ovine intervertebral disc a small human one? J Mech Behav Biomed Mater 17:229–241CrossRefPubMed
9.
go back to reference Robin S, Skalli W, Lavaste F (1994) Influence of geometrical factors on the behavior of lumbar spine segments: a finite element analysis. Eur Spine J 3(2):84–90CrossRefPubMed Robin S, Skalli W, Lavaste F (1994) Influence of geometrical factors on the behavior of lumbar spine segments: a finite element analysis. Eur Spine J 3(2):84–90CrossRefPubMed
10.
go back to reference Niemeyer F, Wilke HJ, Schmidt H (2012) Geometry strongly influences the response of numerical models of the lumbar spine—a probabilistic finite element analysis. J Biomech 45(8):1414–1423CrossRefPubMed Niemeyer F, Wilke HJ, Schmidt H (2012) Geometry strongly influences the response of numerical models of the lumbar spine—a probabilistic finite element analysis. J Biomech 45(8):1414–1423CrossRefPubMed
11.
go back to reference Errico TJ (2005) Lumbar disc arthroplasty. Clin Orthop Rel Res 435:106–117CrossRef Errico TJ (2005) Lumbar disc arthroplasty. Clin Orthop Rel Res 435:106–117CrossRef
12.
go back to reference Zander T, Rohlmann A, Bergmann G (2009) Influence of different artificial disc kinematics on spine biomechanics. Clin Biomech (Bristol, Avon) 24(2):135–142CrossRef Zander T, Rohlmann A, Bergmann G (2009) Influence of different artificial disc kinematics on spine biomechanics. Clin Biomech (Bristol, Avon) 24(2):135–142CrossRef
13.
go back to reference Berry JL, Moran JM, Berg WS, Steffee AD (1987) A morphometric study of human lumbar and selected thoracic vertebrae. Spine (Phila Pa 1976) 12(4):362–367CrossRef Berry JL, Moran JM, Berg WS, Steffee AD (1987) A morphometric study of human lumbar and selected thoracic vertebrae. Spine (Phila Pa 1976) 12(4):362–367CrossRef
14.
go back to reference Hall LT, Esses SI, Noble PC, Kamaric E (1998) Morphology of the lumbar vertebral endplates. Spine (Phila Pa 1976) 23(14):1517–1522 (discussion 1522-1513) CrossRef Hall LT, Esses SI, Noble PC, Kamaric E (1998) Morphology of the lumbar vertebral endplates. Spine (Phila Pa 1976) 23(14):1517–1522 (discussion 1522-1513) CrossRef
15.
go back to reference van der Houwen EB, Baron P, Veldhuizen AG, Burgerhof JGM, Ooijen PMA, Verkerke GJ (2010) Geometry of the intervertebral volume and vertebral endplates of the human spine. Ann Biomed Eng 38(1):33–40CrossRefPubMed van der Houwen EB, Baron P, Veldhuizen AG, Burgerhof JGM, Ooijen PMA, Verkerke GJ (2010) Geometry of the intervertebral volume and vertebral endplates of the human spine. Ann Biomed Eng 38(1):33–40CrossRefPubMed
16.
go back to reference Aharinejad S, Bertagnoli R, Wicke K, Firbas W, Schneider B (1990) Morphometric analysis of vertebrae and intervertebral discs as a basis of disc replacement. Am J Anat 189(1):69–76CrossRefPubMed Aharinejad S, Bertagnoli R, Wicke K, Firbas W, Schneider B (1990) Morphometric analysis of vertebrae and intervertebral discs as a basis of disc replacement. Am J Anat 189(1):69–76CrossRefPubMed
17.
go back to reference Amonoo-Kuofi HS (1991) Morphometric changes in the heights and anteroposterior diameters of the lumbar intervertebral discs with age. J Anat 175:159–168PubMedPubMedCentral Amonoo-Kuofi HS (1991) Morphometric changes in the heights and anteroposterior diameters of the lumbar intervertebral discs with age. J Anat 175:159–168PubMedPubMedCentral
18.
go back to reference Aydinlioglu A, Diyarbakirli S, Keles P (1999) Heights of the lumbar intervertebral discs related to age in Turkish individuals. Tohoku J Exp Med 188(1):11–22CrossRefPubMed Aydinlioglu A, Diyarbakirli S, Keles P (1999) Heights of the lumbar intervertebral discs related to age in Turkish individuals. Tohoku J Exp Med 188(1):11–22CrossRefPubMed
19.
