Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 10/2017

01-10-2017 | Knee

Morphological classification of the femoral trochlear groove based on a quantitative measurement of computed tomographic models

Authors: Shichang Chen, Zhe Du, Mengning Yan, Bing Yue, You Wang

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 10/2017

Login to get access

Abstract

Purpose

This study aimed to investigate the natural morphology of the femoral trochlear groove based on quantitative measurement.

Methods

Computed tomographic femur models of 50 male and 50 female healthy Chinese adults (30–60 years) were analysed using three-dimensional software. Coaxial cutting planes (15° increments) rotating about the trochlear groove axis from the proximal to distal point were created, followed by the deepest point of the trochlear groove marked at each cross section. The shape, position, and orientation of the trochlear groove were analysed.

Results

The trochlear groove was located laterally relative to the mechanical axis and consisted of the laterally oriented proximal part and medially oriented distal part. Based on the turning points located on different cross sections, the trochlear groove was classified into four types: types 45°, 60°, 75°, and 90°. The mediolateral position relative to the mechanical axis was types 45°, 60°, 75°, and 90°, from the lateral to medial side, while the distal parts of them extended along the same path. The orientation of the trochlear groove was relatively consistent and smooth, which oriented at approximately 1° medially between two adjacent segments, except at approximately 10° medially at the turning point.

Conclusion

The trochlear groove tracking varies greatly amongst a population that is mainly categorized into four types. This study may be helpful for better understanding of the natural trochlear groove anatomy, prosthetic design modification, and provide the reference value for studying patellofemoral diseases such as patellar maltracking and trochlear dysplasia.

