Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model

Authors: Kristian Liaury, Tsuyoshi Miyaoka, Toshiko Tsumori, Motohide Furuya, Rei Wake, Masa Ieda, Keiko Tsuchie, Michiyo Taki, Kotomi Ishihara, Andi Jayalangkara Tanra, Jun Horiguchi

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Schizophrenia is a debilitating and complex mental disorder whose exact etiology remains unknown. There is growing amount of evidence of a relationship between neuroinflammation, as demonstrated by microglial activation, and schizophrenia. Our previous studies have proposed that hyperbilirubinemia plays a role in the pathophysiology of schizophrenia. Furthermore, we suggested the Gunn rat, an animal model of bilirubin encephalopathy, as a possible animal model of schizophrenia. However, the effects of unconjugated bilirubin on microglia, the resident immune cell of the CNS, in Gunn rats have never been investigated. In the present study, we examined how microglial cells respond to bilirubin toxicity in adult Gunn rats.

Methods

Using immunohistochemical techniques, we compared the distribution, morphology, and ultrastructural features of microglial cells in Gunn rats with Wistar rats as a normal control. We also determined the ratio of activated and resting microglia and observed microglia-neuron interactions. We characterized the microglial cells in the hippocampal dentate gyrus.

Results

We found that microglial cells showed activated morphology in the hilus, subgranular zone, and granular layer of the Gunn rat hippocampal dentate gyrus. There was no significant difference between cell numbers between in Gunn rats and controls. However, there was significant difference in the area of CD11b expression in the hippocampal dentate gyrus. Ultrastructurally, microglial cells often contained rich enlarged rich organelles in the cytoplasm and showed some phagocytic function.