20.
go back to reference Colombini D, Occhipinti E, Grieco A, Faccini M (1989) Estimation of lumbar disc areas by means of anthropometric parameters. Spine (Phila Pa 1976) 14(1):51–55CrossRef Colombini D, Occhipinti E, Grieco A, Faccini M (1989) Estimation of lumbar disc areas by means of anthropometric parameters. Spine (Phila Pa 1976) 14(1):51–55CrossRef
21.
go back to reference Farfan HF (1973) Mechanical disorders of the low back. Lea & Febiger, Philadelphia Farfan HF (1973) Mechanical disorders of the low back. Lea & Febiger, Philadelphia
22.
go back to reference Gilad I, Nissan M (1986) A study of vertebra and disc geometric relations of the human cervical and lumbar spine. Spine (Phila Pa 1976) 11(2):154–157CrossRef Gilad I, Nissan M (1986) A study of vertebra and disc geometric relations of the human cervical and lumbar spine. Spine (Phila Pa 1976) 11(2):154–157CrossRef
23.
go back to reference Kang KS, Song K-S, Lee JS, Yang JJ, Song IS (2011) Comparison of radiographic and computed tomographic measurement of pedicle and vertebral body dimensions in Koreans: the ratio of pedicle transverse diameter to vertebral body transverse diameter. Eur Spine J 20(3):414–421CrossRefPubMed Kang KS, Song K-S, Lee JS, Yang JJ, Song IS (2011) Comparison of radiographic and computed tomographic measurement of pedicle and vertebral body dimensions in Koreans: the ratio of pedicle transverse diameter to vertebral body transverse diameter. Eur Spine J 20(3):414–421CrossRefPubMed
24.
go back to reference Karabekir HS, Gocmen-Mas N, Edizer M, Ertekin T, Yazici C, Atamturk D (2011) Lumbar vertebra morphometry and stereological assesment of intervertebral space volumetry: a methodological study. Ann Anat 193(3):231–236CrossRefPubMed Karabekir HS, Gocmen-Mas N, Edizer M, Ertekin T, Yazici C, Atamturk D (2011) Lumbar vertebra morphometry and stereological assesment of intervertebral space volumetry: a methodological study. Ann Anat 193(3):231–236CrossRefPubMed
25.
go back to reference Mahato NK (2011) Disc spaces, vertebral dimensions, and angle values at the lumbar region: a radioanatomical perspective in spines with L5-S1 transitions. J Neurosurg Spine 15(4):371–379CrossRefPubMed Mahato NK (2011) Disc spaces, vertebral dimensions, and angle values at the lumbar region: a radioanatomical perspective in spines with L5-S1 transitions. J Neurosurg Spine 15(4):371–379CrossRefPubMed
26.
go back to reference Nissan M, Gilad I (1984) The cervical and lumbar vertebrae—an anthropometric model. Eng Med 13(3):111–114CrossRefPubMed Nissan M, Gilad I (1984) The cervical and lumbar vertebrae—an anthropometric model. Eng Med 13(3):111–114CrossRefPubMed
27.
go back to reference Panjabi MM, Goel V, Oxland T, Takata K, Duranceau J, Krag M, Price M (1992) Human lumbar vertebrae—quantitative three-dimensional anatomy. Spine (Phila Pa 1976) 17(3):299–306CrossRef Panjabi MM, Goel V, Oxland T, Takata K, Duranceau J, Krag M, Price M (1992) Human lumbar vertebrae—quantitative three-dimensional anatomy. Spine (Phila Pa 1976) 17(3):299–306CrossRef
28.
go back to reference Postacchini F, Ripani M, Carpano S (1983) Morphometry of the lumbar vertebrae—an anatomic study in two caucasoid ethnic groups. Clin Orthop Relat Res 172:296–303 Postacchini F, Ripani M, Carpano S (1983) Morphometry of the lumbar vertebrae—an anatomic study in two caucasoid ethnic groups. Clin Orthop Relat Res 172:296–303
29.