Level of evidence

Prospective study, Level II.
Literature
2.
go back to reference Baldini A, Anderson JA, Cerulli-Mariani P, Kalyvas J, Pavlov H, Sculco TP (2007) Patellofemoral evaluation after total knee arthroplasty. Validation of a new weight-bearing axial radiographic view. J Bone Joint Surg Am 89:1810–1817PubMed Baldini A, Anderson JA, Cerulli-Mariani P, Kalyvas J, Pavlov H, Sculco TP (2007) Patellofemoral evaluation after total knee arthroplasty. Validation of a new weight-bearing axial radiographic view. J Bone Joint Surg Am 89:1810–1817PubMed
3.
go back to reference Barink M, Meijerink H, Verdonschot N, van Kampen A, de Waal Malefijt M (2007) Asymmetrical total knee arthroplasty does not improve patella tracking: a study without patella resurfacing. Knee Surg Sports Traumatol Arthrosc 15:184–191CrossRefPubMed Barink M, Meijerink H, Verdonschot N, van Kampen A, de Waal Malefijt M (2007) Asymmetrical total knee arthroplasty does not improve patella tracking: a study without patella resurfacing. Knee Surg Sports Traumatol Arthrosc 15:184–191CrossRefPubMed
4.
go back to reference Barink M, Van de Groes S, Verdonschot N, de Waal Malefijt M (2003) The trochlea is bilinear and oriented medially. Clin Orthop Relat Res 411:288–295CrossRef Barink M, Van de Groes S, Verdonschot N, de Waal Malefijt M (2003) The trochlea is bilinear and oriented medially. Clin Orthop Relat Res 411:288–295CrossRef
5.
go back to reference Barink M, Van de Groes S, Verdonschot N, De Waal Malefijt M (2006) The difference in trochlear orientation between the natural knee and current prosthetic knee designs; towards a truly physiological prosthetic groove orientation. J Biomech 39:1708–1715CrossRefPubMed Barink M, Van de Groes S, Verdonschot N, De Waal Malefijt M (2006) The difference in trochlear orientation between the natural knee and current prosthetic knee designs; towards a truly physiological prosthetic groove orientation. J Biomech 39:1708–1715CrossRefPubMed
6.
go back to reference Dejour D, Ntagiopoulos PG, Saffarini M (2014) Evidence of trochlear dysplasia in femoral component designs. Knee Surg Sports Traumatol Arthrosc 22:2599–2607CrossRefPubMed Dejour D, Ntagiopoulos PG, Saffarini M (2014) Evidence of trochlear dysplasia in femoral component designs. Knee Surg Sports Traumatol Arthrosc 22:2599–2607CrossRefPubMed
7.
go back to reference D’Lima DD, Chen PC, Kester MA, Colwell CW Jr (2003) Impact of patellofemoral design on patellofemoral forces and polyethylene stresses. J Bone Joint Surg Am Suppl 4:85–93CrossRef D’Lima DD, Chen PC, Kester MA, Colwell CW Jr (2003) Impact of patellofemoral design on patellofemoral forces and polyethylene stresses. J Bone Joint Surg Am Suppl 4:85–93CrossRef
8.
go back to reference Eisenhuth SA, Saleh KJ, Cui Q, Clark CR, Brown TE (2006) Patellofemoral instability after total knee arthroplasty. Clin Orthop Relat Res 446:149–160CrossRefPubMed Eisenhuth SA, Saleh KJ, Cui Q, Clark CR, Brown TE (2006) Patellofemoral instability after total knee arthroplasty. Clin Orthop Relat Res 446:149–160CrossRefPubMed
9.
go back to reference Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38:197–208CrossRefPubMed Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38:197–208CrossRefPubMed
10.
go back to reference Iranpour F, Merican AM, Baena FR, Cobb JP, Amis AA (2010) Patellofemoral joint kinematics: the circular path of the patella around the trochlear axis. J Orthop Res 28:589–594PubMed Iranpour F, Merican AM, Baena FR, Cobb JP, Amis AA (2010) Patellofemoral joint kinematics: the circular path of the patella around the trochlear axis. J Orthop Res 28:589–594PubMed
11.
go back to reference Iranpour F, Merican AM, Dandachli W, Amis AA, Cobb JP (2010) The geometry of the trochlear groove. Clin Orthop Relat Res 468:782–788CrossRefPubMed Iranpour F, Merican AM, Dandachli W, Amis AA, Cobb JP (2010) The geometry of the trochlear groove. Clin Orthop Relat Res 468:782–788CrossRefPubMed
12.
go back to reference Kulkarni SK, Freeman MA, Poal-Manresa JC, Asencio JI, Rodriguez JJ (2000) The patellofemoral joint in total knee arthroplasty: is the design of the trochlea the critical factor? J Arthroplast 15:424–429CrossRef Kulkarni SK, Freeman MA, Poal-Manresa JC, Asencio JI, Rodriguez JJ (2000) The patellofemoral joint in total knee arthroplasty: is the design of the trochlea the critical factor? J Arthroplast 15:424–429CrossRef
13.
go back to reference Kuriyama S, Hyakuna K, Inoue S, Tanaka Y, Tamaki Y, Ito H, Matsuda S (2014) Is a “sulcus cut” technique effective for determining the level of distal femoral resection in total knee arthroplasty? Knee Surg Sports Traumatol Arthrosc 22:3060–3066CrossRefPubMed Kuriyama S, Hyakuna K, Inoue S, Tanaka Y, Tamaki Y, Ito H, Matsuda S (2014) Is a “sulcus cut” technique effective for determining the level of distal femoral resection in total knee arthroplasty? Knee Surg Sports Traumatol Arthrosc 22:3060–3066CrossRefPubMed
14.