Conclusions

We propose that activation of microglia could be an important causal factor of the behavioral abnormalities and neuropathological changes in Gunn rats. These findings may provide basic information for further assessment of the Gunn rat as an animal model of schizophrenia.
Literature
1.
go back to reference Saha S, Chant D, Welham J, McGrath J: A systematic review of the prevalence of schizophrenia. PLoS Med 2005, 2:413–433.CrossRef Saha S, Chant D, Welham J, McGrath J: A systematic review of the prevalence of schizophrenia. PLoS Med 2005, 2:413–433.CrossRef
2.
go back to reference Monji A, Kato T, Kanba S: Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 2009, 63:257–265.CrossRefPubMed Monji A, Kato T, Kanba S: Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 2009, 63:257–265.CrossRefPubMed
3.
go back to reference Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietiläinen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Børglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Böttcher Y, Olesen J, Breuer R, Möller HJ, Giegling I, et al.: Common variants conferring risk of schizophrenia. Nature 2009, 460:744–748.PubMedPubMedCentral Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietiläinen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Børglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Böttcher Y, Olesen J, Breuer R, Möller HJ, Giegling I, et al.: Common variants conferring risk of schizophrenia. Nature 2009, 460:744–748.PubMedPubMedCentral
4.
go back to reference Miller BJ, Buckley P, Seabott W, Mellor A, Kirkpatrick B: Meta-analysis of cytokine alterations in schizophrenia: clinical studies and antipsychotic effects. Biol Psychiatry 2011, 70:663–671.CrossRefPubMedPubMedCentral Miller BJ, Buckley P, Seabott W, Mellor A, Kirkpatrick B: Meta-analysis of cytokine alterations in schizophrenia: clinical studies and antipsychotic effects. Biol Psychiatry 2011, 70:663–671.CrossRefPubMedPubMedCentral
5.
go back to reference Drexhage RC, Knijff EM, Padmos RC, Heul-Nieuwenhuijzen L, Beumer W, Versnel MA, Drexhage HA: The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother 2010, 10:59–76.CrossRefPubMed Drexhage RC, Knijff EM, Padmos RC, Heul-Nieuwenhuijzen L, Beumer W, Versnel MA, Drexhage HA: The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother 2010, 10:59–76.CrossRefPubMed
6.
go back to reference Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG, Bogerts B: Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol 2006, 112:305–316.CrossRefPubMed Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG, Bogerts B: Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol 2006, 112:305–316.CrossRefPubMed
7.
go back to reference Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B: Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 2008, 42:151–157.CrossRefPubMed Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B: Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 2008, 42:151–157.CrossRefPubMed
8.
go back to reference Muller N, Myint AM, Schwarz MJ: Kynurenine pathway in schizophrenia: pathophysiological and therapeutic aspects. Curr Pharm Des 2011, 17:130–136.CrossRefPubMed Muller N, Myint AM, Schwarz MJ: Kynurenine pathway in schizophrenia: pathophysiological and therapeutic aspects. Curr Pharm Des 2011, 17:130–136.CrossRefPubMed
9.
go back to reference Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG, Myint AM: Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psychiatry, in press. Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG, Myint AM: Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psychiatry, in press.
10.
go back to reference Muller N, Schiller P, Ackenheil M: Coincidence of schizophrenia and hyperbilirubinemia. Pharmacopsychiatry 1991, 24:225–228.CrossRefPubMed Muller N, Schiller P, Ackenheil M: Coincidence of schizophrenia and hyperbilirubinemia. Pharmacopsychiatry 1991, 24:225–228.CrossRefPubMed
11.
go back to reference Miyaoka T, Seno H, Itoga M, Iijima M, Inagaki T, Horiguchi J: Schizophrenia-associated idiopathic unconjugated bilirubinemia (Gilbert's syndrome). J Clin Psychiatry 2000, 61:868–871.CrossRefPubMed Miyaoka T, Seno H, Itoga M, Iijima M, Inagaki T, Horiguchi J: Schizophrenia-associated idiopathic unconjugated bilirubinemia (Gilbert's syndrome). J Clin Psychiatry 2000, 61:868–871.CrossRefPubMed
12.
go back to reference Radhakrishnan R, Kanigere M, Menon J, Calvin S, Janish A, Srinivasan K: Association between unconjugated bilirubin and schizophrenia. Psychiatry Res 2011, 189:480–482.CrossRefPubMed Radhakrishnan R, Kanigere M, Menon J, Calvin S, Janish A, Srinivasan K: Association between unconjugated bilirubin and schizophrenia. Psychiatry Res 2011, 189:480–482.CrossRefPubMed
13.
go back to reference Miyaoka T, Yasukawa R, Mizuno S, Sukegawa T, Inagaki T, Horiguchi J, Seno H, Oda K, Kitagaki H: Proton magnetic resonance spectroscopy (1H-MRS) of hippocampus, basal ganglia, and vermis of cerebellum in schizophrenia associated with idiopathic unconjugated hyperbilirubinemia (Gilbert's syndrome). J Psychiatr Res 2005, 39:29–34.CrossRefPubMed Miyaoka T, Yasukawa R, Mizuno S, Sukegawa T, Inagaki T, Horiguchi J, Seno H, Oda K, Kitagaki H: Proton magnetic resonance spectroscopy (1H-MRS) of hippocampus, basal ganglia, and vermis of cerebellum in schizophrenia associated with idiopathic unconjugated hyperbilirubinemia (Gilbert's syndrome). J Psychiatr Res 2005, 39:29–34.CrossRefPubMed
14.
go back to reference Yasukawa R, Miyaoka T, Mizuno S, Inagaki T, Horiguchi J, Oda K, Kitagaki H: Proton magnetic resonance spectroscopy of the anterior cingulated gyrus, insular cortex and thalamus in schizophrenia associated with idiopathic unconjugated hyperbilirubinemia (Gilbert's syndrome). J Psychiatry Neurosci 2005, 30:416–422.PubMedPubMedCentral Yasukawa R, Miyaoka T, Mizuno S, Inagaki T, Horiguchi J, Oda K, Kitagaki H: Proton magnetic resonance spectroscopy of the anterior cingulated gyrus, insular cortex and thalamus in schizophrenia associated with idiopathic unconjugated hyperbilirubinemia (Gilbert's syndrome). J Psychiatry Neurosci 2005, 30:416–422.PubMedPubMedCentral
15.
go back to reference Miyaoka T, Yasukawa R, Mihara T, Mizuno S, Yasuda H, Sukegawa T, Hayashida M, Inagaki T, Horiguchi J: Fluid-attenuated inversion-recovery MR imaging in schizophrenia-associated with idiopathic unconjugated hyperbilirubinemia (Gilbert's syndrome). Eur Psychiatry 2005, 20:327–331.CrossRefPubMed Miyaoka T, Yasukawa R, Mihara T, Mizuno S, Yasuda H, Sukegawa T, Hayashida M, Inagaki T, Horiguchi J: Fluid-attenuated inversion-recovery MR imaging in schizophrenia-associated with idiopathic unconjugated hyperbilirubinemia (Gilbert's syndrome). Eur Psychiatry 2005, 20:327–331.CrossRefPubMed
16.
go back to reference Wake R, Miyaoka T, Tsuchie K, Kawakami K, Nishida A, Inagaki T, Horiguchi J: Abnormalities in MRI signal intensity in schizophrenia associated with idiopathic unconjugated hyperbilirubinemia. Aus N Z J Psychiatry 2009, 43:1057–1069.CrossRef Wake R, Miyaoka T, Tsuchie K, Kawakami K, Nishida A, Inagaki T, Horiguchi J: Abnormalities in MRI signal intensity in schizophrenia associated with idiopathic unconjugated hyperbilirubinemia. Aus N Z J Psychiatry 2009, 43:1057–1069.CrossRef
17.
go back to reference Dennery PA, Seidman DS, Stevenson DK: Neonatal hyperbilirubinemia. N Engl J Med 2001, 344:581–590.CrossRefPubMed Dennery PA, Seidman DS, Stevenson DK: Neonatal hyperbilirubinemia. N Engl J Med 2001, 344:581–590.CrossRefPubMed
18.
go back to reference Hansen TWR: Mechanism of bilirubin toxicity: clinical implications. Clin Perinatol 2002, 29:765–778.CrossRefPubMed Hansen TWR: Mechanism of bilirubin toxicity: clinical implications. Clin Perinatol 2002, 29:765–778.CrossRefPubMed
19.
go back to reference Porter ML, Dennis BL: Hyperbilirubinemia in the term newborn. Am Fam Physician 2002, 65:599–606.PubMed Porter ML, Dennis BL: Hyperbilirubinemia in the term newborn. Am Fam Physician 2002, 65:599–606.PubMed
20.
go back to reference Shapiro SM: Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J Perinatol 2005, 25:54–59.CrossRefPubMed Shapiro SM: Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J Perinatol 2005, 25:54–59.CrossRefPubMed
21.
go back to reference Dalman C, Cullberg J: Neonatal hyperbilirubinemia-vulnerability factor for mental disorder? Acta Psychiatr Scand 1999, 100:469–471.CrossRefPubMed Dalman C, Cullberg J: Neonatal hyperbilirubinemia-vulnerability factor for mental disorder? Acta Psychiatr Scand 1999, 100:469–471.CrossRefPubMed
22.
go back to reference Hayashida M, Miyaoka T, Tsuchie K, Yasuda H, Wake R, Nishida A, Inagaki T, Toga T, Hagami H, Oda T, Horiguchi J: Hyperbilirubinemia-related behavioral and neuropathological changes in rats: a possible schizophrenia animal model. Prog Neuropsychopharmacol Biol Psychiatry 2009, 33:581–588.CrossRefPubMed Hayashida M, Miyaoka T, Tsuchie K, Yasuda H, Wake R, Nishida A, Inagaki T, Toga T, Hagami H, Oda T, Horiguchi J: Hyperbilirubinemia-related behavioral and neuropathological changes in rats: a possible schizophrenia animal model. Prog Neuropsychopharmacol Biol Psychiatry 2009, 33:581–588.CrossRefPubMed
