Skip to main content
Top
Published in: Calcified Tissue International 5/2007

01-11-2007

Morphogenetic Activity of Silica and Bio-silica on the Expression of Genes Controlling Biomineralization Using SaOS-2 Cells

Authors: Werner E. G. Müller, Alexandra Boreiko, Xiaohong Wang, Anatoli Krasko, Werner Geurtsen, Márcio Reis Custódio, Thomas Winkler, Lada Lukić-Bilela, Thorben Link, Heinz C. Schröder

Published in: Calcified Tissue International | Issue 5/2007

Login to get access

Abstract

In a previous study (Schröder et al., J Biomed Mater Res B Appl Biomater 75:387–392, 2005) we demonstrated that human SaOS-2 cells, when cultivated on bio-silica matrices, respond with an increased hydroxyapatite deposition. In the present contribution we investigate if silica-based components (Na-silicate, tetraethyl orthosilicate [TEOS], silica-nanoparticles) (1) change the extent of biomineralization in vitro (SaOS-2 cells) and (2) cause an alteration of the expression of the genes amelogenin, ameloblastin, and enamelin, which are characteristic for an early stage of osteogenesis. We demonstrate that the viability of SaOS-2 cells was not affected by the silica-based components. If Na-silicate or TEOS was added together with ß-glycerophosphate, an organic phosphate donor, a significant increase in biomineralization was measured. Finally, expression levels of the amelogenin, ameloblastin, and enamelin genes were determined in SaOS-2 cells during exposure to the silica-based components. After exposure for 2 days, expression levels of amelogenin and enamelin strongly increased in response to the silica-based components, while no significant change was seen for ameloblastin. In contrast, exposure of SaOS-2 cells to ß-glycerophosphate resulted in increased expression of all three genes. We conclude that the levels of the structural molecules of the enamel matrix, amelogenin and enamelin, increase in the presence of silica-based components and substantially contribute to the extent of hydroxyapatite crystallite formation. These results demonstrate that silica-based components augment hydroxyapatite deposition in vitro and suggest that enzymatically synthesized bio-silica (via silicatein) might be a promising route for tooth reconstruction in vivo.
Literature
1.
go back to reference Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effects. Rev Miner Geochem 54:1–29CrossRef Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effects. Rev Miner Geochem 54:1–29CrossRef
2.
go back to reference Eckert C, Schröder HC, Brandt D, Perovic-Ottstadt S, Müller WEG (2006) A histochemical and electron microscopic analysis of the spiculogenesis in the demosponge Suberites domuncula. J Histochem Cytochem 54:1031–1040PubMedCrossRef Eckert C, Schröder HC, Brandt D, Perovic-Ottstadt S, Müller WEG (2006) A histochemical and electron microscopic analysis of the spiculogenesis in the demosponge Suberites domuncula. J Histochem Cytochem 54:1031–1040PubMedCrossRef
3.
go back to reference Garant PR (2003) Oral cells and tissue. Quintessence, Chicago Garant PR (2003) Oral cells and tissue. Quintessence, Chicago
4.
go back to reference Bartlett JD, Ganss B, Goldberg M, Moradian-Oldak J, Paine ML, Snead ML, Wen X, White SN, Zhou YL (2006) Protein-protein interactions of the developing enamel matrix. Curr Top Dev Biol 74:57–115PubMed Bartlett JD, Ganss B, Goldberg M, Moradian-Oldak J, Paine ML, Snead ML, Wen X, White SN, Zhou YL (2006) Protein-protein interactions of the developing enamel matrix. Curr Top Dev Biol 74:57–115PubMed
5.
go back to reference Fincham AG, Moradian-Oldak J, Simmer JP (1999) The structural biology of the developing dental enamel matrix. J Struct Biol 126:270–299PubMedCrossRef Fincham AG, Moradian-Oldak J, Simmer JP (1999) The structural biology of the developing dental enamel matrix. J Struct Biol 126:270–299PubMedCrossRef
6.