go back to reference Lee TQ, Gerken AP, Glaser FE, Kim WC, Anzel SH (1997) Patellofemoral joint kinematics and contact pressures in total knee arthroplasty. Clin Orthop Relat Res 340:257–266CrossRef Lee TQ, Gerken AP, Glaser FE, Kim WC, Anzel SH (1997) Patellofemoral joint kinematics and contact pressures in total knee arthroplasty. Clin Orthop Relat Res 340:257–266CrossRef
15.
go back to reference Meijerink HJ, Barink M, van Loon CJ, Schwering PJ, Donk RD, Verdonschot N, de Waal Malefijt MC (2007) The trochlea is medialized by total knee arthroplasty: an intraoperative assessment in 61 patients. Acta Orthop 78:123–127CrossRefPubMed Meijerink HJ, Barink M, van Loon CJ, Schwering PJ, Donk RD, Verdonschot N, de Waal Malefijt MC (2007) The trochlea is medialized by total knee arthroplasty: an intraoperative assessment in 61 patients. Acta Orthop 78:123–127CrossRefPubMed
16.
go back to reference Patel J, Ries MD, Bozic KJ (2008) Extensor mechanism complications after total knee arthroplasty. Instr Course Lect 57:283–294PubMed Patel J, Ries MD, Bozic KJ (2008) Extensor mechanism complications after total knee arthroplasty. Instr Course Lect 57:283–294PubMed
17.
go back to reference Post WR (1999) Clinical evaluation of patients with patellofemoral disorders. Arthroscopy 15:841–851CrossRefPubMed Post WR (1999) Clinical evaluation of patients with patellofemoral disorders. Arthroscopy 15:841–851CrossRefPubMed
18.
go back to reference Powers CM (2000) Patellar kinematics, Part II: the influence of the depth of the trochlear groove in subjects with and without patellofemoral pain. Phys Ther 80:965–978PubMed Powers CM (2000) Patellar kinematics, Part II: the influence of the depth of the trochlear groove in subjects with and without patellofemoral pain. Phys Ther 80:965–978PubMed
19.
go back to reference Schindler OS, Scott WN (2011) Basic kinematics and biomechanics of the patello-femoral joint. Part 1: the native patella. Acta Orthop Belg 77:421–431PubMed Schindler OS, Scott WN (2011) Basic kinematics and biomechanics of the patello-femoral joint. Part 1: the native patella. Acta Orthop Belg 77:421–431PubMed
20.
go back to reference Shih YF, Bull AM, Amis AA (2004) The cartilaginous and osseous geometry of the femoral trochlear groove. Knee Surg Sports Traumatol Arthrosc 12:300–306CrossRefPubMed Shih YF, Bull AM, Amis AA (2004) The cartilaginous and osseous geometry of the femoral trochlear groove. Knee Surg Sports Traumatol Arthrosc 12:300–306CrossRefPubMed
21.
go back to reference Stoddard JE, Deehan DJ, Bull AM, McCaskie AW, Amis AA (2014) No difference in patellar tracking between symmetrical and asymmetrical femoral component designs in TKA. Knee Surg Sports Traumatol Arthrosc 22:534–542CrossRefPubMed Stoddard JE, Deehan DJ, Bull AM, McCaskie AW, Amis AA (2014) No difference in patellar tracking between symmetrical and asymmetrical femoral component designs in TKA. Knee Surg Sports Traumatol Arthrosc 22:534–542CrossRefPubMed
22.
go back to reference Varadarajan KM, Gill TJ, Freiberg AA, Rubash HE, Li G (2009) Gender differences in trochlear groove orientation and rotational kinematics of human knees. J Orthop Res 27:871–878CrossRefPubMedPubMedCentral Varadarajan KM, Gill TJ, Freiberg AA, Rubash HE, Li G (2009) Gender differences in trochlear groove orientation and rotational kinematics of human knees. J Orthop Res 27:871–878CrossRefPubMedPubMedCentral
23.
go back to reference Varadarajan KM, Rubash HE, Li G (2011) Are current total knee arthroplasty implants designed to restore normal trochlear groove anatomy? J Arthroplast 26:274–281CrossRef Varadarajan KM, Rubash HE, Li G (2011) Are current total knee arthroplasty implants designed to restore normal trochlear groove anatomy? J Arthroplast 26:274–281CrossRef
24.
go back to reference Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G (2011) Gender differences in the knees of Chinese population. Knee Surg Sports Traumatol Arthrosc 19:80–88CrossRefPubMed Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G (2011) Gender differences in the knees of Chinese population. Knee Surg Sports Traumatol Arthrosc 19:80–88CrossRefPubMed
25.
go back to reference Yue B, Wang J, Wang Y, Yan M, Zhang J, Zeng Y (2015) The intercondylar notch ceiling: an accurate reference for distal femoral resection in total knee arthroplasty for severely degenerated varus knees. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3792-4 PubMed Yue B, Wang J, Wang Y, Yan M, Zhang J, Zeng Y (2015) The intercondylar notch ceiling: an accurate reference for distal femoral resection in total knee arthroplasty for severely degenerated varus knees. Knee Surg Sports Traumatol Arthrosc. doi:10.​1007/​s00167-015-3792-4 PubMed
Metadata
Title
Morphological classification of the femoral trochlear groove based on a quantitative measurement of computed tomographic models
Authors
Shichang Chen
Zhe Du
Mengning Yan
Bing Yue
You Wang
Publication date
01-10-2017
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 10/2017
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-016-4236-5

Other articles of this Issue 10/2017

Knee Surgery, Sports Traumatology, Arthroscopy 10/2017 Go to the issue