Skip to main content
Top
Published in: Surgical and Radiologic Anatomy 3/2019

Open Access 01-03-2019 | Original Article

Morphometric study of the primary ossification center of the fibular shaft in the human fetus

Authors: Mariusz Baumgart, Marcin Wiśniewski, Magdalena Grzonkowska, Mateusz Badura, Michał Szpinda, Katarzyna Pawlak-Osińska

Published in: Surgical and Radiologic Anatomy | Issue 3/2019

Login to get access

Abstract

Purposes

Precise morphometric data on the development of ossification centers in human fetuses may be useful in the early detection of skeletal dysplasias associated with delayed ossification center development and mineralization. The present study was performed to quantitatively examine the primary ossification center of the fibular shaft with respect to its linear, planar and volumetric parameters.

Materials and methods

Using methods of CT, digital-image analysis (Osirix 3.9 MD) and statistics (Student’s t-test, Shapiro–Wilk, Fisher’s test, Tukey’s test, Kruskal–Wallis test, regression analysis), the size of the primary ossification center of the fibular shaft in 47 spontaneously aborted human fetuses (25 ♂ and 22 ♀) aged 17–30 weeks was studied. In each fetus, the assessment of linear dimensions (length, transverse diameters for: proximal end, middle part and distal end), projection surface area and volume of the fibular shaft ossification center was carried out.

Results

With no sex and laterality differences, the best fit growth dynamics for the primary ossification center of the fibular shaft was modelled by the following functions: y = − 13.241 + 1.567 × age ± 1.556 (R2 = 0.94) for its length, y = − 0.091 + 0.063 × age ± 0.073 (R2 = 0.92) for its proximal transverse diameter, y = − 1.201 + 0.717 × ln(age) ± 0.054 (R2 = 0.83) for its middle transverse diameter, y = − 2.956 + 1.532 × ln(age) ± 0.090 (R2 = 0.89) for its distal transverse diameter, y = − 69.038 + 4.699 × age ± 4.055 (R2 = 0.95) for its projection surface area, and y = − 126.374 + 9.462 × age ± 8.845 (R2 = 0.94) for its volume.