go back to reference Uchida T, Murakami C, Wakida K, Dohi N, Iwai Y, Simmer JP, Fukae M, Satado T, Takahashi O (1998) Sheet proteins: synthesis, secretion, degradation and fate in forming enamel. Eur J Oral Sci 106:308–314PubMed Uchida T, Murakami C, Wakida K, Dohi N, Iwai Y, Simmer JP, Fukae M, Satado T, Takahashi O (1998) Sheet proteins: synthesis, secretion, degradation and fate in forming enamel. Eur J Oral Sci 106:308–314PubMed
7.
go back to reference Fukumoto S, Kiba T, Hall B, Iehara N, Nakamura T, Longenecker G, Krebsbach PH, Nanci A, Kulkarni AB, Yamada Y (2004) Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol 167:973–983PubMedCrossRef Fukumoto S, Kiba T, Hall B, Iehara N, Nakamura T, Longenecker G, Krebsbach PH, Nanci A, Kulkarni AB, Yamada Y (2004) Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol 167:973–983PubMedCrossRef
8.
go back to reference Fukae M, Tanabe T, Murakami C, Dohi N, Uchida T, Shimizu M (1996) Primary structure of the porcine 89-kDa enamelin. Adv Dent Res 10:111–118PubMed Fukae M, Tanabe T, Murakami C, Dohi N, Uchida T, Shimizu M (1996) Primary structure of the porcine 89-kDa enamelin. Adv Dent Res 10:111–118PubMed
9.
go back to reference Hu JC, Yamakoshi Y (2003) Enamelin and autosomal-dominant amelogenesis imperfecta. Crit Rev Oral Biol Med 14:387–398PubMed Hu JC, Yamakoshi Y (2003) Enamelin and autosomal-dominant amelogenesis imperfecta. Crit Rev Oral Biol Med 14:387–398PubMed
10.
go back to reference Paine ML, Lei YP, Dickerson K, Snead ML (2002) Altered amelogenin self-assembly based upon mutations observed in human X-linked amelogenesis imperfecta (AIH1). J Biol Chem 277:17112–17116PubMedCrossRef Paine ML, Lei YP, Dickerson K, Snead ML (2002) Altered amelogenin self-assembly based upon mutations observed in human X-linked amelogenesis imperfecta (AIH1). J Biol Chem 277:17112–17116PubMedCrossRef
11.
go back to reference Snead ML (1996) Enamel biology logodaedaly: getting to the root of the problem, or “Who’s on first.” J Bone Miner Res 11:899–904PubMedCrossRef Snead ML (1996) Enamel biology logodaedaly: getting to the root of the problem, or “Who’s on first.” J Bone Miner Res 11:899–904PubMedCrossRef
12.
go back to reference Masuya H, Shimizu K, Sezutsu H, Sakuraba Y, Nagano J, Shimizu A, Fujimoto N, Kawai A, Miura I, Kaneda H, Kobayashi K, Ishijima J, Maeda T, Gondo Y, Noda T, Wakana S, Shiroishi T (2005) Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI). Hum Mol Genet 14:575–583PubMedCrossRef Masuya H, Shimizu K, Sezutsu H, Sakuraba Y, Nagano J, Shimizu A, Fujimoto N, Kawai A, Miura I, Kaneda H, Kobayashi K, Ishijima J, Maeda T, Gondo Y, Noda T, Wakana S, Shiroishi T (2005) Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI). Hum Mol Genet 14:575–583PubMedCrossRef
13.
go back to reference Lien CY, Lee OK, Su Y (2007) Cbfb enhances the osteogenic differentiation of both human and mouse mesenchymal stem cells induced by Cbfa-1 via reducing its ubiquitination-mediated degradation. Stem Cells 25:1462–1468PubMedCrossRef Lien CY, Lee OK, Su Y (2007) Cbfb enhances the osteogenic differentiation of both human and mouse mesenchymal stem cells induced by Cbfa-1 via reducing its ubiquitination-mediated degradation. Stem Cells 25:1462–1468PubMedCrossRef
14.
