Skip to main content
Top
Published in: Journal of Neurology 12/2015

01-12-2015 | Review

Monogenic causes of stroke: now and the future

Authors: Rhea Y. Y. Tan, Hugh S. Markus

Published in: Journal of Neurology | Issue 12/2015

Login to get access

Abstract

Most stroke is multifactorial with multiple polygenic risk factors each conferring small increases in risk interacting with environmental risk factors, but it can also arise from mutations in a single gene. This review covers single-gene disorders which lead to stroke as a major phenotype, with a focus on those which cause cerebral small vessel disease (SVD), an area where there has been significant recent progress with findings that may inform us about the pathogenesis of SVD more broadly. We also discuss the impact that next generation sequencing technology (NGST) is likely to have on clinical practice in this area. The most common form of monogenic SVD is cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, due to the mutations in the NOTCH3 gene. Several other inherited forms of SVD include cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, retinal vasculopathy with cerebral leukodystrophy, collagen type IV α1 and α2 gene-related arteriopathy and FOXC1 deletion related arteriopathy. These monogenic forms of SVD, with overlapping clinical phenotypes, are beginning to provide insights into how the small arteries in the brain can be damaged and some of the mechanisms identified may also be relevant to more common sporadic SVD. Despite the discovery of these disorders, it is often challenging to clinically and radiologically distinguish between syndromes, while screening multiple genes for causative mutations that can be costly and time-consuming. The rapidly falling cost of NGST may allow quicker diagnosis of these rare causes of SVD, and can also identify previously unknown disease-causing variants.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701CrossRefPubMed Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701CrossRefPubMed
2.
go back to reference Joutel A, Corpechot C, Ducros A et al (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710CrossRefPubMed Joutel A, Corpechot C, Ducros A et al (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710CrossRefPubMed
3.
go back to reference Razvi SSM, Davidson R, Bone I, Muir KW (2005) The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J Neurol Neurosurg Psychiatry 76:739–741PubMedCentralCrossRefPubMed Razvi SSM, Davidson R, Bone I, Muir KW (2005) The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J Neurol Neurosurg Psychiatry 76:739–741PubMedCentralCrossRefPubMed
5.
go back to reference Rutten-Jacobs LC, Kilarski LL, Bevan S et al (2015) Abstract 26: Prevalence of CADASIL and Fabry Disease in a Large Cohort of MRI defined Younger onset Lacunar Stroke. Stroke 46:A26 Rutten-Jacobs LC, Kilarski LL, Bevan S et al (2015) Abstract 26: Prevalence of CADASIL and Fabry Disease in a Large Cohort of MRI defined Younger onset Lacunar Stroke. Stroke 46:A26
6.
go back to reference Adib-Samii P, Brice G, Martin RJ, Markus HS (2010) Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype: study in 200 consecutively recruited individuals. Stroke 41:630–634CrossRefPubMed Adib-Samii P, Brice G, Martin RJ, Markus HS (2010) Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype: study in 200 consecutively recruited individuals. Stroke 41:630–634CrossRefPubMed
7.
go back to reference Dichgans M, Mayer M, Uttner I et al (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol 44:731–739CrossRefPubMed Dichgans M, Mayer M, Uttner I et al (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol 44:731–739CrossRefPubMed
8.
go back to reference Desmond DW, Moroney JT, Lynch T et al (1999) The natural history of CADASIL: a pooled analysis of previously published cases. Stroke 30:1230–1233CrossRefPubMed Desmond DW, Moroney JT, Lynch T et al (1999) The natural history of CADASIL: a pooled analysis of previously published cases. Stroke 30:1230–1233CrossRefPubMed
9.
go back to reference Roine S, Pöyhönen M, Timonen S et al (2005) Neurologic symptoms are common during gestation and puerperium in CADASIL. Neurology 64:1441–1443CrossRefPubMed Roine S, Pöyhönen M, Timonen S et al (2005) Neurologic symptoms are common during gestation and puerperium in CADASIL. Neurology 64:1441–1443CrossRefPubMed
10.