go back to reference Seidel H, Pöpplau BM, Morlock MM, Pschel K, Huber G (2008) The size of lumbar vertebral endplate areas—prediction by anthropometric characteristics and significance for fatigue failure due to whole-body vibration. Int J Ind Ergonom 38(9–10):844–855CrossRef Seidel H, Pöpplau BM, Morlock MM, Pschel K, Huber G (2008) The size of lumbar vertebral endplate areas—prediction by anthropometric characteristics and significance for fatigue failure due to whole-body vibration. Int J Ind Ergonom 38(9–10):844–855CrossRef
30.
go back to reference Tan SH, Teo EC, Chua HC (2004) Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur Spine J 13(2):137–146CrossRefPubMed Tan SH, Teo EC, Chua HC (2004) Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur Spine J 13(2):137–146CrossRefPubMed
31.
go back to reference Tang R (2013) Morphometric analysis of the human lower lumbar intervertebral discs and vertebral endplates: experimental approach and regression models. Ph.D dissertation, Auburn University, USA Tang R (2013) Morphometric analysis of the human lower lumbar intervertebral discs and vertebral endplates: experimental approach and regression models. Ph.D dissertation, Auburn University, USA
32.
go back to reference Turk Z, Celan D (2004) Importance of intervertebral disc size in low back pain. Croat Med J 45(6):734–739PubMed Turk Z, Celan D (2004) Importance of intervertebral disc size in low back pain. Croat Med J 45(6):734–739PubMed
33.
go back to reference van Schaik JJ, Verbiest H, van Schaik FD (1985) Morphometry of lower lumbar vertebrae as seen on CT scans: newly recognized characteristics. AJR 145(2):327–335CrossRefPubMed van Schaik JJ, Verbiest H, van Schaik FD (1985) Morphometry of lower lumbar vertebrae as seen on CT scans: newly recognized characteristics. AJR 145(2):327–335CrossRefPubMed
34.
go back to reference Wang Y, Battié MC, Videman T (2012) A morphological study of lumbar vertebral end- plates: radiographic, visual and digital measurements. Eur Spine J 21(11):2316–2323CrossRefPubMedPubMedCentral Wang Y, Battié MC, Videman T (2012) A morphological study of lumbar vertebral end- plates: radiographic, visual and digital measurements. Eur Spine J 21(11):2316–2323CrossRefPubMedPubMedCentral
35.
go back to reference Zhou SH, McCarthy ID, McGregor AH, Coombs RR, Hughes SP (2000) Geometrical dimensions of the lower lumbar vertebrae—analysis of data from digitised CT images. Eur Spine J 9(3):242–248CrossRefPubMedPubMedCentral Zhou SH, McCarthy ID, McGregor AH, Coombs RR, Hughes SP (2000) Geometrical dimensions of the lower lumbar vertebrae—analysis of data from digitised CT images. Eur Spine J 9(3):242–248CrossRefPubMedPubMedCentral
36.
go back to reference Biggemann M, Hilweg D, Brinckmann P (1988) Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography. Skeletal Radiol 17(4):264–269CrossRefPubMed Biggemann M, Hilweg D, Brinckmann P (1988) Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography. Skeletal Radiol 17(4):264–269CrossRefPubMed
37.
go back to reference Drerup B, Granitzka M, Assheuer J, Zerlett G (1999) Assessment of disc injury in subjects exposed to long-term whole-body vibration. Eur Spine J 8(6):458–467CrossRefPubMedPubMedCentral Drerup B, Granitzka M, Assheuer J, Zerlett G (1999) Assessment of disc injury in subjects exposed to long-term whole-body vibration. Eur Spine J 8(6):458–467CrossRefPubMedPubMedCentral
38.
go back to reference Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine (Phila Pa 1976) 5(1):46–55CrossRef Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine (Phila Pa 1976) 5(1):46–55CrossRef
39.
go back to reference Hutton WC, Adams MA (1982) Can the lumbar spine be crushed in heavy lifting? Spine (Phila Pa 1976) 7(6):586–590CrossRef Hutton WC, Adams MA (1982) Can the lumbar spine be crushed in heavy lifting? Spine (Phila Pa 1976) 7(6):586–590CrossRef
40.
go back to reference Mosekilde L (1990) Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone 11(2):67–73CrossRefPubMed Mosekilde L (1990) Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone 11(2):67–73CrossRefPubMed
41.
go back to reference Nachemson A (1960) Lumbar intradiscal pressure—experimental studies on post-mortem material. Acta Orthop Scand Suppl 43:1–104CrossRefPubMed Nachemson A (1960) Lumbar intradiscal pressure—experimental studies on post-mortem material. Acta Orthop Scand Suppl 43:1–104CrossRefPubMed
42.
go back to reference Porter RW, Adams MA, Hutton WC (1989) Physical activity and the strength of the lumbar spine. Spine (Phila Pa 1976) 14(2):201–203CrossRef Porter RW, Adams MA, Hutton WC (1989) Physical activity and the strength of the lumbar spine. Spine (Phila Pa 1976) 14(2):201–203CrossRef
43.