go back to reference Hassan MQ, Tare R, Lee SH, Mandeville M, Weiner B, Montecino M, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2007) HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes. Mol Cell Biol 27:3337–3352PubMedCrossRef Hassan MQ, Tare R, Lee SH, Mandeville M, Weiner B, Montecino M, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2007) HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes. Mol Cell Biol 27:3337–3352PubMedCrossRef
15.
go back to reference Sankaramanivel S, Jeyapriya R, Hemalatha D, Djody S, Arunakaran J, Srinivasan N (2006) Effect of chromium on vertebrae, femur and calvaria of adult male rats. Hum Exp Toxicol 25:311–318PubMedCrossRef Sankaramanivel S, Jeyapriya R, Hemalatha D, Djody S, Arunakaran J, Srinivasan N (2006) Effect of chromium on vertebrae, femur and calvaria of adult male rats. Hum Exp Toxicol 25:311–318PubMedCrossRef
16.
go back to reference Katsumata S, Tsuboi R, Uehara M, Suzuki K (2006) Dietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats. Biosci Biotechnol Biochem 70:2547–2550PubMedCrossRef Katsumata S, Tsuboi R, Uehara M, Suzuki K (2006) Dietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats. Biosci Biotechnol Biochem 70:2547–2550PubMedCrossRef
17.
go back to reference Li P, DeGroot K (1994) Better bioactive ceramics through sol-gel process. J Sol-Gel Sci Technol 2:797–801CrossRef Li P, DeGroot K (1994) Better bioactive ceramics through sol-gel process. J Sol-Gel Sci Technol 2:797–801CrossRef
18.
go back to reference Mahmood J, Takita H, Ojima Y, Kobayashi M, Kohgo T, Kuboki Y (2001) Geometric effect of matrix upon cell differentiation: BMP-induced osteogenesis using a new bioglass with a feasible structure. J Biochem (Tokyo) 129:163–171 Mahmood J, Takita H, Ojima Y, Kobayashi M, Kohgo T, Kuboki Y (2001) Geometric effect of matrix upon cell differentiation: BMP-induced osteogenesis using a new bioglass with a feasible structure. J Biochem (Tokyo) 129:163–171
19.
go back to reference Carlisle EM (1986) Ciba Foundation symposium 121. Wiley, Chichester, UK, pp 123–139CrossRef Carlisle EM (1986) Ciba Foundation symposium 121. Wiley, Chichester, UK, pp 123–139CrossRef
20.
21.
go back to reference Carlisle EM (1981) Silicon: a requirement in bone formation independent of vitamin D1. Calcif Tissue Int 33:27–34PubMedCrossRef Carlisle EM (1981) Silicon: a requirement in bone formation independent of vitamin D1. Calcif Tissue Int 33:27–34PubMedCrossRef
22.
24.
go back to reference Landis WJ, Lee DD, Brenna JT, Chandra S, Morrison GH (1986) Detection and localization of silicon and associated elements in vertebrate bone tissue by imaging ion microscopy. Calcif Tissue Int 38:52–59PubMedCrossRef Landis WJ, Lee DD, Brenna JT, Chandra S, Morrison GH (1986) Detection and localization of silicon and associated elements in vertebrate bone tissue by imaging ion microscopy. Calcif Tissue Int 38:52–59PubMedCrossRef
25.
go back to reference Schröder HC, Borejko A, Krasko A, Reiber A, Schwertner H, Müller WEG (2005) Mineralization of SaOS-2 cells on enzymatically (Silicatein) modified bioactive osteoblast-stimulating surfaces. J Biomed Mater Res B Appl Biomater 75:387–392PubMed Schröder HC, Borejko A, Krasko A, Reiber A, Schwertner H, Müller WEG (2005) Mineralization of SaOS-2 cells on enzymatically (Silicatein) modified bioactive osteoblast-stimulating surfaces. J Biomed Mater Res B Appl Biomater 75:387–392PubMed
26.
