Skip to main content
Top
Published in: Strahlentherapie und Onkologie 4/2017

01-04-2017 | Review Article

Monte Carlo systems used for treatment planning and dose verification

Authors: Lorenzo Brualla, Miguel Rodriguez, Antonio M. Lallena

Published in: Strahlentherapie und Onkologie | Issue 4/2017

Login to get access

Abstract

General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations.
Literature
1.
go back to reference Reynaert N, van der Marck SC, Schaart DR et al (2007) Monte Carlo treatment planning for photon and electron beams. Radiat Phys Chem 76:643–686CrossRef Reynaert N, van der Marck SC, Schaart DR et al (2007) Monte Carlo treatment planning for photon and electron beams. Radiat Phys Chem 76:643–686CrossRef
2.
go back to reference Cygler J, Battista JJ, Scrimger JW et al (1987) Electron dose distributions in experimental phantoms: a comparison with 2D pencil beam calculations. Phys Med Biol 32:1073–1083PubMedCrossRef Cygler J, Battista JJ, Scrimger JW et al (1987) Electron dose distributions in experimental phantoms: a comparison with 2D pencil beam calculations. Phys Med Biol 32:1073–1083PubMedCrossRef
3.
go back to reference Ma C‑M, Mok E, Kapur A et al (1999) Clinical implementation of a Monte Carlo treatment planning system. Med Phys 26:2133–2143PubMedCrossRef Ma C‑M, Mok E, Kapur A et al (1999) Clinical implementation of a Monte Carlo treatment planning system. Med Phys 26:2133–2143PubMedCrossRef
4.
go back to reference Arnfield MR, Hartmann-Siantar C, Siebers J et al (2000) The impact of electron transport on the accuracy of computed dose. Med Phys 27:1266–1274PubMedCrossRef Arnfield MR, Hartmann-Siantar C, Siebers J et al (2000) The impact of electron transport on the accuracy of computed dose. Med Phys 27:1266–1274PubMedCrossRef
5.
go back to reference Miften M, Wiesmeyer M, Kapur A et al (2001) Comparison of RTP dose distributions in heterogeneous phantoms with the BEAM Monte Carlo simulation system. J Appl Clin Med Phys 2:21–31PubMedCrossRef Miften M, Wiesmeyer M, Kapur A et al (2001) Comparison of RTP dose distributions in heterogeneous phantoms with the BEAM Monte Carlo simulation system. J Appl Clin Med Phys 2:21–31PubMedCrossRef
6.
go back to reference De Vlamynck K, Palmans H, Verhaegen F et al (2007) Dose measurements compared with Monte Carlo simulations of narrow 6 MV multileaf collimator shaped photon beams. Med Phys 34:4818–4853CrossRef De Vlamynck K, Palmans H, Verhaegen F et al (2007) Dose measurements compared with Monte Carlo simulations of narrow 6 MV multileaf collimator shaped photon beams. Med Phys 34:4818–4853CrossRef
7.
go back to reference Rincón M, Sánchez-Doblado F, Perucha M et al (2001) A Monte Carlo approach for small electron beam dosimetry. Radiother Oncol 58:179–185PubMedCrossRef Rincón M, Sánchez-Doblado F, Perucha M et al (2001) A Monte Carlo approach for small electron beam dosimetry. Radiother Oncol 58:179–185PubMedCrossRef
8.
go back to reference Sánchez-Doblado F, Andreo P, Capote R et al (2003) Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams. Phys Med Biol 48:2081–2099PubMedCrossRef Sánchez-Doblado F, Andreo P, Capote R et al (2003) Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams. Phys Med Biol 48:2081–2099PubMedCrossRef
9.
go back to reference Chetty I, Curran B, Cygler J et al (1999) Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 26:1874–1882CrossRef Chetty I, Curran B, Cygler J et al (1999) Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 26:1874–1882CrossRef
10.
go back to reference Alfonso R, Andreo P, Capote R et al (2008) A new formalism for reference dosimetry of small and nonstandard fields. Med Phys 35:5179–5186PubMedCrossRef Alfonso R, Andreo P, Capote R et al (2008) A new formalism for reference dosimetry of small and nonstandard fields. Med Phys 35:5179–5186PubMedCrossRef
11.
go back to reference Das IJ, Ding GX, Ahnesjö A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys 35:206–215PubMedCrossRef Das IJ, Ding GX, Ahnesjö A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys 35:206–215PubMedCrossRef
12.
go back to reference Brualla L, Palanco-Zamora R, Wittig A et al (2009) Comparison between PENELOPE and electron Monte Carlo simulations of electron fields used in the treatment of conjunctival lymphoma. Phys Med Biol 54:5469–5481PubMedCrossRef Brualla L, Palanco-Zamora R, Wittig A et al (2009) Comparison between PENELOPE and electron Monte Carlo simulations of electron fields used in the treatment of conjunctival lymphoma. Phys Med Biol 54:5469–5481PubMedCrossRef
13.
go back to reference Panettieri V, Barsoum P, Westermark M et al (2009) AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE. Radiother Oncol 93:94–101PubMedCrossRef Panettieri V, Barsoum P, Westermark M et al (2009) AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE. Radiother Oncol 93:94–101PubMedCrossRef
14.
go back to reference Brualla L, Palanco-Zamora R, Steuhl K‑P et al (2011) Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment. Strahlenther Onkol 187:492–498PubMedCrossRef Brualla L, Palanco-Zamora R, Steuhl K‑P et al (2011) Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment. Strahlenther Onkol 187:492–498PubMedCrossRef
15.