24.
go back to reference Silva RFM, Rodriques CM, Brites D: Rat cultured neuronal and glial cells respond differently to toxicity of unconjugated bilirubin. Pediatr Res 2002, 51:535–541.CrossRefPubMed Silva RFM, Rodriques CM, Brites D: Rat cultured neuronal and glial cells respond differently to toxicity of unconjugated bilirubin. Pediatr Res 2002, 51:535–541.CrossRefPubMed
25.
go back to reference Gordo AC, Falcão AS, Fernandes A, Brito MA, Slva RFM, Brites D: Unconjugated bilirubin activates and damages microglia. J Neurosci Res 2006, 84:194–201.CrossRefPubMed Gordo AC, Falcão AS, Fernandes A, Brito MA, Slva RFM, Brites D: Unconjugated bilirubin activates and damages microglia. J Neurosci Res 2006, 84:194–201.CrossRefPubMed
26.
go back to reference Silva SL, Vaz AR, Barateiro A, Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D: Features of bilirubin-induced reactive microglia: from phagocytosis to inflammation. Neurobiol Dis 2010, 40:663–675.CrossRefPubMed Silva SL, Vaz AR, Barateiro A, Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D: Features of bilirubin-induced reactive microglia: from phagocytosis to inflammation. Neurobiol Dis 2010, 40:663–675.CrossRefPubMed
27.
go back to reference Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates. 6th edition. London: Elsevier Inc; 2007. Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates. 6th edition. London: Elsevier Inc; 2007.
28.
go back to reference Streit WJ, Graeber MB, Kreutzberg GW: Functional plasticity of microglia: a review. Glia 1988, 1:301–307.CrossRefPubMed Streit WJ, Graeber MB, Kreutzberg GW: Functional plasticity of microglia: a review. Glia 1988, 1:301–307.CrossRefPubMed
29.
go back to reference Nimmerjahn A, Kirchhcoff F, Helmchen F: Resting microglia cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314–1318.CrossRefPubMed Nimmerjahn A, Kirchhcoff F, Helmchen F: Resting microglia cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314–1318.CrossRefPubMed
30.
go back to reference Shapiro LA, Perez ZD, Foresti ML, Arisi GM, Ribak CE: Morphological and ultrastructural features of Iba1-immunolabeled microglial cells in the hippocampal dentate gyrus. Brain Res 2009, 1266:29–36.CrossRefPubMedPubMedCentral Shapiro LA, Perez ZD, Foresti ML, Arisi GM, Ribak CE: Morphological and ultrastructural features of Iba1-immunolabeled microglial cells in the hippocampal dentate gyrus. Brain Res 2009, 1266:29–36.CrossRefPubMedPubMedCentral
31.
go back to reference Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M: Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 2010, 7:483–495.CrossRefPubMedPubMedCentral Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M: Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 2010, 7:483–495.CrossRefPubMedPubMedCentral
33.
go back to reference Hanisch UK, Kettenmann H: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007, 10:1387–1394.CrossRefPubMed Hanisch UK, Kettenmann H: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007, 10:1387–1394.CrossRefPubMed
35.
36.
go back to reference Bessis A, Béchade C, Bernard D, Roumier A: Microglial control of neuronal death and synaptic properties. Glia 2007, 55:233–238.CrossRefPubMed Bessis A, Béchade C, Bernard D, Roumier A: Microglial control of neuronal death and synaptic properties. Glia 2007, 55:233–238.CrossRefPubMed
37.
go back to reference Ladeby R, Wirenfeldt M, Garcia-Overejo D, Fenger C, Dissing Olsen L, Dalmau I, Finsen B: Microglial cell population dynamics in the injured adult central nervous system. Brain Res Rev 2005, 48:196–206.CrossRefPubMed Ladeby R, Wirenfeldt M, Garcia-Overejo D, Fenger C, Dissing Olsen L, Dalmau I, Finsen B: Microglial cell population dynamics in the injured adult central nervous system. Brain Res Rev 2005, 48:196–206.CrossRefPubMed
38.
go back to reference Hailer NP, Grampp A, Nitsch R: Proliferation of microglia and astrocytes in the dentate gyrus following entohirnal cortex lesion: a quantitative bromodeoxyuridine-labelling study. Eur J Neurosci 1999, 11:3359–3364.CrossRefPubMed Hailer NP, Grampp A, Nitsch R: Proliferation of microglia and astrocytes in the dentate gyrus following entohirnal cortex lesion: a quantitative bromodeoxyuridine-labelling study. Eur J Neurosci 1999, 11:3359–3364.CrossRefPubMed
39.
go back to reference Ahdab-Barmada M, Moossy J: The neuropathology of kernicterus in the premature neonate: diagnostic problems. J Neuropathol Exp Neurol 1984, 43:45–52.CrossRefPubMed Ahdab-Barmada M, Moossy J: The neuropathology of kernicterus in the premature neonate: diagnostic problems. J Neuropathol Exp Neurol 1984, 43:45–52.CrossRefPubMed