go back to reference Hinze S, Goonasekera M, Nannucci S et al (2015) Longitudinally extensive spinal cord infarction in CADASIL. Pract Neurol 15:60–62CrossRefPubMed Hinze S, Goonasekera M, Nannucci S et al (2015) Longitudinally extensive spinal cord infarction in CADASIL. Pract Neurol 15:60–62CrossRefPubMed
11.
go back to reference Tournier-Lasserve E, Joutel A, Melki J et al (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3:256–259CrossRefPubMed Tournier-Lasserve E, Joutel A, Melki J et al (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3:256–259CrossRefPubMed
12.
go back to reference O’Sullivan M, Jarosz JM, Martin RJ et al (2001) MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology 56:628–634CrossRefPubMed O’Sullivan M, Jarosz JM, Martin RJ et al (2001) MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology 56:628–634CrossRefPubMed
13.
go back to reference Lesnik Oberstein SA, van den Boom R, van Buchem MA et al (2001) Cerebral microbleeds in CADASIL. Neurology 57:1066–1070CrossRefPubMed Lesnik Oberstein SA, van den Boom R, van Buchem MA et al (2001) Cerebral microbleeds in CADASIL. Neurology 57:1066–1070CrossRefPubMed
14.
go back to reference Morroni M, Marzioni D, Ragno M et al (2013) Role of electron microscopy in the diagnosis of cadasil syndrome: a study of 32 patients. PLoS One 8:e65482PubMedCentralCrossRefPubMed Morroni M, Marzioni D, Ragno M et al (2013) Role of electron microscopy in the diagnosis of cadasil syndrome: a study of 32 patients. PLoS One 8:e65482PubMedCentralCrossRefPubMed
15.
go back to reference Singhal S, Bevan S, Barrick T et al (2004) The influence of genetic and cardiovascular risk factors on the CADASIL phenotype. Brain 127:2031–2038CrossRefPubMed Singhal S, Bevan S, Barrick T et al (2004) The influence of genetic and cardiovascular risk factors on the CADASIL phenotype. Brain 127:2031–2038CrossRefPubMed
16.
go back to reference Opherk C, Peters N, Holtmannspötter M et al (2006) Heritability of MRI lesion volume in CADASIL: evidence for genetic modifiers. Stroke 37:2684–2689CrossRefPubMed Opherk C, Peters N, Holtmannspötter M et al (2006) Heritability of MRI lesion volume in CADASIL: evidence for genetic modifiers. Stroke 37:2684–2689CrossRefPubMed
17.
go back to reference Fukutake T (2011) Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): from discovery to gene identification. J Stroke Cerebrovasc Dis 20:85–93CrossRefPubMed Fukutake T (2011) Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): from discovery to gene identification. J Stroke Cerebrovasc Dis 20:85–93CrossRefPubMed
18.
go back to reference Mendioroz M, Fernández-Cadenas I, Del Río-Espinola A et al (2010) A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population. Neurology 75:2033–2035CrossRefPubMed Mendioroz M, Fernández-Cadenas I, Del Río-Espinola A et al (2010) A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population. Neurology 75:2033–2035CrossRefPubMed
19.
go back to reference Fukutake T, Hirayama K (1995) Familial young-adult-onset arteriosclerotic leukoencephalopathy with alopecia and lumbago without arterial hypertension. Eur Neurol 35:69–79CrossRefPubMed Fukutake T, Hirayama K (1995) Familial young-adult-onset arteriosclerotic leukoencephalopathy with alopecia and lumbago without arterial hypertension. Eur Neurol 35:69–79CrossRefPubMed
20.
go back to reference Yanagawa S, Ito N, Arima K, Ikeda S-IS (2002) Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology 58:817–820CrossRefPubMed Yanagawa S, Ito N, Arima K, Ikeda S-IS (2002) Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology 58:817–820CrossRefPubMed
21.
go back to reference Arima K, Yanagawa S, Ito N, Ikeda S (2003) Cerebral arterial pathology of CADASIL and CARASIL (Maeda syndrome). Neuropathology 23:327–334CrossRefPubMed Arima K, Yanagawa S, Ito N, Ikeda S (2003) Cerebral arterial pathology of CADASIL and CARASIL (Maeda syndrome). Neuropathology 23:327–334CrossRefPubMed
22.