go back to reference Brualla L, Mayorga PA, Flühs A et al (2012) Retinoblastoma external beam photon irradiation with a special “D”-shaped collimator: a comparison between measurements, Monte Carlo simulation and a treatment planning system calculation. Phys Med Biol 57:7741–7751PubMedCrossRef Brualla L, Mayorga PA, Flühs A et al (2012) Retinoblastoma external beam photon irradiation with a special “D”-shaped collimator: a comparison between measurements, Monte Carlo simulation and a treatment planning system calculation. Phys Med Biol 57:7741–7751PubMedCrossRef
16.
go back to reference Brualla L, Zaragoza FJ, Sempau J et al (2012) Electron irradiation of conjunctival lymphoma-Monte Carlo simulation of the minute dose distribution and technique optimization. Int J Radiat Oncol Biol Phys 83:1330–1337PubMedCrossRef Brualla L, Zaragoza FJ, Sempau J et al (2012) Electron irradiation of conjunctival lymphoma-Monte Carlo simulation of the minute dose distribution and technique optimization. Int J Radiat Oncol Biol Phys 83:1330–1337PubMedCrossRef
17.
go back to reference Mayorga PA, Brualla L, Sauerwein W et al (2014) Monte Carlo study for designing a dedicated “D”-shaped collimator used in the external beam radiotherapy of retinoblastoma patients. Med Phys 41:011714PubMedCrossRef Mayorga PA, Brualla L, Sauerwein W et al (2014) Monte Carlo study for designing a dedicated “D”-shaped collimator used in the external beam radiotherapy of retinoblastoma patients. Med Phys 41:011714PubMedCrossRef
18.
go back to reference Kawrakow I, Fippel M, Friedrich K (1996) 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC). Med Phys 23:445–447PubMedCrossRef Kawrakow I, Fippel M, Friedrich K (1996) 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC). Med Phys 23:445–447PubMedCrossRef
19.
go back to reference Sempau J, Wilderman S, Bielajew A (2000) DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol 45:2263–2291PubMedCrossRef Sempau J, Wilderman S, Bielajew A (2000) DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol 45:2263–2291PubMedCrossRef
20.
go back to reference Fippel M (1999) Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 26:1466–1475PubMedCrossRef Fippel M (1999) Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 26:1466–1475PubMedCrossRef
21.
go back to reference Kawrakow I, Fippel M (2000) VMC++, a fast MC algorithm for radiation treatment planning. In: Schlegel W, Bortfeld T (eds) The use of computers in radiation therapy, XIIIth International Conference, Heidelberg (Germany). Springer, Heidelberg, pp 126–128CrossRef Kawrakow I, Fippel M (2000) VMC++, a fast MC algorithm for radiation treatment planning. In: Schlegel W, Bortfeld T (eds) The use of computers in radiation therapy, XIIIth International Conference, Heidelberg (Germany). Springer, Heidelberg, pp 126–128CrossRef
22.
go back to reference Kawrakow I, Fippel M (2000) Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Phys Med Biol 45:2163–2183PubMedCrossRef Kawrakow I, Fippel M (2000) Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Phys Med Biol 45:2163–2183PubMedCrossRef
23.
go back to reference Bueno G, Déniz O, Carrascosa CB et al (2009) Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient. Med Phys 36:5162–5174PubMedPubMedCentralCrossRef Bueno G, Déniz O, Carrascosa CB et al (2009) Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient. Med Phys 36:5162–5174PubMedPubMedCentralCrossRef
24.
go back to reference Habib B, Poumarede B, Tola F et al (2010) Evaluation of PENFAST – A fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning. Phys Med 26:17–25PubMedCrossRef Habib B, Poumarede B, Tola F et al (2010) Evaluation of PENFAST – A fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning. Phys Med 26:17–25PubMedCrossRef
25.
go back to reference Badal A, Sempau J (2006) A package of Linux scripts for the parallelization of Monte Carlo simulations. Comput Phys Commun 175:440–450CrossRef Badal A, Sempau J (2006) A package of Linux scripts for the parallelization of Monte Carlo simulations. Comput Phys Commun 175:440–450CrossRef
26.
go back to reference Jia X, Gu X, Sempau J et al (2010) Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. Phys Med Biol 55:3077–3086PubMedCrossRef Jia X, Gu X, Sempau J et al (2010) Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. Phys Med Biol 55:3077–3086PubMedCrossRef
27.
go back to reference Jia X, Gu X, Graves YJ, Folkerts M et al (2011) GPU-based fast Monte Carlo simulation for radiotherapy dose calculation. Phys Med Biol 56:7017–7031PubMedCrossRef Jia X, Gu X, Graves YJ, Folkerts M et al (2011) GPU-based fast Monte Carlo simulation for radiotherapy dose calculation. Phys Med Biol 56:7017–7031PubMedCrossRef
28.
go back to reference Jenkins TM, Nelson WR, Rindi A (eds) (1988) Monte Carlo transport of electrons and photons. Plenum Press, New York Jenkins TM, Nelson WR, Rindi A (eds) (1988) Monte Carlo transport of electrons and photons. Plenum Press, New York
29.
go back to reference Ma C‑M, Faddegon BA, Rogers DWO et al (1997) Accurate characterization of the Monte Carlo calculated electron beams for radiotherapy. Med Phys 24:401–417PubMedCrossRef Ma C‑M, Faddegon BA, Rogers DWO et al (1997) Accurate characterization of the Monte Carlo calculated electron beams for radiotherapy. Med Phys 24:401–417PubMedCrossRef
30.