Conclusions

The ossification center in the fibular shaft follows linear functions with respect to its length, proximal transverse diameter, projection surface area and volume, and natural logarithmic functions with respect to its middle and distal transverse diameters. The obtained morphometric data of the fibular shaft ossification center is considered normative for their respective prenatal weeks and may be of relevance in both the estimation of fetal age and the ultrasound diagnostics of congenital defects.
Literature
1.
go back to reference Amin RS, Nikolaidis P, Kawashima A, Kramer LA, Ernst RD (1999) Normal anatomy of the fetus at MR imaging. Radiographics 19:201–214CrossRef Amin RS, Nikolaidis P, Kawashima A, Kramer LA, Ernst RD (1999) Normal anatomy of the fetus at MR imaging. Radiographics 19:201–214CrossRef
2.
go back to reference Bareggi R, Grill V, Zweyer M, Sandrucci MA, Martelli AM, Narducci P, Forabosco A (1996) On the assessment of the growth patterns in human fetal limbs: longitudinal measurements and allometric analysis. Early Hum Dev 45(1–2):11–25CrossRefPubMed Bareggi R, Grill V, Zweyer M, Sandrucci MA, Martelli AM, Narducci P, Forabosco A (1996) On the assessment of the growth patterns in human fetal limbs: longitudinal measurements and allometric analysis. Early Hum Dev 45(1–2):11–25CrossRefPubMed
4.
go back to reference Baumgart M, Wiśniewski M, Grzonkowska M, Badura M, Małkowski B, Szpinda M (2017) Quantitative anatomy of the primary ossification center of the femoral shaft in human fetuses. Surg Radiol Anat 39(11):1235–1242CrossRefPubMedPubMedCentral Baumgart M, Wiśniewski M, Grzonkowska M, Badura M, Małkowski B, Szpinda M (2017) Quantitative anatomy of the primary ossification center of the femoral shaft in human fetuses. Surg Radiol Anat 39(11):1235–1242CrossRefPubMedPubMedCentral
5.
go back to reference Brons JTJ, van Geijn HP, Bezemer PD, Nauta JPJ, Arts NFTh (1990) The fetal skeleton: ultrasonographic evaluation of the normal growth. Eur J Obstet Gynecol Reprod Biol 34:21–36CrossRefPubMed Brons JTJ, van Geijn HP, Bezemer PD, Nauta JPJ, Arts NFTh (1990) The fetal skeleton: ultrasonographic evaluation of the normal growth. Eur J Obstet Gynecol Reprod Biol 34:21–36CrossRefPubMed
6.
go back to reference Cassart M, Massez A, Cos T, Tecco L, Thomas D, Van Regemorter N, Avni F (2007) Contribution of three-dimensional computed tomography in the assessment of fetal skeletal dysplasia. Ultrasound Obstet Gynecol 29:537–543CrossRefPubMed Cassart M, Massez A, Cos T, Tecco L, Thomas D, Van Regemorter N, Avni F (2007) Contribution of three-dimensional computed tomography in the assessment of fetal skeletal dysplasia. Ultrasound Obstet Gynecol 29:537–543CrossRefPubMed
7.
go back to reference Chano T, Matsumoto K, Ishizawa M, Morimoto S, Hukuda S, Okabe H, Kato H, Fujino S (1996) Analysis of the presence of osteocalcin, S-100 protein, and proliferating cell nuclear antigen in cells of various types of osteosarcomas. Eur J Histochem 40:189–198PubMed Chano T, Matsumoto K, Ishizawa M, Morimoto S, Hukuda S, Okabe H, Kato H, Fujino S (1996) Analysis of the presence of osteocalcin, S-100 protein, and proliferating cell nuclear antigen in cells of various types of osteosarcomas. Eur J Histochem 40:189–198PubMed
9.
go back to reference Coakley FV, Glenn OA, Qayyum A, Barkovich AJ, Goldstein R, Filly RA (2004) Fetal MRI:a developing technique for the developing patient. AJR Am J Roentgenol 182:243–252CrossRefPubMed Coakley FV, Glenn OA, Qayyum A, Barkovich AJ, Goldstein R, Filly RA (2004) Fetal MRI:a developing technique for the developing patient. AJR Am J Roentgenol 182:243–252CrossRefPubMed
10.
go back to reference Duarte WR, Shibata T, Takenaga K, Takahashi E, Kubota K, Ohya K, Ishikawa I, Yamauchi M, Kasugai S (2003) S100A4: a novel negative regulator of mineralization and osteoblast differentiation. J Bone Miner Res 18:493–501CrossRefPubMed Duarte WR, Shibata T, Takenaga K, Takahashi E, Kubota K, Ohya K, Ishikawa I, Yamauchi M, Kasugai S (2003) S100A4: a novel negative regulator of mineralization and osteoblast differentiation. J Bone Miner Res 18:493–501CrossRefPubMed
11.
go back to reference Exacoustos C, Rosati P, Rizzo G, Arduini D (1991) Ultrasound measurement of fetal limb bones. Ultrasound Obset Gynecol 1(5):323–330 Exacoustos C, Rosati P, Rizzo G, Arduini D (1991) Ultrasound measurement of fetal limb bones. Ultrasound Obset Gynecol 1(5):323–330
12.
go back to reference Geipel A, Berg C, Germer U, Krokowski M, Smrcek J, Gembruch U (2003) Prenatal diagnosis of femur–fibula–ulna complex by ultrasound examination at 20 weeks of gestation. Ultrasound Obstet Gynecol 22:79–81CrossRefPubMed Geipel A, Berg C, Germer U, Krokowski M, Smrcek J, Gembruch U (2003) Prenatal diagnosis of femur–fibula–ulna complex by ultrasound examination at 20 weeks of gestation. Ultrasound Obstet Gynecol 22:79–81CrossRefPubMed