go back to reference Mayer G (2005) Rigid biological systems as models for synthetic composites. Science 310:1144–1147PubMedCrossRef Mayer G (2005) Rigid biological systems as models for synthetic composites. Science 310:1144–1147PubMedCrossRef
27.
go back to reference Müller WEG, Boreiko A, Schloßmacher U, Wang X, Tahir MN, Tremel W, Brandt D, Kaandorp JA, Schröder HC (2007) Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Biomaterials. doi:10.1016/j.biomaterials.2007.06.030 Müller WEG, Boreiko A, Schloßmacher U, Wang X, Tahir MN, Tremel W, Brandt D, Kaandorp JA, Schröder HC (2007) Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Biomaterials. doi:10.​1016/​j.​biomaterials.​2007.​06.​030
28.
go back to reference Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge bio-silica. Proc Natl Acad Sci USA 95:6234–6238PubMedCrossRef Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge bio-silica. Proc Natl Acad Sci USA 95:6234–6238PubMedCrossRef
29.
go back to reference Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365PubMedCrossRef Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365PubMedCrossRef
30.
go back to reference Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887PubMedCrossRef Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887PubMedCrossRef
31.
go back to reference Müller WEG, Lorenz A, Krasko A, Schröder HC (2004) Silicatein-mediated synthesis of amorphous silicates and siloxanes and use thereof. US patent EP1320624, 22 Sept 2004 Müller WEG, Lorenz A, Krasko A, Schröder HC (2004) Silicatein-mediated synthesis of amorphous silicates and siloxanes and use thereof. US patent EP1320624, 22 Sept 2004
32.
go back to reference Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297PubMedCrossRef Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297PubMedCrossRef
33.
go back to reference Müller WEG, Boreiko A, Wang X, Belikov SI, Wiens M, Grebenjuk VA, Schlossmacher U, Schröder HC (2007) Silicateins, the major bio-silica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395:62–71PubMedCrossRef Müller WEG, Boreiko A, Wang X, Belikov SI, Wiens M, Grebenjuk VA, Schlossmacher U, Schröder HC (2007) Silicateins, the major bio-silica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395:62–71PubMedCrossRef
34.
go back to reference Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281:12001–12009PubMedCrossRef Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281:12001–12009PubMedCrossRef
35.
go back to reference Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A, Schröder HC (2006) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120PubMedCrossRef Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A, Schröder HC (2006) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120PubMedCrossRef
36.
go back to reference Müller WEG (2005) Spatial and temporal expression patterns in animals. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine, vol 13. Wiley-VCH, Weinheim, pp 269–309 Müller WEG (2005) Spatial and temporal expression patterns in animals. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine, vol 13. Wiley-VCH, Weinheim, pp 269–309
37.
go back to reference Schröder HC, Krasko A, Le Pennec G, Adell T, Hassanein H, Müller IM, Müller WEG (2003) Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Prog Mol Subcell Biol 33:249–268PubMed Schröder HC, Krasko A, Le Pennec G, Adell T, Hassanein H, Müller IM, Müller WEG (2003) Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Prog Mol Subcell Biol 33:249–268PubMed
38.
go back to reference Müller WEG, Schröder HC (2005) Abbau und Modifizierung von Silicaten und Siliconen durch Silicase und Verwendung des reversiblen Enzyms. German patent 10246186 (granted: 07.07.2005) Müller WEG, Schröder HC (2005) Abbau und Modifizierung von Silicaten und Siliconen durch Silicase und Verwendung des reversiblen Enzyms. German patent 10246186 (granted: 07.07.2005)
39.
go back to reference Anderson HC, Hsu HH, Raval P, Hunt TR, Schwappach JR, Morris DC, Schneider DJ (1995) The mechanism of bone induction and bone healing by human osteosarcoma cell extracts. Clin Orthop Relat Res 313:129–134PubMed Anderson HC, Hsu HH, Raval P, Hunt TR, Schwappach JR, Morris DC, Schneider DJ (1995) The mechanism of bone induction and bone healing by human osteosarcoma cell extracts. Clin Orthop Relat Res 313:129–134PubMed
40.
go back to reference Mitsui N, Suzuki N, Koyama Y, Yanagisawa M, Kichibee O, Shimizu N, Maeno M (2006) Effect of compressive force on the expression of MMPs, PAs, and their inhibitors in osteoblastic Saos-2 cells. Life Sci 79:575–583PubMedCrossRef Mitsui N, Suzuki N, Koyama Y, Yanagisawa M, Kichibee O, Shimizu N, Maeno M (2006) Effect of compressive force on the expression of MMPs, PAs, and their inhibitors in osteoblastic Saos-2 cells. Life Sci 79:575–583PubMedCrossRef
41.
go back to reference Degasne I, Baslé MF, Demais V, Huré G, Lesourd M, Grolleau B, Mercier L, Chappard D (1999) Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int 64:499–507PubMedCrossRef Degasne I, Baslé MF, Demais V, Huré G, Lesourd M, Grolleau B, Mercier L, Chappard D (1999) Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int 64:499–507PubMedCrossRef
42.
go back to reference Saldana L, Mendez-Vilas A, Jiang L, Multigner M, Gonzalez-Carrasco JL, Perez-Prado MT, Gonzalez-Martin ML, Munuera L, Vilaboa N (2007) In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials 28:4343–4354PubMedCrossRef Saldana L, Mendez-Vilas A, Jiang L, Multigner M, Gonzalez-Carrasco JL, Perez-Prado MT, Gonzalez-Martin ML, Munuera L, Vilaboa N (2007) In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials 28:4343–4354PubMedCrossRef
43.
go back to reference Komine A, Suenaga M, Nakao K, Tsuji T, Tomooka Y (2007) Tooth regeneration from newly established cell lines from a molar tooth germ epithelium. Biochem Biophys Res Commun 355:758–763PubMedCrossRef Komine A, Suenaga M, Nakao K, Tsuji T, Tomooka Y (2007) Tooth regeneration from newly established cell lines from a molar tooth germ epithelium. Biochem Biophys Res Commun 355:758–763PubMedCrossRef
44.
go back to reference Goldberg M (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15:13–27PubMed Goldberg M (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15:13–27PubMed
45.
go back to reference Schröder HC, Natalio F, Shukoor I, Tremel W, Schlossmacher U, Wang X, Müller WEG (2007) Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. J Struct Biol 159:325–334PubMedCrossRef Schröder HC, Natalio F, Shukoor I, Tremel W, Schlossmacher U, Wang X, Müller WEG (2007) Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. J Struct Biol 159:325–334PubMedCrossRef
46.
go back to reference Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59:221–226PubMed Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59:221–226PubMed
47.
go back to reference Shioi A, Nishizawa Y, Jono S, Koyama H, Hosoi M, Morii H (1995) ß-Glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 15:2003–2009PubMed Shioi A, Nishizawa Y, Jono S, Koyama H, Hosoi M, Morii H (1995) ß-Glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 15:2003–2009PubMed
48.
go back to reference Orimo H, Shimada T (2006) Effects of phosphates on the expression of tissue-nonspecific alkaline phosphatase gene and phosphate-regulating genes in short-term cultures of human osteosarcoma cell lines. Mol Cell Biochem 282:101–108PubMedCrossRef Orimo H, Shimada T (2006) Effects of phosphates on the expression of tissue-nonspecific alkaline phosphatase gene and phosphate-regulating genes in short-term cultures of human osteosarcoma cell lines. Mol Cell Biochem 282:101–108PubMedCrossRef
49.
go back to reference Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRef Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRef
50.
go back to reference Stanford CM, Jacobson PA, Eanes ED, Lembke LA, Midura RJ (1995) Rapidly forming apatitic mineral in an osteoblastic cell line. J Biol Chem 270:9420–9428PubMedCrossRef Stanford CM, Jacobson PA, Eanes ED, Lembke LA, Midura RJ (1995) Rapidly forming apatitic mineral in an osteoblastic cell line. J Biol Chem 270:9420–9428PubMedCrossRef
51.
go back to reference Grebenjuk VA, Kuusksalu A, Kelve M, Schütze J, Schröder HC, Müller WEG (2002) Induction of (2′-5′)oligoadenylate synthetase in the marine sponges Suberites domuncula and Geodia cydonium by the bacterial endotoxin lipopolysaccharide. Eur J Biochem 269:1382–1392PubMedCrossRef Grebenjuk VA, Kuusksalu A, Kelve M, Schütze J, Schröder HC, Müller WEG (2002) Induction of (2′-5′)oligoadenylate synthetase in the marine sponges Suberites domuncula and Geodia cydonium by the bacterial endotoxin lipopolysaccharide. Eur J Biochem 269:1382–1392PubMedCrossRef
52.
go back to reference Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, et al.; Mammalian Gene Collection Program Team (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99:16899–16903 Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, et al.; Mammalian Gene Collection Program Team (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99:16899–16903
53.
go back to reference Toyosawa S, Fujiwara T, Ooshima T, Shintani S, Sato A, Ogawa Y, Sobue S, Ijuhin N (2000) Cloning and characterization of the human ameloblastin gene. Gene 256:1–11PubMedCrossRef Toyosawa S, Fujiwara T, Ooshima T, Shintani S, Sato A, Ogawa Y, Sobue S, Ijuhin N (2000) Cloning and characterization of the human ameloblastin gene. Gene 256:1–11PubMedCrossRef
54.
go back to reference Hu CC, Hart TC, Dupont BR, Chen JJ, Sun X, Qian Q, Zhang CH, Jiang H, Mattern VL, Wright JT, Simmer JP (2000) Cloning human enamelin cDNA, chromosomal localization, and analysis of expression during tooth development. J Dent Res 79:912–919PubMedCrossRef Hu CC, Hart TC, Dupont BR, Chen JJ, Sun X, Qian Q, Zhang CH, Jiang H, Mattern VL, Wright JT, Simmer JP (2000) Cloning human enamelin cDNA, chromosomal localization, and analysis of expression during tooth development. J Dent Res 79:912–919PubMedCrossRef
55.
go back to reference Sachs L (1984) Angewandte Statistik. Springer, Berlin, p 242 Sachs L (1984) Angewandte Statistik. Springer, Berlin, p 242
56.
go back to reference Thieberg RH, Yamauchi M, Satchell PG, Diekwisch TGH (1999) Sequential distribution of keratan sulfate and chondroitin sulfate epitopes during ameloblast differentiation. Histochem J 31:573–578PubMedCrossRef Thieberg RH, Yamauchi M, Satchell PG, Diekwisch TGH (1999) Sequential distribution of keratan sulfate and chondroitin sulfate epitopes during ameloblast differentiation. Histochem J 31:573–578PubMedCrossRef
57.
go back to reference Fincham AG, Moradian-Oldak J, Diekwisch TGH, Lyaruu DM, Wright JT, Bringas P Jr, Slavkin HC (1995) Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J Struct Biol 115:50–59PubMedCrossRef Fincham AG, Moradian-Oldak J, Diekwisch TGH, Lyaruu DM, Wright JT, Bringas P Jr, Slavkin HC (1995) Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J Struct Biol 115:50–59PubMedCrossRef
58.
go back to reference Wen HB, Fincham AG, Moradian-Oldak J (2001) Progressive accretion of amelogenin molecules during nanospheres assembly revealed by atomic force microscopy. Matrix Biol 20:387PubMedCrossRef Wen HB, Fincham AG, Moradian-Oldak J (2001) Progressive accretion of amelogenin molecules during nanospheres assembly revealed by atomic force microscopy. Matrix Biol 20:387PubMedCrossRef
59.
go back to reference Daculsi G, Menanteau J, Kerebel LM, Mitre D (1984) Length and shape of enamel crystals. Calcif Tissue Int 36:550–555PubMedCrossRef Daculsi G, Menanteau J, Kerebel LM, Mitre D (1984) Length and shape of enamel crystals. Calcif Tissue Int 36:550–555PubMedCrossRef
60.
go back to reference Aoba T (1996) Recent observations on enamel crystal formation during mammalian amelogenesis. Anat Rec 245:208–218PubMedCrossRef Aoba T (1996) Recent observations on enamel crystal formation during mammalian amelogenesis. Anat Rec 245:208–218PubMedCrossRef
61.
go back to reference Woessner JF (1998) Role of matrix proteases in processing enamel proteins. Connect Tissue Res 39:373–377 Woessner JF (1998) Role of matrix proteases in processing enamel proteins. Connect Tissue Res 39:373–377
62.
go back to reference Viswanathan HL, Berry JE, Foster BL, Gibson CW, Li Y, Kulkarni AB, Snead ML, Somerman MJ (2003) Amelogenin: a potential regulator of cementum-associated genes. J Periodontol 74:1423–1431PubMedCrossRef Viswanathan HL, Berry JE, Foster BL, Gibson CW, Li Y, Kulkarni AB, Snead ML, Somerman MJ (2003) Amelogenin: a potential regulator of cementum-associated genes. J Periodontol 74:1423–1431PubMedCrossRef
63.
go back to reference Veis A (2003) Amelogenin gene splice products: potential signaling molecules. Cell Mol Life Sci 60:38–55PubMedCrossRef Veis A (2003) Amelogenin gene splice products: potential signaling molecules. Cell Mol Life Sci 60:38–55PubMedCrossRef
64.
go back to reference Kim J-W, Simmer JP, Hart TC, Hart PS, Ramaswami MD, Bartlett JD, Hu JCC (2005) MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. J Med Genet 42:271–275PubMedCrossRef Kim J-W, Simmer JP, Hart TC, Hart PS, Ramaswami MD, Bartlett JD, Hu JCC (2005) MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. J Med Genet 42:271–275PubMedCrossRef
65.
go back to reference Fukae M, Tanabe T, Uchida T, Yamakoshi Y, Shimizu M (1993) Enamelins in the newly formed bovine enamel. Calcif Tissue Int 53: 257–261PubMedCrossRef Fukae M, Tanabe T, Uchida T, Yamakoshi Y, Shimizu M (1993) Enamelins in the newly formed bovine enamel. Calcif Tissue Int 53: 257–261PubMedCrossRef
66.
go back to reference Fukumoto S, Yamada A, Nonaka K, Yamada Y (2005) Essential roles of ameloblastin in maintaining ameloblast differentiation and enamel formation. Cells Tissues Organs 181:189–195PubMedCrossRef Fukumoto S, Yamada A, Nonaka K, Yamada Y (2005) Essential roles of ameloblastin in maintaining ameloblast differentiation and enamel formation. Cells Tissues Organs 181:189–195PubMedCrossRef
67.
go back to reference Zeichner-David M, Chen LS, Hsu Z, Reyna J, Caton J, Bringas P (2006) Amelogenin and ameloblastin show growth factor-like activity in periodontal ligament cells. Eur J Oral Sci 114(Suppl 1):244–253PubMedCrossRef Zeichner-David M, Chen LS, Hsu Z, Reyna J, Caton J, Bringas P (2006) Amelogenin and ameloblastin show growth factor-like activity in periodontal ligament cells. Eur J Oral Sci 114(Suppl 1):244–253PubMedCrossRef
68.
go back to reference Chang YL, Stanford CM, Keller JC (2000) Calcium and phosphate supplementation promotes bone cell mineralization: implications for hydroxyapatite (HA)-enhanced bone formation. J Biomed Mater Res 52:270–278PubMedCrossRef Chang YL, Stanford CM, Keller JC (2000) Calcium and phosphate supplementation promotes bone cell mineralization: implications for hydroxyapatite (HA)-enhanced bone formation. J Biomed Mater Res 52:270–278PubMedCrossRef
69.