go back to reference Richards A, van den Maagdenberg AMJM, Jen JC et al (2007) C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 39:1068–1070CrossRefPubMed Richards A, van den Maagdenberg AMJM, Jen JC et al (2007) C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 39:1068–1070CrossRefPubMed
23.
go back to reference Ophoff RA, DeYoung J, Service SK et al (2001) Hereditary vascular retinopathy, cerebroretinal vasculopathy, and hereditary endotheliopathy with retinopathy, nephropathy, and stroke map to a single locus on chromosome 3p21.1–p21.3. Am J Hum Genet 69:447–453PubMedCentralCrossRefPubMed Ophoff RA, DeYoung J, Service SK et al (2001) Hereditary vascular retinopathy, cerebroretinal vasculopathy, and hereditary endotheliopathy with retinopathy, nephropathy, and stroke map to a single locus on chromosome 3p21.1–p21.3. Am J Hum Genet 69:447–453PubMedCentralCrossRefPubMed
24.
go back to reference DiFrancesco JC, Novara F, Zuffardi O et al (2014) TREX1 C-terminal frameshift mutations in the systemic variant of retinal vasculopathy with cerebral leukodystrophy. Neurol Sci. doi:10.1007/s10072-014-1944-9 PubMed DiFrancesco JC, Novara F, Zuffardi O et al (2014) TREX1 C-terminal frameshift mutations in the systemic variant of retinal vasculopathy with cerebral leukodystrophy. Neurol Sci. doi:10.​1007/​s10072-014-1944-9 PubMed
25.
26.
go back to reference Pelzer N, de Vries B, Boon EMJ et al (2013) Heterozygous TREX1 mutations in early-onset cerebrovascular disease. J Neurol 260:2188–2190CrossRefPubMed Pelzer N, de Vries B, Boon EMJ et al (2013) Heterozygous TREX1 mutations in early-onset cerebrovascular disease. J Neurol 260:2188–2190CrossRefPubMed
27.
go back to reference Vahedi K, Alamowitch S (2011) Clinical spectrum of type IV collagen (COL4A1) mutations: a novel genetic multisystem disease. Curr Opin Neurol 24:63–68CrossRefPubMed Vahedi K, Alamowitch S (2011) Clinical spectrum of type IV collagen (COL4A1) mutations: a novel genetic multisystem disease. Curr Opin Neurol 24:63–68CrossRefPubMed
28.
go back to reference Lanfranconi S, Markus HS (2010) COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 41:e513–e518CrossRefPubMed Lanfranconi S, Markus HS (2010) COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 41:e513–e518CrossRefPubMed
29.
go back to reference Gould DB, Phalan FC, van Mil SE et al (2006) Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 354:1489–1496CrossRefPubMed Gould DB, Phalan FC, van Mil SE et al (2006) Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 354:1489–1496CrossRefPubMed
30.
go back to reference Vahedi K, Boukobza M, Massin P et al (2007) Clinical and brain MRI follow-up study of a family with COL4A1 mutation. Neurology 69:1564–1568CrossRefPubMed Vahedi K, Boukobza M, Massin P et al (2007) Clinical and brain MRI follow-up study of a family with COL4A1 mutation. Neurology 69:1564–1568CrossRefPubMed
31.
32.
go back to reference Verbeek E, Meuwissen MEC, Verheijen FW et al (2012) COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur J Hum Genet 20:844–851PubMedCentralCrossRefPubMed Verbeek E, Meuwissen MEC, Verheijen FW et al (2012) COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur J Hum Genet 20:844–851PubMedCentralCrossRefPubMed
33.
go back to reference Renard D, Miné M, Pipiras E et al (2014) Cerebral small-vessel disease associated with COL4A1 and COL4A2 gene duplications. Neurology 83:1029–1031CrossRefPubMed Renard D, Miné M, Pipiras E et al (2014) Cerebral small-vessel disease associated with COL4A1 and COL4A2 gene duplications. Neurology 83:1029–1031CrossRefPubMed
34.
go back to reference Garman SC, Garboczi DN (2004) The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 337:319–335CrossRefPubMed Garman SC, Garboczi DN (2004) The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 337:319–335CrossRefPubMed
36.
go back to reference Orteu CH, Jansen T, Lidove O et al (2007) Fabry disease and the skin: data from FOS, the Fabry outcome survey. Br J Dermatol 157:331–337CrossRefPubMed Orteu CH, Jansen T, Lidove O et al (2007) Fabry disease and the skin: data from FOS, the Fabry outcome survey. Br J Dermatol 157:331–337CrossRefPubMed
38.
go back to reference Crutchfield KE, Patronas NJ, Dambrosia JM et al (1998) Quantitative analysis of cerebral vasculopathy in patients with Fabry disease. Neurology 50:1746–1749CrossRefPubMed Crutchfield KE, Patronas NJ, Dambrosia JM et al (1998) Quantitative analysis of cerebral vasculopathy in patients with Fabry disease. Neurology 50:1746–1749CrossRefPubMed
39.
go back to reference Rolfs A, Böttcher T, Zschiesche M et al (2005) Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet 366:1794–1796CrossRefPubMed Rolfs A, Böttcher T, Zschiesche M et al (2005) Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet 366:1794–1796CrossRefPubMed
40.
go back to reference Baptista MV, Ferreira S, Pinho-E-Melo T et al (2010) Mutations of the GLA gene in young patients with stroke: the PORTYSTROKE study––screening genetic conditions in Portuguese young stroke patients. Stroke 41:431–436CrossRefPubMed Baptista MV, Ferreira S, Pinho-E-Melo T et al (2010) Mutations of the GLA gene in young patients with stroke: the PORTYSTROKE study––screening genetic conditions in Portuguese young stroke patients. Stroke 41:431–436CrossRefPubMed
41.
go back to reference Wilcox WR, Oliveira JP, Hopkin RJ et al (2008) Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab 93:112–128CrossRefPubMed Wilcox WR, Oliveira JP, Hopkin RJ et al (2008) Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab 93:112–128CrossRefPubMed
42.
go back to reference Linthorst GE, Vedder AC, Aerts JMFG, Hollak CEM (2005) Screening for Fabry disease using whole blood spots fails to identify one-third of female carriers. Clin Chim Acta 353:201–203CrossRefPubMed Linthorst GE, Vedder AC, Aerts JMFG, Hollak CEM (2005) Screening for Fabry disease using whole blood spots fails to identify one-third of female carriers. Clin Chim Acta 353:201–203CrossRefPubMed
43.
go back to reference Schiffmann R, Kopp JB, Austin HA et al (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285:2743–2749CrossRefPubMed Schiffmann R, Kopp JB, Austin HA et al (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285:2743–2749CrossRefPubMed
46.
go back to reference Delahaye A, Khung-Savatovsky S, Aboura A et al (2012) Pre- and postnatal phenotype of 6p25 deletions involving the FOXC1 gene. Am J Med Genet A 158A:2430–2438CrossRefPubMed Delahaye A, Khung-Savatovsky S, Aboura A et al (2012) Pre- and postnatal phenotype of 6p25 deletions involving the FOXC1 gene. Am J Med Genet A 158A:2430–2438CrossRefPubMed
47.
go back to reference Cellini E, Disciglio V, Novara F et al (2012) Periventricular heterotopia with white matter abnormalities associated with 6p25 deletion. Am J Med Genet A 158A:1793–1797CrossRefPubMed Cellini E, Disciglio V, Novara F et al (2012) Periventricular heterotopia with white matter abnormalities associated with 6p25 deletion. Am J Med Genet A 158A:1793–1797CrossRefPubMed
48.
49.
go back to reference Revesz T, Holton JL, Lashley T et al (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 118:115–130PubMedCentralCrossRefPubMed Revesz T, Holton JL, Lashley T et al (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 118:115–130PubMedCentralCrossRefPubMed
50.
go back to reference Di Fede G, Giaccone G, Tagliavini F (2013) Hereditary and sporadic beta-amyloidoses. Front Biosci (Landmark Ed) 18:1202–1226CrossRef Di Fede G, Giaccone G, Tagliavini F (2013) Hereditary and sporadic beta-amyloidoses. Front Biosci (Landmark Ed) 18:1202–1226CrossRef
52.
53.
54.
go back to reference Bacskai BJ, Frosch MP, Freeman SH et al (2007) Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol 64:431–434CrossRefPubMed Bacskai BJ, Frosch MP, Freeman SH et al (2007) Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol 64:431–434CrossRefPubMed
55.
go back to reference Baron J-C, Farid K, Dolan E et al (2014) Diagnostic utility of amyloid PET in cerebral amyloid angiopathy-related symptomatic intracerebral hemorrhage. J Cereb Blood Flow Metab 34:753–758PubMedCentralCrossRefPubMed Baron J-C, Farid K, Dolan E et al (2014) Diagnostic utility of amyloid PET in cerebral amyloid angiopathy-related symptomatic intracerebral hemorrhage. J Cereb Blood Flow Metab 34:753–758PubMedCentralCrossRefPubMed
57.
go back to reference Schmidt H, Zeginigg M, Wiltgen M et al (2011) Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease. Brain 134:3384–3397PubMedCentralCrossRefPubMed Schmidt H, Zeginigg M, Wiltgen M et al (2011) Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease. Brain 134:3384–3397PubMedCentralCrossRefPubMed
58.
go back to reference Oka C, Tsujimoto R, Kajikawa M et al (2004) HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development 131:1041–1053CrossRefPubMed Oka C, Tsujimoto R, Kajikawa M et al (2004) HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development 131:1041–1053CrossRefPubMed
59.
go back to reference Shiga A, Nozaki H, Yokoseki A et al (2011) Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-1 via cleavage of proTGF- 1. Hum Mol Genet 20:1800–1810CrossRefPubMed Shiga A, Nozaki H, Yokoseki A et al (2011) Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-1 via cleavage of proTGF- 1. Hum Mol Genet 20:1800–1810CrossRefPubMed
60.
go back to reference Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E et al (2007) TGF-beta signaling in vascular fibrosis. Cardiovasc Res 74:196–206CrossRefPubMed Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E et al (2007) TGF-beta signaling in vascular fibrosis. Cardiovasc Res 74:196–206CrossRefPubMed
61.
go back to reference Gunda B, Mine M, Kovács T et al (2014) COL4A2 mutation causing adult onset recurrent intracerebral hemorrhage and leukoencephalopathy. J Neurol 261:500–503CrossRefPubMed Gunda B, Mine M, Kovács T et al (2014) COL4A2 mutation causing adult onset recurrent intracerebral hemorrhage and leukoencephalopathy. J Neurol 261:500–503CrossRefPubMed
62.
go back to reference Farrall AJ, Wardlaw JM (2009) Blood-brain barrier: ageing and microvascular disease––systematic review and meta-analysis. Neurobiol Aging 30:337–352CrossRefPubMed Farrall AJ, Wardlaw JM (2009) Blood-brain barrier: ageing and microvascular disease––systematic review and meta-analysis. Neurobiol Aging 30:337–352CrossRefPubMed
64.
go back to reference Joutel A, Vahedi K, Corpechot C et al (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350:1511–1515CrossRefPubMed Joutel A, Vahedi K, Corpechot C et al (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350:1511–1515CrossRefPubMed
65.
go back to reference Rutten JW, Boon EMJ, Liem MK et al (2013) Hypomorphic NOTCH3 alleles do not cause CADASIL in humans. Hum Mutat 34:1486–1489CrossRefPubMed Rutten JW, Boon EMJ, Liem MK et al (2013) Hypomorphic NOTCH3 alleles do not cause CADASIL in humans. Hum Mutat 34:1486–1489CrossRefPubMed
66.
go back to reference Ruchoux MM, Domenga V, Brulin P et al (2003) Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am J Pathol 162:329–342PubMedCentralCrossRefPubMed Ruchoux MM, Domenga V, Brulin P et al (2003) Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am J Pathol 162:329–342PubMedCentralCrossRefPubMed
67.
go back to reference Joutel A, Andreux F, Gaulis S et al (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105:597–605PubMedCentralCrossRefPubMed Joutel A, Andreux F, Gaulis S et al (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105:597–605PubMedCentralCrossRefPubMed
68.
go back to reference Duering M, Karpinska A, Rosner S et al (2011) Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Hum Mol Genet 20:3256–3265CrossRefPubMed Duering M, Karpinska A, Rosner S et al (2011) Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Hum Mol Genet 20:3256–3265CrossRefPubMed
69.
go back to reference Arboleda-Velasquez JF, Manent J, Lee JH et al (2011) Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci 108:E128–E135PubMedCentralCrossRefPubMed Arboleda-Velasquez JF, Manent J, Lee JH et al (2011) Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci 108:E128–E135PubMedCentralCrossRefPubMed
70.
go back to reference Monet-Leprêtre M, Haddad I, Baron-Menguy C et al (2013) Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain 136:1830–1845PubMedCentralCrossRefPubMed Monet-Leprêtre M, Haddad I, Baron-Menguy C et al (2013) Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain 136:1830–1845PubMedCentralCrossRefPubMed
72.
go back to reference Kast J, Hanecker P, Beaufort N et al (2014) Sequestration of latent TGF-β binding protein 1 into CADASIL-related Notch3-ECD deposits. Acta Neuropathol Commun 2:96PubMedCentralCrossRefPubMed Kast J, Hanecker P, Beaufort N et al (2014) Sequestration of latent TGF-β binding protein 1 into CADASIL-related Notch3-ECD deposits. Acta Neuropathol Commun 2:96PubMedCentralCrossRefPubMed
74.
go back to reference Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691CrossRefPubMed Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691CrossRefPubMed
75.
go back to reference Low WC, Junna M, Börjesson-Hanson A et al (2007) Hereditary multi-infarct dementia of the Swedish type is a novel disorder different from NOTCH3 causing CADASIL. Brain 130:357–367CrossRefPubMed Low WC, Junna M, Börjesson-Hanson A et al (2007) Hereditary multi-infarct dementia of the Swedish type is a novel disorder different from NOTCH3 causing CADASIL. Brain 130:357–367CrossRefPubMed
76.
go back to reference Nannucci S, Pescini F, Bertaccini B et al (2015) Clinical, familial, and neuroimaging features of CADASIL-like patients. Acta Neurol Scand 131:30–36CrossRefPubMed Nannucci S, Pescini F, Bertaccini B et al (2015) Clinical, familial, and neuroimaging features of CADASIL-like patients. Acta Neurol Scand 131:30–36CrossRefPubMed
77.
go back to reference Foo J-N, Liu J-J, Tan E-K (2012) Whole-genome and whole-exome sequencing in neurological diseases. Nat Rev Neurol 8:508–517CrossRefPubMed Foo J-N, Liu J-J, Tan E-K (2012) Whole-genome and whole-exome sequencing in neurological diseases. Nat Rev Neurol 8:508–517CrossRefPubMed
78.
go back to reference Vrijenhoek T, Kraaijeveld K, Elferink M et al (2015) Next-generation sequencing-based genome diagnostics across clinical genetics centers: implementation choices and their effects. Eur J Hum Genet. doi:10.1038/ejhg.2014.279 Vrijenhoek T, Kraaijeveld K, Elferink M et al (2015) Next-generation sequencing-based genome diagnostics across clinical genetics centers: implementation choices and their effects. Eur J Hum Genet. doi:10.​1038/​ejhg.​2014.​279
80.
go back to reference Bamshad MJ, Ng SB, Bigham AW et al (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755CrossRefPubMed Bamshad MJ, Ng SB, Bigham AW et al (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755CrossRefPubMed
81.
go back to reference Guerreiro R, Brás J, Hardy J, Singleton A (2014) Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Hum Mol Genet 44:1–7 Guerreiro R, Brás J, Hardy J, Singleton A (2014) Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Hum Mol Genet 44:1–7
Metadata
Title
Monogenic causes of stroke: now and the future
Authors
Rhea Y. Y. Tan
Hugh S. Markus
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 12/2015
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-015-7794-4

Other articles of this Issue 12/2015

Journal of Neurology 12/2015 Go to the issue