13.
go back to reference Goncalves L, Jaenty P (1994) Fetal biometry of skeletal dysplasias: a multicentric study. Ultrasound Med 13:767–775CrossRef Goncalves L, Jaenty P (1994) Fetal biometry of skeletal dysplasias: a multicentric study. Ultrasound Med 13:767–775CrossRef
14.
15.
go back to reference Lee S, Kim T, Lee H, Park J, Chung S, Jeon D (2013) Length measurement of fetal long bone and fetal anomaly detection. Obstet Gynaecol 4(5):WMC004230 Lee S, Kim T, Lee H, Park J, Chung S, Jeon D (2013) Length measurement of fetal long bone and fetal anomaly detection. Obstet Gynaecol 4(5):WMC004230
16.
go back to reference Lenz W, Zygulska M, Horst J (1993) FFU complex: an analysis of 491 cases. Hum Genet 91(4):347–356CrossRefPubMed Lenz W, Zygulska M, Horst J (1993) FFU complex: an analysis of 491 cases. Hum Genet 91(4):347–356CrossRefPubMed
17.
go back to reference Mahony BS, Filly RA (1984) High resolution sonographic assessment of the fetal extremities. J Ultrasound Med 3:489–498CrossRefPubMed Mahony BS, Filly RA (1984) High resolution sonographic assessment of the fetal extremities. J Ultrasound Med 3:489–498CrossRefPubMed
18.
go back to reference Monteagudo A, Dong R, Timor-Tritsch IE (2006) Fetal fibular hemimelia: case report and review of the literature. J Ultrasound Med 25(4):533–537CrossRefPubMed Monteagudo A, Dong R, Timor-Tritsch IE (2006) Fetal fibular hemimelia: case report and review of the literature. J Ultrasound Med 25(4):533–537CrossRefPubMed
19.
go back to reference Pryse-Davies J, Smitham JH, Napier KA (1974) Factors influencing development of secondary ossification centres in the fetus and newborn. A postmortem radiological study. Arch Dis Child 49(6):425–431CrossRefPubMedPubMedCentral Pryse-Davies J, Smitham JH, Napier KA (1974) Factors influencing development of secondary ossification centres in the fetus and newborn. A postmortem radiological study. Arch Dis Child 49(6):425–431CrossRefPubMedPubMedCentral
20.
go back to reference Sepulveda W, Weiner E, Bridger JE, Path MRC, Fisk NM (1994) Prenatal diagnosis of congenital absence of the fibula. J Ultrasound Med 13:655–657CrossRefPubMed Sepulveda W, Weiner E, Bridger JE, Path MRC, Fisk NM (1994) Prenatal diagnosis of congenital absence of the fibula. J Ultrasound Med 13:655–657CrossRefPubMed
21.
go back to reference Van Zalen-Sprock RM, Brons TJ, van Vugt JMG, van der Harten HJ, van Gejin HP (1997) Ultrasonographic and radiologic visualization of the developing embryonic skeleton. Ultrasound Obstet Gynecol 9:392–397CrossRefPubMed Van Zalen-Sprock RM, Brons TJ, van Vugt JMG, van der Harten HJ, van Gejin HP (1997) Ultrasonographic and radiologic visualization of the developing embryonic skeleton. Ultrasound Obstet Gynecol 9:392–397CrossRefPubMed
22.
go back to reference Verbruggen SW, Loo JHW, Hayat TTA, Hajnal JV, Rutherford MA, Phillips ATM, Nowlan NC (2016) Modeling the biomechanics of fetal movements. Biomech Model Mechanobiol 15(4):995–1004CrossRefPubMed Verbruggen SW, Loo JHW, Hayat TTA, Hajnal JV, Rutherford MA, Phillips ATM, Nowlan NC (2016) Modeling the biomechanics of fetal movements. Biomech Model Mechanobiol 15(4):995–1004CrossRefPubMed
23.
go back to reference Victoria T, Epelman M, Coleman BG, Horii S, Oliver ER, Mahboubi S, Khalek N, Kasperski S, Edgar JCh, Jaramillo D (2013) Low-dose fetal CT in the prenatal evaluation of skeletal dysplasias and other severe skeletal abnormalities. Am J Radiol 200(5):989–1000 Victoria T, Epelman M, Coleman BG, Horii S, Oliver ER, Mahboubi S, Khalek N, Kasperski S, Edgar JCh, Jaramillo D (2013) Low-dose fetal CT in the prenatal evaluation of skeletal dysplasias and other severe skeletal abnormalities. Am J Radiol 200(5):989–1000
24.
go back to reference Zorzoli A, Kustermann A, Caravelli E, Corso FE, Fogliani R, Aimi G, Nicolini U (1994) Measurements of fetal limb bones in early pregnacy. Ultrasound Obset Gynecol 4:29–33CrossRef Zorzoli A, Kustermann A, Caravelli E, Corso FE, Fogliani R, Aimi G, Nicolini U (1994) Measurements of fetal limb bones in early pregnacy. Ultrasound Obset Gynecol 4:29–33CrossRef
Metadata
Title
Morphometric study of the primary ossification center of the fibular shaft in the human fetus
Authors
Mariusz Baumgart
Marcin Wiśniewski
Magdalena Grzonkowska
Mateusz Badura
Michał Szpinda
Katarzyna Pawlak-Osińska
Publication date
01-03-2019
Publisher
Springer Paris
Published in
Surgical and Radiologic Anatomy / Issue 3/2019
Print ISSN: 0930-1038
Electronic ISSN: 1279-8517
DOI
https://doi.org/10.1007/s00276-018-2147-5

Other articles of this Issue 3/2019

Surgical and Radiologic Anatomy 3/2019 Go to the issue