44.
go back to reference Yamauchi T, Yamazaki M, Okawa A, Furuya T, Hayashi K, Sakuma T, Takahashi H, Yanagawa N, Koda M (2010) Efficacy and reliability of highly functional open source DICOM software (OsiriX) in spine surgery. J Clin Neurosci 17(6):756–759CrossRefPubMed Yamauchi T, Yamazaki M, Okawa A, Furuya T, Hayashi K, Sakuma T, Takahashi H, Yanagawa N, Koda M (2010) Efficacy and reliability of highly functional open source DICOM software (OsiriX) in spine surgery. J Clin Neurosci 17(6):756–759CrossRefPubMed
45.
go back to reference Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26(17):1873–1878CrossRef Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26(17):1873–1878CrossRef
46.
go back to reference Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428CrossRefPubMed Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428CrossRefPubMed
47.
go back to reference Portney LG, Watkins MP (2000) Foundations of clinical research: applications to practice, 2nd edn. Prentice Hall Inc, Upper Saddle River Portney LG, Watkins MP (2000) Foundations of clinical research: applications to practice, 2nd edn. Prentice Hall Inc, Upper Saddle River
48.
go back to reference Mayerhoefer ME, Stelzeneder D, Bachbauer W, Welsch GH, Mamisch TC, Szczypinski P, Weber M, Peters NH, Fruehwald-Pallamar J, Puchner S, Trattnig S (2012) Quantitative analysis of lumbar intervertebral disc abnormalities at 3.0 Tesla: value of T2 texture features and geometric parameters. NMR Biomed 25(6):866–872CrossRefPubMed Mayerhoefer ME, Stelzeneder D, Bachbauer W, Welsch GH, Mamisch TC, Szczypinski P, Weber M, Peters NH, Fruehwald-Pallamar J, Puchner S, Trattnig S (2012) Quantitative analysis of lumbar intervertebral disc abnormalities at 3.0 Tesla: value of T2 texture features and geometric parameters. NMR Biomed 25(6):866–872CrossRefPubMed
49.
go back to reference Peoples RR, Perkins TG, Powell JW, Hanson EH, Snyder TH, Mueller TL, Orrison WW (2008) Whole-spine dynamic magnetic resonance study of contortionists: anatomy and pathology. J Neurosurg Spine 8(6):501–509CrossRefPubMed Peoples RR, Perkins TG, Powell JW, Hanson EH, Snyder TH, Mueller TL, Orrison WW (2008) Whole-spine dynamic magnetic resonance study of contortionists: anatomy and pathology. J Neurosurg Spine 8(6):501–509CrossRefPubMed
50.
go back to reference Bishop MD, Horn ME, Lott DJ, Arpan I, George SZ (2011) Magnitude of spinal muscle damage is not statistically associated with exercise-induced low back pain intensity. Spine J 11(12):1135–1142CrossRefPubMedPubMedCentral Bishop MD, Horn ME, Lott DJ, Arpan I, George SZ (2011) Magnitude of spinal muscle damage is not statistically associated with exercise-induced low back pain intensity. Spine J 11(12):1135–1142CrossRefPubMedPubMedCentral
51.
go back to reference Fortin M, Battié MC (2012) Quantitative paraspinal muscle measurements: inter-software reliability and agreement using OsiriX and ImageJ. Phys Ther 92(6):853–864CrossRefPubMed Fortin M, Battié MC (2012) Quantitative paraspinal muscle measurements: inter-software reliability and agreement using OsiriX and ImageJ. Phys Ther 92(6):853–864CrossRefPubMed
52.
go back to reference Karlo CA, Steurer-Dober I, Leonardi M, Pfirrmann CWA, Zanetti M, Hodler J (2010) MR/CT image fusion of the spine after spondylodesis: a feasibility study. Eur Spine J 19(10):1771–1775CrossRefPubMedPubMedCentral Karlo CA, Steurer-Dober I, Leonardi M, Pfirrmann CWA, Zanetti M, Hodler J (2010) MR/CT image fusion of the spine after spondylodesis: a feasibility study. Eur Spine J 19(10):1771–1775CrossRefPubMedPubMedCentral
53.
go back to reference Henderson L, Kulik G, Richarme D, Theumann N, Schizas C (2012) Is spinal stenosis assessment dependent on slice orientation? A magnetic resonance imaging study. Eur Spine J 21(suppl 6):s760–s764CrossRefPubMed Henderson L, Kulik G, Richarme D, Theumann N, Schizas C (2012) Is spinal stenosis assessment dependent on slice orientation? A magnetic resonance imaging study. Eur Spine J 21(suppl 6):s760–s764CrossRefPubMed
54.
go back to reference White AA III, Panjabi MM (1990) Clinical biomechanics of the spine. J. B, Lippincott White AA III, Panjabi MM (1990) Clinical biomechanics of the spine. J. B, Lippincott
55.
go back to reference Brinckmann P (1986) Injury of the annulus fibrosus and disc protrusions—an in vitro investigation on human lumbar discs. Spine (Phila Pa 1976) 11(2):149–153CrossRef Brinckmann P (1986) Injury of the annulus fibrosus and disc protrusions—an in vitro investigation on human lumbar discs. Spine (Phila Pa 1976) 11(2):149–153CrossRef
56.
go back to reference Lakshmanan P, Purushothaman B, Dvorak V, Schratt W, Thambiraj S, Boszczyk M (2012) Sagittal endplate morphology of the lower lumbar spine. Eur Spine J 21(suppl 2):s160–s164CrossRefPubMed Lakshmanan P, Purushothaman B, Dvorak V, Schratt W, Thambiraj S, Boszczyk M (2012) Sagittal endplate morphology of the lower lumbar spine. Eur Spine J 21(suppl 2):s160–s164CrossRefPubMed
57.
go back to reference He X, Liang A, Gao W, Peng Y, Zhang L, Liang G, Huang D (2012) The relationship between concave angle of vertebral endplate and lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 37(17):E1068–E1073CrossRef He X, Liang A, Gao W, Peng Y, Zhang L, Liang G, Huang D (2012) The relationship between concave angle of vertebral endplate and lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 37(17):E1068–E1073CrossRef
58.
go back to reference Wang Y, Batti MC, Boyd SK, Videman T (2011) The osseous endplates in lumbar verte- brae: thickness, bone mineral density and their associations with age and disk degeneration. Bone 48(4):804–809CrossRefPubMed Wang Y, Batti MC, Boyd SK, Videman T (2011) The osseous endplates in lumbar verte- brae: thickness, bone mineral density and their associations with age and disk degeneration. Bone 48(4):804–809CrossRefPubMed
59.
go back to reference Adams MA, Bogduk N, Burton K, Dolan P (2002) The biomechanics of back Pain. Churchill Livingstone, Philadelphia Adams MA, Bogduk N, Burton K, Dolan P (2002) The biomechanics of back Pain. Churchill Livingstone, Philadelphia
60.
go back to reference Zhao F-D, Pollintine P, Hole BD, Adams MA, Dolan P (2009) Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44(2):372–379CrossRefPubMed Zhao F-D, Pollintine P, Hole BD, Adams MA, Dolan P (2009) Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44(2):372–379CrossRefPubMed
61.
go back to reference Gallagher S, Marras WS, Litsky AS, Burr D (2006) An exploratory study of loading and morphometric factors associated with specific failure modes in fatigue testing of lumbar motion segments. Clin Biomech (Bristol, Avon) 21(3):228–234CrossRef Gallagher S, Marras WS, Litsky AS, Burr D (2006) An exploratory study of loading and morphometric factors associated with specific failure modes in fatigue testing of lumbar motion segments. Clin Biomech (Bristol, Avon) 21(3):228–234CrossRef
62.
go back to reference Waters TR, Putz-Anderson V, Garg A, Fine LJ (1993) Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 36(7):749–776CrossRefPubMed Waters TR, Putz-Anderson V, Garg A, Fine LJ (1993) Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 36(7):749–776CrossRefPubMed
64.
go back to reference Frobin W, Brinckmann P, Biggemann M, Tillotson M, Burton K (1997) Precision measurement of disc height, vertebral height and sagittal plane displacement from lateral radiographic views of the lumbar spine. Clin Biomech Bristol Avon 12(Suppl 1):S1–S63CrossRef Frobin W, Brinckmann P, Biggemann M, Tillotson M, Burton K (1997) Precision measurement of disc height, vertebral height and sagittal plane displacement from lateral radiographic views of the lumbar spine. Clin Biomech Bristol Avon 12(Suppl 1):S1–S63CrossRef
65.
go back to reference Gilsanz V, Loro ML, Roe TF, Sayre J, Gilsanz R, Schulz EE (1995) Vertebral size in elderly women with osteoporosis-mechanical implications and relationship to fractures. J Clin Invest 95(5):2332–2337CrossRefPubMedPubMedCentral Gilsanz V, Loro ML, Roe TF, Sayre J, Gilsanz R, Schulz EE (1995) Vertebral size in elderly women with osteoporosis-mechanical implications and relationship to fractures. J Clin Invest 95(5):2332–2337CrossRefPubMedPubMedCentral
66.
go back to reference Law T, Anthony MP, Chan Q, Samartzis D, Kim M, Cheung KM, Khong PL (2013) Ultrashort time-to-echo MRI of the cartilaginous endplate: technique and association with intervertebral disc degeneration. J Med Imaging Radiat Oncol 57(4):427–434CrossRefPubMed Law T, Anthony MP, Chan Q, Samartzis D, Kim M, Cheung KM, Khong PL (2013) Ultrashort time-to-echo MRI of the cartilaginous endplate: technique and association with intervertebral disc degeneration. J Med Imaging Radiat Oncol 57(4):427–434CrossRefPubMed
67.
go back to reference Määttä JH, Kraatari M, Wolber L, Niinimäki J, Wadge S, Karppinen J, Williams FM (2014) Vertebral endplate change as a feature of intervertebral disc degeneration: a heritability study. Eur Spine J 23(9):1856–1862CrossRefPubMed Määttä JH, Kraatari M, Wolber L, Niinimäki J, Wadge S, Karppinen J, Williams FM (2014) Vertebral endplate change as a feature of intervertebral disc degeneration: a heritability study. Eur Spine J 23(9):1856–1862CrossRefPubMed
68.
go back to reference Muftuler LT, Jarman JP, Yu HJ, Gardner VO, Maiman DJ, Arpinar VE (2015) Associa- tion between intervertebral disc degeneration and endplate perfusion studied by DCE-MRI. Eur Spine J 24(4):679–685CrossRefPubMed Muftuler LT, Jarman JP, Yu HJ, Gardner VO, Maiman DJ, Arpinar VE (2015) Associa- tion between intervertebral disc degeneration and endplate perfusion studied by DCE-MRI. Eur Spine J 24(4):679–685CrossRefPubMed
69.
go back to reference LeBlanc AD, Evans HJ, Schneider VS, Wendt RE III, Hedrick TD (1994) Changes in intervertebral disc cross-sectional area with bed rest and space flight. Spine (Phila Pa 1976) 19(7):812–817CrossRef LeBlanc AD, Evans HJ, Schneider VS, Wendt RE III, Hedrick TD (1994) Changes in intervertebral disc cross-sectional area with bed rest and space flight. Spine (Phila Pa 1976) 19(7):812–817CrossRef
70.
go back to reference Kimura S, Steinbach GC, Watenpaugh DE, Hargens AR (2001) Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine (Phila Pa 1976) 26(23):2596–2600CrossRef Kimura S, Steinbach GC, Watenpaugh DE, Hargens AR (2001) Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine (Phila Pa 1976) 26(23):2596–2600CrossRef
Metadata
Title
Morphometry of the lower lumbar intervertebral discs and endplates: comparative analyses of new MRI data with previous findings
Authors
Ruoliang Tang
Celal Gungor
Richard F. Sesek
Kenneth Bo Foreman
Sean Gallagher
Gerard A. Davis
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 12/2016
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-016-4405-8

Other articles of this Issue 12/2016

European Spine Journal 12/2016 Go to the issue