go back to reference Chung CH, Golub EE, Forbes E, Tokuoka T, Shapiro IM (1992) Mechanism of action of β-glycerophosphate on bone cell mineralization. Calcif Tissue Int 51:305–311PubMedCrossRef Chung CH, Golub EE, Forbes E, Tokuoka T, Shapiro IM (1992) Mechanism of action of β-glycerophosphate on bone cell mineralization. Calcif Tissue Int 51:305–311PubMedCrossRef
70.
go back to reference Midura RJ, Wang A, Lovitch D, Law D, Powell K, Gorski JP (2004) Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures. J Biol Chem 279:25464–25473PubMedCrossRef Midura RJ, Wang A, Lovitch D, Law D, Powell K, Gorski JP (2004) Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures. J Biol Chem 279:25464–25473PubMedCrossRef
71.
go back to reference Gao T, Aro HT, Ylänen H, Vuorio E (2001) Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials 22:1475–1483PubMedCrossRef Gao T, Aro HT, Ylänen H, Vuorio E (2001) Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials 22:1475–1483PubMedCrossRef
72.
go back to reference Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs HW, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, Wirén Nv, Wittenmayer L (2006) Analysis of accumulation of mRNAs in response to Si or Si nutrition using microarray. Dev Plant Soil Sci 92:80–81 Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs HW, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, Wirén Nv, Wittenmayer L (2006) Analysis of accumulation of mRNAs in response to Si or Si nutrition using microarray. Dev Plant Soil Sci 92:80–81
73.
go back to reference Perović S, Schröder HC, Sudek S, Grebenjuk VA, Batel R, Štifanić M, Müller IM, Müller WEG (2003) Expression of one sponge Iroquois homeobox gene during canal formation in Suberites domuncula. Evol Dev 5:240–250PubMedCrossRef Perović S, Schröder HC, Sudek S, Grebenjuk VA, Batel R, Štifanić M, Müller IM, Müller WEG (2003) Expression of one sponge Iroquois homeobox gene during canal formation in Suberites domuncula. Evol Dev 5:240–250PubMedCrossRef
74.
go back to reference Abe K, Miyoshi K, Muto T, Ruspita I, Horiguchi T, Nagata T, Noma T (2007) Establishment and characterization of rat dental epithelial derived ameloblast-lineage clones. J Biosci Bioeng 103:479–485PubMedCrossRef Abe K, Miyoshi K, Muto T, Ruspita I, Horiguchi T, Nagata T, Noma T (2007) Establishment and characterization of rat dental epithelial derived ameloblast-lineage clones. J Biosci Bioeng 103:479–485PubMedCrossRef
75.
go back to reference Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res (Symp) 4:25–42CrossRef Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res (Symp) 4:25–42CrossRef
76.
go back to reference Hench LL, Wilson J (1984) Surface-active biomaterials. Sciences 226:630–636 Hench LL, Wilson J (1984) Surface-active biomaterials. Sciences 226:630–636
77.
go back to reference Kokubo T (1995) Surface chemistry of bioactive glass-ceramics. J Noncrystal Solids 120:138–151CrossRef Kokubo T (1995) Surface chemistry of bioactive glass-ceramics. J Noncrystal Solids 120:138–151CrossRef
Metadata
Title
Morphogenetic Activity of Silica and Bio-silica on the Expression of Genes Controlling Biomineralization Using SaOS-2 Cells
Authors
Werner E. G. Müller
Alexandra Boreiko
Xiaohong Wang
Anatoli Krasko
Werner Geurtsen
Márcio Reis Custódio
Thomas Winkler
Lada Lukić-Bilela
Thorben Link
Heinz C. Schröder
Publication date
01-11-2007
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 5/2007
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-007-9075-4

Other articles of this Issue 5/2007

Calcified Tissue International 5/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine