Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 5/2020

01-10-2020 | Original Research

Monitoring tissue perfusion: a pilot clinical feasibility and safety study of a urethral photoplethysmography-derived perfusion device in high-risk patients

Authors: François Dépret, Marc Leone, Gary Duclos, Emmanuel Futier, Maxime Montagne, Matthieu Legrand, Bernard Allaouchiche

Published in: Journal of Clinical Monitoring and Computing | Issue 5/2020

Login to get access

Abstract

Continuous monitoring of tissue perfusion in patients with hemodynamic instability remains challenging because of the lack of tools available. Through using urethral photoplethysmography, the urethral perfusion index (uPI) could allow tissue perfusion monitoring through a modified urinary catheter. The first objective of our study was to evaluate the feasibility and safety of the IKORUS UP (Advanced Perfusion Diagnostics, Villeurbanne, France), a new device in the field. The secondary objectives were to evaluate the performance (duration and signal quality) of the IKORUS UP probe and to assess the uPI variations during hemodynamic events during major abdominal surgery. “STEP UP” was a prospective, multicenter, observational study. The inclusion criteria were age 18 years or older with signed informed consent and admitted to intensive care unit (ICU) with hemodynamic instability or high-risk surgical patient. Thirty patients were included in the study, 26 in the operating room, and four in the ICU. Of these patients, 28 were analyzed. For the primary outcome, six (21%) patients had pain scores assessed at insertion of and 22 (79%) at withdrawal of the catheter. The mean EVA score was 1.5 (IQ 1–2) and 0.7 (IQ 0–1), respectively, with the highest score being 3. One (4%) minor urethral bleeding and one (4%) catheter-associated urinary tract infection were reported. The IKORUS UP probe remained in the urethra for an average of 172 h (IQ40–328). The median signal measurement time was 33 h (IQ 5.2–46). The signal quality was recorded as good or excellent for 99% (IQ 82–100) of the insertion duration. The signal quality index was 93% (IQ 87–96) with a signal-to-noise ratio of 26 (IQ 21–36). We observed clinically relevant variations in the uPI over time during hemodynamic events or therapeutic interventions, with a strong cross-correlation with macrohemodynamic variables in some patients, while others did not display macrohemodynamic changes. The IKORUS UP probe was well tolerated and allowed urethral perfusion monitoring. Clinically relevant changes in tissue perfusion could be recorded during the observational period. Trial Registration: (www.​clinicaltrials.​gov NCT03410069) registered January 25, 2018.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vincent J-L, De Backer D. Circulatory shock. N Engl J Med. 2013;369:1726–34.CrossRef Vincent J-L, De Backer D. Circulatory shock. N Engl J Med. 2013;369:1726–34.CrossRef
2.
go back to reference Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA. 2019;321:654.CrossRef Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA. 2019;321:654.CrossRef
3.
go back to reference Dubin A, Henriquez E, Hernández G. Monitoring peripheral perfusion and microcirculation. Curr Opin Crit Care. 2018;24:173–80.CrossRef Dubin A, Henriquez E, Hernández G. Monitoring peripheral perfusion and microcirculation. Curr Opin Crit Care. 2018;24:173–80.CrossRef
4.
go back to reference Robert B, Poon MW, Stewart SC. Effect of cardiopulmonary bypass on urethral blood flow as measured by laser doppler flowmetry. J Urol. 1998;160(6):2030–2. Robert B, Poon MW, Stewart SC. Effect of cardiopulmonary bypass on urethral blood flow as measured by laser doppler flowmetry. J Urol. 1998;160(6):2030–2.
6.
go back to reference Toulouse E, Masseguin C, Lafont B, McGurk G, Harbonn A, Roberts JA, et al. French legal approach to clinical research. Anaesth Crit Care Pain Med. 2018;37:607–14.CrossRef Toulouse E, Masseguin C, Lafont B, McGurk G, Harbonn A, Roberts JA, et al. French legal approach to clinical research. Anaesth Crit Care Pain Med. 2018;37:607–14.CrossRef
7.
go back to reference Lima AP, Beelen P, Bakker J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med. 2002;30:1210–3.CrossRef Lima AP, Beelen P, Bakker J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med. 2002;30:1210–3.CrossRef
8.
go back to reference Chen T, Clifford G, Mark R. The effect of signal quality on six cardiac output estimators. Comput Cardiol. 2009;2009:197–200.PubMedPubMedCentral Chen T, Clifford G, Mark R. The effect of signal quality on six cardiac output estimators. Comput Cardiol. 2009;2009:197–200.PubMedPubMedCentral
9.
go back to reference Ono M, Arnaoutakis GJ, Fine DM, Brady K, Easley RB, Zheng Y, et al. Blood pressure excursions below the cerebral autoregulation threshold during cardiac surgery are associated with acute kidney injury. Crit Care Med. 2013;41:464–71.CrossRef Ono M, Arnaoutakis GJ, Fine DM, Brady K, Easley RB, Zheng Y, et al. Blood pressure excursions below the cerebral autoregulation threshold during cardiac surgery are associated with acute kidney injury. Crit Care Med. 2013;41:464–71.CrossRef
11.
go back to reference Pasanen L, Holmström L. Scale space multiresolution correlation analysis for time series data. Comput Stat. 2017;32:197–218.CrossRef Pasanen L, Holmström L. Scale space multiresolution correlation analysis for time series data. Comput Stat. 2017;32:197–218.CrossRef
12.
go back to reference Hollingsworth JM, Rogers MAM, Krein SL, Hickner A, Kuhn L, Cheng A, et al. Determining the noninfectious complications of indwelling urethral catheters: a systematic review and meta-analysis. Ann Intern Med. 2013;159:401.CrossRef Hollingsworth JM, Rogers MAM, Krein SL, Hickner A, Kuhn L, Cheng A, et al. Determining the noninfectious complications of indwelling urethral catheters: a systematic review and meta-analysis. Ann Intern Med. 2013;159:401.CrossRef
13.
go back to reference Saint S, Trautner BW, Fowler KE, Colozzi J, Ratz D, Lescinskas E, et al. A multicenter study of patient-reported infectious and noninfectious complications associated with indwelling urethral catheters. JAMA Intern Med. 2018;178:1078.CrossRef Saint S, Trautner BW, Fowler KE, Colozzi J, Ratz D, Lescinskas E, et al. A multicenter study of patient-reported infectious and noninfectious complications associated with indwelling urethral catheters. JAMA Intern Med. 2018;178:1078.CrossRef
14.
go back to reference Zugail AS, Pinar U, Irani J. Evaluation of pain and catheter-related bladder discomfort relative to balloon volumes of indwelling urinary catheters: a prospective study. Investig Clin Urol. 2019;60:35–9.CrossRef Zugail AS, Pinar U, Irani J. Evaluation of pain and catheter-related bladder discomfort relative to balloon volumes of indwelling urinary catheters: a prospective study. Investig Clin Urol. 2019;60:35–9.CrossRef
16.
go back to reference Thooft A, Favory R, Salgado D, Taccone FS, Donadello K, De Backer D, et al. Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care. 2011;15:R222.CrossRef Thooft A, Favory R, Salgado D, Taccone FS, Donadello K, De Backer D, et al. Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care. 2011;15:R222.CrossRef
17.
go back to reference Bouattour K, Teboul J-L, Varin L, Vicaut E, Duranteau J. Preload dependence is associated with reduced sublingual microcirculation during major abdominal surgery. Anesthesiology. 2019;130:541–9.CrossRef Bouattour K, Teboul J-L, Varin L, Vicaut E, Duranteau J. Preload dependence is associated with reduced sublingual microcirculation during major abdominal surgery. Anesthesiology. 2019;130:541–9.CrossRef
18.
go back to reference Asfar P, Meziani F, Hamel J-F, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.CrossRef Asfar P, Meziani F, Hamel J-F, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.CrossRef
19.
go back to reference LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–32.CrossRef LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–32.CrossRef
20.
go back to reference Bourgoin A, Leone M, Delmas A, Garnier F, Albanèse J, Martin C. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 2005;33:780–6.CrossRef Bourgoin A, Leone M, Delmas A, Garnier F, Albanèse J, Martin C. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 2005;33:780–6.CrossRef
21.
go back to reference Mayevsky A, Blum Y, Dekel N, Deutsch A, Halfon R, Kremer S, et al. The CritiView: a new fiber optic based optical device for the assessment of tissue vitality. In: Gannot I, editor. Optical fibers and sensors for medical diagnostics and treatment applications. San Jose: SPIE; 2006. p. 60830Z.CrossRef Mayevsky A, Blum Y, Dekel N, Deutsch A, Halfon R, Kremer S, et al. The CritiView: a new fiber optic based optical device for the assessment of tissue vitality. In: Gannot I, editor. Optical fibers and sensors for medical diagnostics and treatment applications. San Jose: SPIE; 2006. p. 60830Z.CrossRef
22.
go back to reference Mayevsky A, Tolmasov M, Mandelbaum M. Perioperative cardiovascular evaluation of patients oxygen balance and tissue metabolic score (TMS). Am J Cardiovasc Thorac Surg. 2018;3:1–17.CrossRef Mayevsky A, Tolmasov M, Mandelbaum M. Perioperative cardiovascular evaluation of patients oxygen balance and tissue metabolic score (TMS). Am J Cardiovasc Thorac Surg. 2018;3:1–17.CrossRef
23.
go back to reference Galvin EM, Niehof S, Verbrugge SJ, Maissan I, Jahn A, Klein J, et al. Peripheral flow index is a reliable and early indicator of regional block success. Anesth Analg. 2006;103:239–43.CrossRef Galvin EM, Niehof S, Verbrugge SJ, Maissan I, Jahn A, Klein J, et al. Peripheral flow index is a reliable and early indicator of regional block success. Anesth Analg. 2006;103:239–43.CrossRef
24.
go back to reference Ginosar Y, Weiniger CF, Meroz Y, Kurz V, Bdolah-Abram T, Babchenko A, et al. Pulse oximeter perfusion index as an early indicator of sympathectomy after epidural anesthesia. Acta Anaesthesiol Scand. 2009;53:1018–26.CrossRef Ginosar Y, Weiniger CF, Meroz Y, Kurz V, Bdolah-Abram T, Babchenko A, et al. Pulse oximeter perfusion index as an early indicator of sympathectomy after epidural anesthesia. Acta Anaesthesiol Scand. 2009;53:1018–26.CrossRef
25.
go back to reference van Genderen ME, Bartels SA, Lima A, Bezemer R, Ince C, Bakker J, et al. Peripheral perfusion index as an early predictor for central hypovolemia in awake healthy volunteers. Anesth Analg. 2013;116:351–6.CrossRef van Genderen ME, Bartels SA, Lima A, Bezemer R, Ince C, Bakker J, et al. Peripheral perfusion index as an early predictor for central hypovolemia in awake healthy volunteers. Anesth Analg. 2013;116:351–6.CrossRef
26.
go back to reference De Backer D, Foulon P. Minimizing catecholamines and optimizing perfusion. Crit Care Lond Engl. 2019;23:149.CrossRef De Backer D, Foulon P. Minimizing catecholamines and optimizing perfusion. Crit Care Lond Engl. 2019;23:149.CrossRef
27.
go back to reference Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care Lond Engl. 2015;19(Suppl 3):S8.CrossRef Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care Lond Engl. 2015;19(Suppl 3):S8.CrossRef
28.
go back to reference Trzeciak S, McCoy JV, Phillip Dellinger R, Arnold RC, Rizzuto M, Abate NL, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34:2210–7.CrossRef Trzeciak S, McCoy JV, Phillip Dellinger R, Arnold RC, Rizzuto M, Abate NL, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34:2210–7.CrossRef
29.
go back to reference Leone M, Blidi S, Antonini F, Meyssignac B, Bordon S, Garcin F, et al. Oxygen tissue saturation is lower in nonsurvivors than in survivors after early resuscitation of septic shock. Anesthesiology. 2009;111:366–71.CrossRef Leone M, Blidi S, Antonini F, Meyssignac B, Bordon S, Garcin F, et al. Oxygen tissue saturation is lower in nonsurvivors than in survivors after early resuscitation of septic shock. Anesthesiology. 2009;111:366–71.CrossRef
30.
go back to reference Coutrot M, Joachim J, Dépret F, Millasseau S, Nougué H, Matéo J, et al. Non-invasive continuous detection of arterial hypotension during induction of anaesthesia using a photoplethysmographic signal: proof of concept. Br J Anaesth. 2019;122(5):605–12.CrossRef Coutrot M, Joachim J, Dépret F, Millasseau S, Nougué H, Matéo J, et al. Non-invasive continuous detection of arterial hypotension during induction of anaesthesia using a photoplethysmographic signal: proof of concept. Br J Anaesth. 2019;122(5):605–12.CrossRef
31.
go back to reference Edul VSK, Ince C, Navarro N, Previgliano L, Risso-Vazquez A, Rubatto PN, et al. Dissociation between sublingual and gut microcirculation in the response to a fluid challenge in postoperative patients with abdominal sepsis. Ann Intensive Care. 2014;4(1):39.CrossRef Edul VSK, Ince C, Navarro N, Previgliano L, Risso-Vazquez A, Rubatto PN, et al. Dissociation between sublingual and gut microcirculation in the response to a fluid challenge in postoperative patients with abdominal sepsis. Ann Intensive Care. 2014;4(1):39.CrossRef
32.
go back to reference On behalf of the Cardiovascular Dynamics Section of the ESICM, Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44(3):281–99. https://doi.org/10.1007/s00134-018-5070-7.CrossRef On behalf of the Cardiovascular Dynamics Section of the ESICM, Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44(3):281–99. https://​doi.​org/​10.​1007/​s00134-018-5070-7.CrossRef
33.
go back to reference Clavijo JA, van Bastelaar J, Pinsky MR, Puyana JC, Mayevsky A. Minimally invasive real time monitoring of mitochondrial NADH and tissue blood flow in the urethral wall during hemorrhage and resuscitation. Med Sci Monit Int Med J Exp Clin Res. 2008;14:BR175–82. Clavijo JA, van Bastelaar J, Pinsky MR, Puyana JC, Mayevsky A. Minimally invasive real time monitoring of mitochondrial NADH and tissue blood flow in the urethral wall during hemorrhage and resuscitation. Med Sci Monit Int Med J Exp Clin Res. 2008;14:BR175–82.
34.
go back to reference Evans RG, Smith JA, Wright C, Gardiner BS, Smith DW, Cochrane AD. Urinary oxygen tension: a clinical window on the health of the renal medulla? Am J Physiol-Regul Integr Comp Physiol. 2014;306:R45–50.CrossRef Evans RG, Smith JA, Wright C, Gardiner BS, Smith DW, Cochrane AD. Urinary oxygen tension: a clinical window on the health of the renal medulla? Am J Physiol-Regul Integr Comp Physiol. 2014;306:R45–50.CrossRef
35.
go back to reference Clavijo-Alvarez JA, Sims CA, Menconi M, Shim I, Ochoa C, Puyana JC. Bladder mucosa pH and Pco2 as a minimally invasive monitor of hemorrhagic shock and resuscitation. J Trauma Inj Infect Crit Care. 2004;57:1199–210.CrossRef Clavijo-Alvarez JA, Sims CA, Menconi M, Shim I, Ochoa C, Puyana JC. Bladder mucosa pH and Pco2 as a minimally invasive monitor of hemorrhagic shock and resuscitation. J Trauma Inj Infect Crit Care. 2004;57:1199–210.CrossRef
36.
go back to reference Dubin A, Pozo MO, Edul VSK, Murias G, Canales HS, Barán M, et al. Urinary bladder partial carbon dioxide tension during hemorrhagic shock and reperfusion: an observational study. Crit Care Lond Engl. 2005;9:R556–61.CrossRef Dubin A, Pozo MO, Edul VSK, Murias G, Canales HS, Barán M, et al. Urinary bladder partial carbon dioxide tension during hemorrhagic shock and reperfusion: an observational study. Crit Care Lond Engl. 2005;9:R556–61.CrossRef
37.
go back to reference Morgaz J, Espigares-Rodríguez L, Muñoz-Rascón P, Navarrete R, Fernández-Sarmiento JA, del Granados Machuca MD. Evaluation of gastric and bladder tonometry as indicators of tissue perfusion in induced hypotension in dogs: gastric and vesical tonometry in dogs. J Vet Emerg Crit Care. 2017;27:532–8.CrossRef Morgaz J, Espigares-Rodríguez L, Muñoz-Rascón P, Navarrete R, Fernández-Sarmiento JA, del Granados Machuca MD. Evaluation of gastric and bladder tonometry as indicators of tissue perfusion in induced hypotension in dogs: gastric and vesical tonometry in dogs. J Vet Emerg Crit Care. 2017;27:532–8.CrossRef
Metadata
Title
Monitoring tissue perfusion: a pilot clinical feasibility and safety study of a urethral photoplethysmography-derived perfusion device in high-risk patients
Authors
François Dépret
Marc Leone
Gary Duclos
Emmanuel Futier
Maxime Montagne
Matthieu Legrand
Bernard Allaouchiche
Publication date
01-10-2020
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 5/2020
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-019-00414-9

Other articles of this Issue 5/2020

Journal of Clinical Monitoring and Computing 5/2020 Go to the issue