go back to reference DeMarco JJ, Solberg TD, Smathers JB (1998) A CT-based Monte Carlo simulation tool for dosimetry planning and analysis. Med Phys 25:1–11PubMedCrossRef DeMarco JJ, Solberg TD, Smathers JB (1998) A CT-based Monte Carlo simulation tool for dosimetry planning and analysis. Med Phys 25:1–11PubMedCrossRef
31.
go back to reference Kapur A, Ma C‑M, Mok E et al (1998) Monte Carlo calculations of clinical electron beam output factors. Phys Med Biol 43:3479–3494PubMedCrossRef Kapur A, Ma C‑M, Mok E et al (1998) Monte Carlo calculations of clinical electron beam output factors. Phys Med Biol 43:3479–3494PubMedCrossRef
32.
go back to reference Faddegon BA, Balogh J, Mackenzie R et al (1998) Clinical considerations of Monte Carlo for electron radiotherapy treatment planning. Radiat Phys Chem 35:217–228CrossRef Faddegon BA, Balogh J, Mackenzie R et al (1998) Clinical considerations of Monte Carlo for electron radiotherapy treatment planning. Radiat Phys Chem 35:217–228CrossRef
33.
go back to reference Wang L, Chui C, Lovelock M (1998) A patient-specific Monte Carlo dose-calculation method for photon beams. Med Phys 25:867–878PubMedCrossRef Wang L, Chui C, Lovelock M (1998) A patient-specific Monte Carlo dose-calculation method for photon beams. Med Phys 25:867–878PubMedCrossRef
34.
35.
go back to reference Verhaegen F, Seuntjens J (2003) Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol 48:R107–R164PubMedCrossRef Verhaegen F, Seuntjens J (2003) Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol 48:R107–R164PubMedCrossRef
36.
go back to reference Rogers DWO (2006) Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 51:R287–R301PubMedCrossRef Rogers DWO (2006) Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 51:R287–R301PubMedCrossRef
37.
go back to reference Spezi E, Lewis G (2008) An overview of Monte Carlo treatment planning for radiotherapy. Radiat Prot Dosimetry 131:123–129PubMedCrossRef Spezi E, Lewis G (2008) An overview of Monte Carlo treatment planning for radiotherapy. Radiat Prot Dosimetry 131:123–129PubMedCrossRef
38.
go back to reference Seco J, Verhaegen F (2013) Monte Carlo techniques in radiation therapy. CRC Press, Boca Raton Seco J, Verhaegen F (2013) Monte Carlo techniques in radiation therapy. CRC Press, Boca Raton
39.
go back to reference Kawrakow I (2000) Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys 27:485–498PubMedCrossRef Kawrakow I (2000) Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys 27:485–498PubMedCrossRef
40.
go back to reference Sempau J, Acosta E, Baró J et al (1997) An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Methods Phys Res B 132:377–390CrossRef Sempau J, Acosta E, Baró J et al (1997) An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Methods Phys Res B 132:377–390CrossRef
41.
go back to reference Salvat F, Fernández-Varea JM, Sempau J (2011) PENELOPE 2011 – A code system for Monte Carlo simulation of electron and photon transport. OECD Nuclear Energy Agency, Paris Salvat F, Fernández-Varea JM, Sempau J (2011) PENELOPE 2011 – A code system for Monte Carlo simulation of electron and photon transport. OECD Nuclear Energy Agency, Paris
42.
go back to reference Agostinelli S, Allison J, Amako K et al (2003) Geant4 – A simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303CrossRef Agostinelli S, Allison J, Amako K et al (2003) Geant4 – A simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303CrossRef
43.
go back to reference MCNPX Team (2002) MCNPX User’s Manual. LA-CP-02-408. RSICC CCC-715. Los Alamos National Laboratory, Los Alamos MCNPX Team (2002) MCNPX User’s Manual. LA-CP-02-408. RSICC CCC-715. Los Alamos National Laboratory, Los Alamos
44.
go back to reference Goorley JT, James MR, Booth TE et al (2013) Initial MCNP6 release overview – MCNP6 Version 1.0. In: LA-UR-13-22934. Los Alamos National Laboratory, Los Alamos Goorley JT, James MR, Booth TE et al (2013) Initial MCNP6 release overview – MCNP6 Version 1.0. In: LA-UR-13-22934. Los Alamos National Laboratory, Los Alamos
45.
go back to reference Vilches M, García-Pareja S, Guerrero R et al (2007) Monte Carlo simulation of the electron transport through thin slabs: A comparative study of PENELOPE, GEANT3, Geant4, EGSnrc and MCNPX. Nucl Instrum Methods Phys Res B 254:219–230CrossRef Vilches M, García-Pareja S, Guerrero R et al (2007) Monte Carlo simulation of the electron transport through thin slabs: A comparative study of PENELOPE, GEANT3, Geant4, EGSnrc and MCNPX. Nucl Instrum Methods Phys Res B 254:219–230CrossRef
46.
go back to reference Vilches M, García-Pareja S, Guerrero R et al (2008) Monte Carlo simulation of the electron transport through air slabs: a comparative study of PENELOPE, GEANT3, Geant4 and EGSnrc. IEEE Trans Nucl Sci 55:710–716CrossRef Vilches M, García-Pareja S, Guerrero R et al (2008) Monte Carlo simulation of the electron transport through air slabs: a comparative study of PENELOPE, GEANT3, Geant4 and EGSnrc. IEEE Trans Nucl Sci 55:710–716CrossRef
47.
go back to reference Vilches M, García-Pareja S, Guerrero R et al (2009) Multiple scattering of 13 and 20 MeV electrons by thin foils: a Monte Carlo study with GEANT, Geant4, and PENELOPE. Med Phys 36:3964–3970PubMedCrossRef Vilches M, García-Pareja S, Guerrero R et al (2009) Multiple scattering of 13 and 20 MeV electrons by thin foils: a Monte Carlo study with GEANT, Geant4, and PENELOPE. Med Phys 36:3964–3970PubMedCrossRef
48.
go back to reference Faddegon BA, Kawrakow I, Kubyshin Y et al (2009) The accuracy of EGSnrc, Geant4 and PENELOPE Monte Carlo systems for the simulation of electron scatter in external beam radiotherapy. Phys Med Biol 54:6151–6163PubMedPubMedCentralCrossRef Faddegon BA, Kawrakow I, Kubyshin Y et al (2009) The accuracy of EGSnrc, Geant4 and PENELOPE Monte Carlo systems for the simulation of electron scatter in external beam radiotherapy. Phys Med Biol 54:6151–6163PubMedPubMedCentralCrossRef
49.
go back to reference Jabbari K (2011) Review of fast Monte Carlo codes for dose calculation in radiation therapy treatment planning. J Med Signals Sens 1:73–86PubMedPubMedCentral Jabbari K (2011) Review of fast Monte Carlo codes for dose calculation in radiation therapy treatment planning. J Med Signals Sens 1:73–86PubMedPubMedCentral
50.
go back to reference Kawrakow I (2000) VMC++, electron and photon Monte Carlo calculations optimized for radiation planning. In: Kling A, Barao F, Nakagawa M, Tavora L, Vaz P (eds) Advanced Monte Carlo for radiation physics, particle transport simulation and applications, Proceedings of the Monte Carlo 2000 Conference. Springer, Berlin, pp 229–236 Kawrakow I (2000) VMC++, electron and photon Monte Carlo calculations optimized for radiation planning. In: Kling A, Barao F, Nakagawa M, Tavora L, Vaz P (eds) Advanced Monte Carlo for radiation physics, particle transport simulation and applications, Proceedings of the Monte Carlo 2000 Conference. Springer, Berlin, pp 229–236
51.
go back to reference Kawrakow I, Fippel M (2000) VMC++, a MC algorithm optimized for electron and photon beam dose calculations for RTP. In: World Congress on Medical Physics and Biomedical Engineering. Med Phys, Chicago (27:Meeting Issue) Kawrakow I, Fippel M (2000) VMC++, a MC algorithm optimized for electron and photon beam dose calculations for RTP. In: World Congress on Medical Physics and Biomedical Engineering. Med Phys, Chicago (27:Meeting Issue)
52.
go back to reference Neuenschwander H, Mackie T, Reckwerdt P (1995) MMC – A high-performance Monte Carlo code for electron beam treatment planning. Phys Med Biol 40:543–574PubMedCrossRef Neuenschwander H, Mackie T, Reckwerdt P (1995) MMC – A high-performance Monte Carlo code for electron beam treatment planning. Phys Med Biol 40:543–574PubMedCrossRef
53.
go back to reference Keall PJ, Hoban PW (1996) Super-Monte Carlo: A 3-D electron beam dose calculation algorithm. Med Phys 23:2023–2034PubMedCrossRef Keall PJ, Hoban PW (1996) Super-Monte Carlo: A 3-D electron beam dose calculation algorithm. Med Phys 23:2023–2034PubMedCrossRef
54.
go back to reference Deasy JO, Blanco AI, Clark VH (2003) CERR: a computational environment for radiotherapy research. Med Phys 30:979–985PubMedCrossRef Deasy JO, Blanco AI, Clark VH (2003) CERR: a computational environment for radiotherapy research. Med Phys 30:979–985PubMedCrossRef
55.
go back to reference Alexander A, DeBlois F, Stroian G et al (2007) MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning. Phys Med Biol 52:N297–N308PubMedCrossRef Alexander A, DeBlois F, Stroian G et al (2007) MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning. Phys Med Biol 52:N297–N308PubMedCrossRef
56.
go back to reference Abella V, Miró R, Juste B et al (2011) Comparison of MCNP5 dose calculations inside the RANDO phantom irradiated with a MLC LinAc photon beam against treatment planning system PLUNC. Prog Nucl Sci Technol 2:232–236CrossRef Abella V, Miró R, Juste B et al (2011) Comparison of MCNP5 dose calculations inside the RANDO phantom irradiated with a MLC LinAc photon beam against treatment planning system PLUNC. Prog Nucl Sci Technol 2:232–236CrossRef
57.
go back to reference Salguero FJ, Palma B, Arráns R et al (2009) Modulated electron radiotherapy treatment planning using a photon multileaf collimator for post-mastectomized chest walls. Radiother Oncol 93:625–632PubMedCrossRef Salguero FJ, Palma B, Arráns R et al (2009) Modulated electron radiotherapy treatment planning using a photon multileaf collimator for post-mastectomized chest walls. Radiother Oncol 93:625–632PubMedCrossRef
58.
go back to reference Salguero FJ, Arráns R, Palma BA et al (2010) Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors. Phys Med Biol 55:1413–1427PubMedCrossRef Salguero FJ, Arráns R, Palma BA et al (2010) Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors. Phys Med Biol 55:1413–1427PubMedCrossRef
59.
go back to reference Palma BA, Ureba Sánchez A, Salguero FJ et al (2012) Combined modulated electron and photon beams planned by a Monte-Carlo-based optimization procedure for accelerated partial breast irradiation. Phys Med Biol 57:1191–1202PubMedCrossRef Palma BA, Ureba Sánchez A, Salguero FJ et al (2012) Combined modulated electron and photon beams planned by a Monte-Carlo-based optimization procedure for accelerated partial breast irradiation. Phys Med Biol 57:1191–1202PubMedCrossRef
60.
go back to reference Ureba A, Salguero FJ, Barbeiro AR et al (2014) MCTP system model based on linear programming optimization of apertures obtained from sequencing patient image data maps. Med Phys 41:081719PubMedCrossRef Ureba A, Salguero FJ, Barbeiro AR et al (2014) MCTP system model based on linear programming optimization of apertures obtained from sequencing patient image data maps. Med Phys 41:081719PubMedCrossRef
61.
go back to reference Rogers DWO, Walters BR, Kawrakow I (2011) BEAMnrc Users Manual. In: NRCC Report PIRS-0509(A)revL. National Research Council of Canada, Ottawa Rogers DWO, Walters BR, Kawrakow I (2011) BEAMnrc Users Manual. In: NRCC Report PIRS-0509(A)revL. National Research Council of Canada, Ottawa
62.
go back to reference Walters BR, Kawrakow I, Rogers DWO (2009) DOSXYZnrc users manual. In: NRCC Report PIRS-794revB. National Research Council of Canada, Ottawa Walters BR, Kawrakow I, Rogers DWO (2009) DOSXYZnrc users manual. In: NRCC Report PIRS-794revB. National Research Council of Canada, Ottawa
63.
go back to reference Mukumoto N, Tsujii K, Saito S et al (2009) A preliminary study of in-house Monte Carlo simulations: an integrated Monte Carlo verification system. Int J Radiat Oncol Biol Phys 75:571–579PubMedCrossRef Mukumoto N, Tsujii K, Saito S et al (2009) A preliminary study of in-house Monte Carlo simulations: an integrated Monte Carlo verification system. Int J Radiat Oncol Biol Phys 75:571–579PubMedCrossRef
64.
go back to reference Hartmann Siantar CL, Walling RS, Daly TP et al (2001) Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom. Med Phys 28:1322–1337PubMedCrossRef Hartmann Siantar CL, Walling RS, Daly TP et al (2001) Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom. Med Phys 28:1322–1337PubMedCrossRef
65.
go back to reference Schach von Wittenau AE, Cox LJ, Bergstrom PM et al (1999) Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space. Med Phys 26:1196–1211PubMedCrossRef Schach von Wittenau AE, Cox LJ, Bergstrom PM et al (1999) Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space. Med Phys 26:1196–1211PubMedCrossRef
66.
go back to reference Nelson R, Hirayama H, Rogers DWO (1985) The EGS4 Code System. SLAC-265. SLAC, Stanford Nelson R, Hirayama H, Rogers DWO (1985) The EGS4 Code System. SLAC-265. SLAC, Stanford
67.
go back to reference Janssen JJ, Korevaar EW, van Battum LJ et al (2001) A model to determine the initial phase space of a clinical electron beam from measured data. Phys Med Biol 46:269–286PubMedCrossRef Janssen JJ, Korevaar EW, van Battum LJ et al (2001) A model to determine the initial phase space of a clinical electron beam from measured data. Phys Med Biol 46:269–286PubMedCrossRef
68.
go back to reference Fix MK, Cygler J, Frei D et al (2013) Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types. Phys Med Biol 58:2841–2859PubMedCrossRef Fix MK, Cygler J, Frei D et al (2013) Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types. Phys Med Biol 58:2841–2859PubMedCrossRef
69.
go back to reference Pena J, González-Castaño DM, Gómez F et al (2009) eIMRT: a web platform for the verification and optimization of radiation treatment plans. J Appl Clin Med Phys 10:205–220CrossRef Pena J, González-Castaño DM, Gómez F et al (2009) eIMRT: a web platform for the verification and optimization of radiation treatment plans. J Appl Clin Med Phys 10:205–220CrossRef
70.
go back to reference Gómez A, Mouriño JC, Carril LM et al (2012) Execution of Monte Carlo treatment verification on Cloud using COMPSs platform. Third European Workshop on Monte Carlo Treatment Planning, Sevilla. Book of Abstract, pp 186–189 Gómez A, Mouriño JC, Carril LM et al (2012) Execution of Monte Carlo treatment verification on Cloud using COMPSs platform. Third European Workshop on Monte Carlo Treatment Planning, Sevilla. Book of Abstract, pp 186–189
71.
go back to reference Kawrakow I, Walters BR (2006) Efficient photon beam dose calculations using DOSXYZnrc with BEAMnrc. Med Phys 33:3046–3056PubMedCrossRef Kawrakow I, Walters BR (2006) Efficient photon beam dose calculations using DOSXYZnrc with BEAMnrc. Med Phys 33:3046–3056PubMedCrossRef
72.
go back to reference Low DA, Harms WB, Mutic S et al (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661PubMedCrossRef Low DA, Harms WB, Mutic S et al (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661PubMedCrossRef
73.
go back to reference Pena J, González-Castaño DM, Gómez F et al (2007) Automatic determination of primary electron beam parameters in Monte Carlo simulation. Med Phys 34:1076–1084PubMedCrossRef Pena J, González-Castaño DM, Gómez F et al (2007) Automatic determination of primary electron beam parameters in Monte Carlo simulation. Med Phys 34:1076–1084PubMedCrossRef
74.
go back to reference Kawrakow I, Rogers DWO, Walters BR (2004) Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting. Med Phys 31:2883–2898PubMedCrossRef Kawrakow I, Rogers DWO, Walters BR (2004) Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting. Med Phys 31:2883–2898PubMedCrossRef
75.
go back to reference Brainlab (2011) iPlan RT version 4.5, Clinical user guide, rev. 1.1. Brainlab, Feldkirchen Brainlab (2011) iPlan RT version 4.5, Clinical user guide, rev. 1.1. Brainlab, Feldkirchen
76.
go back to reference Fippel M, Haryanto F, Dohm O et al (2003) A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 30:301–311PubMedCrossRef Fippel M, Haryanto F, Dohm O et al (2003) A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 30:301–311PubMedCrossRef
77.
go back to reference Fippel M (2004) Efficient particle transport simulation through beam modulating devices for Monte Carlo treatment planning. Med Phys 31:1235–1242PubMedCrossRef Fippel M (2004) Efficient particle transport simulation through beam modulating devices for Monte Carlo treatment planning. Med Phys 31:1235–1242PubMedCrossRef
78.
go back to reference Berger MJ, Hubbell JH (1987) XCOM: Photon Cross Sections on a Personal Computer. NBSIR 87-3597. NIST, GaithersburgCrossRef Berger MJ, Hubbell JH (1987) XCOM: Photon Cross Sections on a Personal Computer. NBSIR 87-3597. NIST, GaithersburgCrossRef
79.
go back to reference Berger MJ (1993) ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions. NISTIR 4999. NIST, Gaithersburg Berger MJ (1993) ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions. NISTIR 4999. NIST, Gaithersburg
80.
go back to reference Isambert A, Brualla L, Lefkopoulos D (2009) Evaluation of the material assignment method used by a Monte Carlo treatment planning system. Cancer Radiother 13:744–746PubMedCrossRef Isambert A, Brualla L, Lefkopoulos D (2009) Evaluation of the material assignment method used by a Monte Carlo treatment planning system. Cancer Radiother 13:744–746PubMedCrossRef
81.
go back to reference Isambert A, Brualla L, Benkebil M et al (2010) Determination of the optimal statistical uncertainty to perform electron-beam Monte Carlo absorbed dose estimation in the target volume. Cancer Radiother 14:89–95PubMedCrossRef Isambert A, Brualla L, Benkebil M et al (2010) Determination of the optimal statistical uncertainty to perform electron-beam Monte Carlo absorbed dose estimation in the target volume. Cancer Radiother 14:89–95PubMedCrossRef
82.
go back to reference Brualla L, Salvat F, Palanco-Zamora R (2009) Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques. Phys Med Biol 54:4131–4149PubMedCrossRef Brualla L, Salvat F, Palanco-Zamora R (2009) Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques. Phys Med Biol 54:4131–4149PubMedCrossRef
83.
go back to reference Berger M (1963) Monte Carlo calculation of the penetration and diffusion of fast charged particles. In: Alder B, Fernbach S, Rotenberg M (eds) Methods in computational physics, vol I. Academic Press, New York Berger M (1963) Monte Carlo calculation of the penetration and diffusion of fast charged particles. In: Alder B, Fernbach S, Rotenberg M (eds) Methods in computational physics, vol I. Academic Press, New York
84.
go back to reference Reynaert N, De Smedt B, Coghe M et al (2004) MCDE: a new Monte Carlo dose engine for IMRT. Phys Med Biol 49:N235–N241PubMedCrossRef Reynaert N, De Smedt B, Coghe M et al (2004) MCDE: a new Monte Carlo dose engine for IMRT. Phys Med Biol 49:N235–N241PubMedCrossRef
85.
go back to reference Sherouse GE, Chaney EL (1991) The portable virtual simulator. Int J Radiat Oncol Biol Phys 21:475–482PubMedCrossRef Sherouse GE, Chaney EL (1991) The portable virtual simulator. Int J Radiat Oncol Biol Phys 21:475–482PubMedCrossRef
86.
go back to reference De Smedt B (2006) Development of a Monte Carlo dose engine for IMRT treatment planning. Ph. D. Thesis. Universiteit Gent, Gent De Smedt B (2006) Development of a Monte Carlo dose engine for IMRT treatment planning. Ph. D. Thesis. Universiteit Gent, Gent
87.
go back to reference Li JS, Pawlicki T, Deng J, Jiang SB, Mok E, Ma C‑M (2000) Validation of a Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 45:2969–2985PubMedCrossRef Li JS, Pawlicki T, Deng J, Jiang SB, Mok E, Ma C‑M (2000) Validation of a Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 45:2969–2985PubMedCrossRef
88.
go back to reference Ma C‑M, Li JS, Pawlicki T et al (2002) A Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 47:1671–1689PubMedCrossRef Ma C‑M, Li JS, Pawlicki T et al (2002) A Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 47:1671–1689PubMedCrossRef
89.
go back to reference Siebers JV, Keall PJ, Kim JO, Mohan R (2000) Performance benchmarks of the MCV Monte Carlo system. In: XIII International Conference on the Use of Computers in Radiation Therapy. Eds. W. Schlegel, T. Bortfeld. Springer, pp 129–131 Siebers JV, Keall PJ, Kim JO, Mohan R (2000) Performance benchmarks of the MCV Monte Carlo system. In: XIII International Conference on the Use of Computers in Radiation Therapy. Eds. W. Schlegel, T. Bortfeld. Springer, pp 129–131
90.
go back to reference Siebers JV, Keall PJ, Kim JO, Mohan R (2002) A method for photon beam Monte Carlo multileaf collimator particle transport. Phys Med Biol 47:3225–3249PubMedCrossRef Siebers JV, Keall PJ, Kim JO, Mohan R (2002) A method for photon beam Monte Carlo multileaf collimator particle transport. Phys Med Biol 47:3225–3249PubMedCrossRef
91.
go back to reference Usmani MN, Takegawa H, Takashina M et al (2014) Development and reproducibility evaluation of a Monte Carlo-based standard LINAC model for quality assurance of multi-institutional clinical trials. J Radiat Res 55:1131–1140PubMedPubMedCentralCrossRef Usmani MN, Takegawa H, Takashina M et al (2014) Development and reproducibility evaluation of a Monte Carlo-based standard LINAC model for quality assurance of multi-institutional clinical trials. J Radiat Res 55:1131–1140PubMedPubMedCentralCrossRef
92.
go back to reference Sikora M, Dohm O, Alber M (2007) A virtual photon source model of an Elekta linear accelerator with integrated mini MLC for Monte Carlo based IMRT dose calculation. Phys Med Biol 52:4449–4463PubMedCrossRef Sikora M, Dohm O, Alber M (2007) A virtual photon source model of an Elekta linear accelerator with integrated mini MLC for Monte Carlo based IMRT dose calculation. Phys Med Biol 52:4449–4463PubMedCrossRef
93.
go back to reference Sikora M (2010) Virtual source modeling of photon beams for Monte Carlo based radiation therapy treatment planning. Ph. D. Thesis. University of Bergen, Bergen Sikora M (2010) Virtual source modeling of photon beams for Monte Carlo based radiation therapy treatment planning. Ph. D. Thesis. University of Bergen, Bergen
94.
go back to reference Sikora M, Alber M (2009) A virtual source model of electron contamination of a therapeutic photon beam. Phys Med Biol 54:7329–7344PubMedCrossRef Sikora M, Alber M (2009) A virtual source model of electron contamination of a therapeutic photon beam. Phys Med Biol 54:7329–7344PubMedCrossRef
95.
go back to reference Wang L, Lovelock M, Chui C (1999) Experimental verification of a CT-based Monte Carlo dose-calculation method in heterogeneous phantoms. Med Phys 26:2626–2634PubMedCrossRef Wang L, Lovelock M, Chui C (1999) Experimental verification of a CT-based Monte Carlo dose-calculation method in heterogeneous phantoms. Med Phys 26:2626–2634PubMedCrossRef
96.
go back to reference Traneus E, Ahnesjo A, Fippel M et al (2001) Application and verification of a coupled multi-source electron beam source model for Monte Carlo based treatment planning. Radiother Oncol 61:S102 Traneus E, Ahnesjo A, Fippel M et al (2001) Application and verification of a coupled multi-source electron beam source model for Monte Carlo based treatment planning. Radiother Oncol 61:S102
97.
go back to reference Rodriguez M, Sempau J, Brualla L (2013) PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol 189:881–886PubMedCrossRef Rodriguez M, Sempau J, Brualla L (2013) PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol 189:881–886PubMedCrossRef
98.
go back to reference Belosi MF, Rodriguez M, Fogliata A et al (2014) Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data. Med Phys 41:051707PubMedCrossRef Belosi MF, Rodriguez M, Fogliata A et al (2014) Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data. Med Phys 41:051707PubMedCrossRef
99.
go back to reference Constantin M, Perl J, LoSasso T et al (2011) Modeling the TrueBeam linac using a CAD to Geant4 geometry implementation: Dose and IAEA-compliant phase space calculations. Med Phys 38:4018–4024PubMedCrossRef Constantin M, Perl J, LoSasso T et al (2011) Modeling the TrueBeam linac using a CAD to Geant4 geometry implementation: Dose and IAEA-compliant phase space calculations. Med Phys 38:4018–4024PubMedCrossRef
100.
go back to reference Lloyd SAM, Gagne IM, Bazalova-Carter M, Zavgorodni S (2016) Validation of Varian TrueBeam electron phase-spaces for Monte Carlo simulation of MLC-shaped fields. Med Phys 43:2894–2903PubMedCrossRef Lloyd SAM, Gagne IM, Bazalova-Carter M, Zavgorodni S (2016) Validation of Varian TrueBeam electron phase-spaces for Monte Carlo simulation of MLC-shaped fields. Med Phys 43:2894–2903PubMedCrossRef
101.
go back to reference Rodriguez M, Sempau J, Fogliata A et al (2015) A geometrical model for the Monte Carlo simulation of the TrueBeam linac. Phys Med Biol 60:N219–N229PubMedCrossRef Rodriguez M, Sempau J, Fogliata A et al (2015) A geometrical model for the Monte Carlo simulation of the TrueBeam linac. Phys Med Biol 60:N219–N229PubMedCrossRef
102.
go back to reference Capote R, Jeraj R, Ma C‑M et al (2006) Phase-space database for external beam radiotherapy. Report INDC(NDS)-0484. International Atomic Energy Agency, Vienna Capote R, Jeraj R, Ma C‑M et al (2006) Phase-space database for external beam radiotherapy. Report INDC(NDS)-0484. International Atomic Energy Agency, Vienna
103.
go back to reference Rodriguez M, Sempau J, Brualla L (2012) A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys Med Biol 57:3013–3024PubMedCrossRef Rodriguez M, Sempau J, Brualla L (2012) A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys Med Biol 57:3013–3024PubMedCrossRef
104.
go back to reference Brualla L, Sauerwein W (2010) On the efficiency of azimuthal and rotational splitting for Monte Carlo simulation of clinical linear accelerators. Radiat Phys Chem 79:929–932CrossRef Brualla L, Sauerwein W (2010) On the efficiency of azimuthal and rotational splitting for Monte Carlo simulation of clinical linear accelerators. Radiat Phys Chem 79:929–932CrossRef
105.
go back to reference Sempau J, Badal A, Brualla L (2011) A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields. Med Phys 38:5887–5895PubMedCrossRef Sempau J, Badal A, Brualla L (2011) A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields. Med Phys 38:5887–5895PubMedCrossRef
106.
go back to reference Downes P, Yaikhom G, Giddy JP et al (2009) High-performance computing for Monte Carlo radiotherapy calculations. Phil Trans R Soc A 367:2607–2617PubMedCrossRef Downes P, Yaikhom G, Giddy JP et al (2009) High-performance computing for Monte Carlo radiotherapy calculations. Phil Trans R Soc A 367:2607–2617PubMedCrossRef
107.
go back to reference Fix MK, Manser P, Frei D et al (2007) An efficient framework for photon Monte Carlo treatment planning. Phys Med Biol 52:N425–N437PubMedCrossRef Fix MK, Manser P, Frei D et al (2007) An efficient framework for photon Monte Carlo treatment planning. Phys Med Biol 52:N425–N437PubMedCrossRef
108.
go back to reference Magaddino V, Manser P, Frei D et al (2011) Validation of the Swiss Monte Carlo Plan for a static and dynamic 6 MV photon beam. Z Med Phys 21:124–134PubMedCrossRef Magaddino V, Manser P, Frei D et al (2011) Validation of the Swiss Monte Carlo Plan for a static and dynamic 6 MV photon beam. Z Med Phys 21:124–134PubMedCrossRef
109.
go back to reference Bush K, Zavgorodni SF, Beckham WA (2007) Azimuthal particle redistribution for the reduction of latent phase-space variance in Monte Carlo simulations. Phys Med Biol 52:4345–4360PubMedCrossRef Bush K, Zavgorodni SF, Beckham WA (2007) Azimuthal particle redistribution for the reduction of latent phase-space variance in Monte Carlo simulations. Phys Med Biol 52:4345–4360PubMedCrossRef
110.
go back to reference Bush K, Popescu IA, Zavgorodni S (2008) A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications. Phys Med Biol 53:N337–N347PubMedCrossRef Bush K, Popescu IA, Zavgorodni S (2008) A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications. Phys Med Biol 53:N337–N347PubMedCrossRef
111.
go back to reference Bush K, Townson R, Zavgorodni S (2008) Monte Carlo simulation of RapidArc radiotherapy delivery. Phys Med Biol 53:N359–N370PubMedCrossRef Bush K, Townson R, Zavgorodni S (2008) Monte Carlo simulation of RapidArc radiotherapy delivery. Phys Med Biol 53:N359–N370PubMedCrossRef
112.
go back to reference Zavgorodni S, Bush K, Locke C, Beckham W (2007) Vancouver Island Monte Carlo (VIMC) system for radiotherapy treatment planning dosimetry and research. Radiother Oncol 84(Suppl. 1):S49 Zavgorodni S, Bush K, Locke C, Beckham W (2007) Vancouver Island Monte Carlo (VIMC) system for radiotherapy treatment planning dosimetry and research. Radiother Oncol 84(Suppl. 1):S49
113.
go back to reference Zavgorodni S, Bush K, Locke C, Beckham W (2008) Vancouver Island Monte Carlo (VIMC) system for accurate radiotherapy dose calculations. 16th International Conference on Medical Physics, Dubai. Book of Abstracts, p 78 Zavgorodni S, Bush K, Locke C, Beckham W (2008) Vancouver Island Monte Carlo (VIMC) system for accurate radiotherapy dose calculations. 16th International Conference on Medical Physics, Dubai. Book of Abstracts, p 78
114.
go back to reference Vandervoort EJ, Tchistiakova E, La Russa DJ et al (2014) Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams. Med Phys 41:021711PubMedCrossRef Vandervoort EJ, Tchistiakova E, La Russa DJ et al (2014) Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams. Med Phys 41:021711PubMedCrossRef
115.
go back to reference Rodriguez M, Sempau J, Brualla L (2015) Technical note: Study of the electron transport parameters used in PENELOPE for the Monte Carlo simulation of linac targets. Med Phys 42:2877–2881PubMedCrossRef Rodriguez M, Sempau J, Brualla L (2015) Technical note: Study of the electron transport parameters used in PENELOPE for the Monte Carlo simulation of linac targets. Med Phys 42:2877–2881PubMedCrossRef
Metadata
Title
Monte Carlo systems used for treatment planning and dose verification
Authors
Lorenzo Brualla
Miguel Rodriguez
Antonio M. Lallena
Publication date
01-04-2017
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 4/2017
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-016-1075-8

Other articles of this Issue 4/2017

Strahlentherapie und Onkologie 4/2017 Go to the issue