40.
go back to reference Johnson L, Sarmiento F, Blanc WA, Day R: Kernicterus in rats with inherited deficiency of glucuronyl transferase. AMA J Dis Child 1959, 97:591–608.PubMed Johnson L, Sarmiento F, Blanc WA, Day R: Kernicterus in rats with inherited deficiency of glucuronyl transferase. AMA J Dis Child 1959, 97:591–608.PubMed
41.
go back to reference McDonald JW, Shapiro SM, Silverstein FS, Johnston MV: Role of glutamate receptor-mediated excitotoxicity in bilirubin-induced brain injury in the Gunn rat model. Exp Neurol 1998, 150:21–29.CrossRefPubMed McDonald JW, Shapiro SM, Silverstein FS, Johnston MV: Role of glutamate receptor-mediated excitotoxicity in bilirubin-induced brain injury in the Gunn rat model. Exp Neurol 1998, 150:21–29.CrossRefPubMed
42.
go back to reference Ekdahl CT, Kokaia Z, Lindvall O: Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009, 158:1021–1029.CrossRefPubMed Ekdahl CT, Kokaia Z, Lindvall O: Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009, 158:1021–1029.CrossRefPubMed
43.
go back to reference Doorduin J, de Vries EFJ, Willemsen ATM, de Groot JC, Dierckx RA, Klein HC: Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009, 50:1801–1807.CrossRefPubMed Doorduin J, de Vries EFJ, Willemsen ATM, de Groot JC, Dierckx RA, Klein HC: Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009, 50:1801–1807.CrossRefPubMed
44.
go back to reference Lin A, Kenis G, Bignotti S, Tura GJ, de Jong R, Bosmans E, Pioli R, Altamura C, Scharpé S, Maes M: The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 1998, 32:9–15.CrossRefPubMed Lin A, Kenis G, Bignotti S, Tura GJ, de Jong R, Bosmans E, Pioli R, Altamura C, Scharpé S, Maes M: The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 1998, 32:9–15.CrossRefPubMed
45.
go back to reference Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY, Shen YC: Changes in serum interleukin-2, -6, and -8 levels before and during treatment with risperidone and haloperidol: relationship to outcome in schizophrenia. J Clin Psychiatry 2004, 65:940–947.CrossRefPubMed Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY, Shen YC: Changes in serum interleukin-2, -6, and -8 levels before and during treatment with risperidone and haloperidol: relationship to outcome in schizophrenia. J Clin Psychiatry 2004, 65:940–947.CrossRefPubMed
46.
go back to reference Akhondzadeh S, Tabatabaee M, Amini H, Ahmadi Abhari SA, Abbasi SH, Behnam B: Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized, and placebo-controlled trial. Schizophr Res 2007, 90:179–185.CrossRefPubMed Akhondzadeh S, Tabatabaee M, Amini H, Ahmadi Abhari SA, Abbasi SH, Behnam B: Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized, and placebo-controlled trial. Schizophr Res 2007, 90:179–185.CrossRefPubMed
47.
go back to reference Miyaoka T, Yasukawa R, Yasuda H, Hayashida M, Inagaki T, Horiguchi J: Minocycline as adjunctive therapy for schizophrenia: an open-label study. Clin Neuropharmacol 2008, 315:287–292.CrossRef Miyaoka T, Yasukawa R, Yasuda H, Hayashida M, Inagaki T, Horiguchi J: Minocycline as adjunctive therapy for schizophrenia: an open-label study. Clin Neuropharmacol 2008, 315:287–292.CrossRef
48.
go back to reference Kato T, Monji A, Hashioka S, Kanba S: Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro. Schizophr Res 2007, 92:108–115.CrossRefPubMed Kato T, Monji A, Hashioka S, Kanba S: Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro. Schizophr Res 2007, 92:108–115.CrossRefPubMed
49.
go back to reference Bian Q, Kato T, Monji A, Hashioka S, Mizoguchi Y, Horikawa H, Kanba S: The effect of atypical antipsychotics, perospirone, ziprasidone, and quetiapine on microglial activation induced by interferon-gamma. Prog Neuropsychopharmacol Biol Psychiatry 2008, 32:42–48.CrossRefPubMed Bian Q, Kato T, Monji A, Hashioka S, Mizoguchi Y, Horikawa H, Kanba S: The effect of atypical antipsychotics, perospirone, ziprasidone, and quetiapine on microglial activation induced by interferon-gamma. Prog Neuropsychopharmacol Biol Psychiatry 2008, 32:42–48.CrossRefPubMed
Metadata
Title
Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model
Authors
Kristian Liaury
Tsuyoshi Miyaoka
Toshiko Tsumori
Motohide Furuya
Rei Wake
Masa Ieda
Keiko Tsuchie
Michiyo Taki
Kotomi Ishihara
Andi Jayalangkara Tanra
Jun Horiguchi
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-56

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue