Skip to main content
Top
Published in: BMC Cancer 1/2012

Open Access 01-12-2012 | Study protocol

Monitoring of patients treated with particle therapy using positron-emission-tomography (PET): the MIRANDA study

Authors: Stephanie E Combs, Julia Bauer, Daniel Unholtz, Christopher Kurz, Thomas Welzel, Daniel Habermehl, Thomas Haberer, Jürgen Debus, Katia Parodi

Published in: BMC Cancer | Issue 1/2012

Login to get access

Abstract

Background

The purpose of this clinical study is to investigate the clinical feasibility and effectiveness of offline Positron-Emission-Tomography (PET) quality assurance for promoting the accuracy of proton and carbon ion beam therapy.

Methods/Design

A total of 240 patients will be recruited, evenly sampled among different analysis groups including tumors of the brain, skull base, head and neck region, upper gastrointestinal tract including the liver, lower gastrointestinal tract, prostate and pelvic region. From the comparison of the measured activity with the planned dose and its corresponding simulated activity distribution, conclusions on the delivered treatment will be inferred and, in case of significant deviations, correction strategies will be elaborated.

Discussion

The investigated patients are expected to benefit from this study, since in case of detected deviations between planned and actual treatment delivery a proper intervention (e.g., correction) could be performed in a subsequent irradiation fraction. In this way, an overall better treatment could be achieved than without any in-vivo verification. Moreover, site-specific patient-population information on the precision of the ion range at HIT might enable improvement of the CT-range calibration curve as well as safe reduction of the treatment margins to promote enhanced treatment plan conformality and dose escalation for full clinical exploitation of the promises of ion beam therapy.

Trial Registration

Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Antonuk LE: Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research. Phys Med Biol. 2002, 47: R31-R65. 10.1088/0031-9155/47/2/401.CrossRefPubMed Antonuk LE: Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research. Phys Med Biol. 2002, 47: R31-R65. 10.1088/0031-9155/47/2/401.CrossRefPubMed
3.
go back to reference Krämer M, Jäkel O, Haberer T, Kraft G, Schardt D, Weber U: Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. Phys Med Biol. 2000, 45: 3299-3317. 10.1088/0031-9155/45/11/313.CrossRefPubMed Krämer M, Jäkel O, Haberer T, Kraft G, Schardt D, Weber U: Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. Phys Med Biol. 2000, 45: 3299-3317. 10.1088/0031-9155/45/11/313.CrossRefPubMed
4.
go back to reference Jäkel O, Hartmann GH, Karger CP, Heeg P, Rassow J: Quality assurance for a treatment planning system in scanned ion beam therapy. Med Phys. 2000, 27: 1588-1600. 10.1118/1.599025.CrossRefPubMed Jäkel O, Hartmann GH, Karger CP, Heeg P, Rassow J: Quality assurance for a treatment planning system in scanned ion beam therapy. Med Phys. 2000, 27: 1588-1600. 10.1118/1.599025.CrossRefPubMed
5.
go back to reference Enghardt W, Parodi K, Crespo P, Fiedler F, Pawelke J, Ponisch F: Dose quantification from in-beam positron emission tomography. Radiother Oncol. 2004, 73 (2): S96-S98.CrossRefPubMed Enghardt W, Parodi K, Crespo P, Fiedler F, Pawelke J, Ponisch F: Dose quantification from in-beam positron emission tomography. Radiother Oncol. 2004, 73 (2): S96-S98.CrossRefPubMed
6.
go back to reference Parodi K, Paganetti H, Shih HA, Michaud S, Loeffler JS, DeLaney TF, et al: Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy. Int J Radiat Oncol Biol Phys. 2007, 68: 920-934. 10.1016/j.ijrobp.2007.01.063.CrossRefPubMedPubMedCentral Parodi K, Paganetti H, Shih HA, Michaud S, Loeffler JS, DeLaney TF, et al: Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy. Int J Radiat Oncol Biol Phys. 2007, 68: 920-934. 10.1016/j.ijrobp.2007.01.063.CrossRefPubMedPubMedCentral
7.
go back to reference Nishio T, Miyatake A, Inoue K, Gomi-Miyagishi T, Kohno R, Kameoka S, et al: Experimental verification of proton beam monitoring in a human body by use of activity image of positron-emitting nuclei generated by nuclear fragmentation reaction. Radiol Phys Technol. 2008, 1: 44-54. 10.1007/s12194-007-0008-8.CrossRefPubMed Nishio T, Miyatake A, Inoue K, Gomi-Miyagishi T, Kohno R, Kameoka S, et al: Experimental verification of proton beam monitoring in a human body by use of activity image of positron-emitting nuclei generated by nuclear fragmentation reaction. Radiol Phys Technol. 2008, 1: 44-54. 10.1007/s12194-007-0008-8.CrossRefPubMed
8.
go back to reference Nishio T, Miyatake A, Ogino T, Nakagawa K, Saijo N, Esumi H: The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy. Int J Radiat Oncol Biol Phys. 2010, 76: 277-286. 10.1016/j.ijrobp.2009.05.065.CrossRefPubMed Nishio T, Miyatake A, Ogino T, Nakagawa K, Saijo N, Esumi H: The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy. Int J Radiat Oncol Biol Phys. 2010, 76: 277-286. 10.1016/j.ijrobp.2009.05.065.CrossRefPubMed
9.
go back to reference Hishikawa Y, Kagawa K, Murakami M, Sakai H, Akagi T, Abe M: Usefulness of positron-emission tomographic images after proton therapy. Int J Radiat Oncol Biol Phys. 2002, 53: 1388-1391. 10.1016/S0360-3016(02)02887-0.CrossRefPubMed Hishikawa Y, Kagawa K, Murakami M, Sakai H, Akagi T, Abe M: Usefulness of positron-emission tomographic images after proton therapy. Int J Radiat Oncol Biol Phys. 2002, 53: 1388-1391. 10.1016/S0360-3016(02)02887-0.CrossRefPubMed
10.
go back to reference Hsi WC, Indelicato DJ, Vargas C, Duvvuri S, Li Z, Palta J: In vivo verification of proton beam path by using post-treatment PET/CT imaging. Med Phys. 2009, 36: 4136-4146. 10.1118/1.3193677.CrossRefPubMed Hsi WC, Indelicato DJ, Vargas C, Duvvuri S, Li Z, Palta J: In vivo verification of proton beam path by using post-treatment PET/CT imaging. Med Phys. 2009, 36: 4136-4146. 10.1118/1.3193677.CrossRefPubMed
11.
go back to reference Enghardt W, Crespo P, Fiedler F, et al: Charged hadron tumour therapy monitoring by means of PET. Nucl Instrum Methods A. 2004, 525: 284-288. 10.1016/j.nima.2004.03.128.CrossRef Enghardt W, Crespo P, Fiedler F, et al: Charged hadron tumour therapy monitoring by means of PET. Nucl Instrum Methods A. 2004, 525: 284-288. 10.1016/j.nima.2004.03.128.CrossRef
12.
go back to reference Parodi K, Ferrari A, Sommerer F, Paganetti H: Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code. Phys Med Biol. 2007, 52: 3369-3387. 10.1088/0031-9155/52/12/004.CrossRefPubMedPubMedCentral Parodi K, Ferrari A, Sommerer F, Paganetti H: Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code. Phys Med Biol. 2007, 52: 3369-3387. 10.1088/0031-9155/52/12/004.CrossRefPubMedPubMedCentral
13.
go back to reference Sommerer F, Cerutti F, Parodi K, Ferrari A, Enghardt W, Aiginger H: In-beam PET monitoring of mono-energetic (16)O and (12)C beams: experiments and FLUKA simulations for homogeneous targets. Phys Med Biol. 2009, 54: 3979-3996. 10.1088/0031-9155/54/13/003.CrossRefPubMed Sommerer F, Cerutti F, Parodi K, Ferrari A, Enghardt W, Aiginger H: In-beam PET monitoring of mono-energetic (16)O and (12)C beams: experiments and FLUKA simulations for homogeneous targets. Phys Med Biol. 2009, 54: 3979-3996. 10.1088/0031-9155/54/13/003.CrossRefPubMed
14.
go back to reference Sommerer S, Unholtz D, Brons S, et al: An easy-to-use Monte Carlo framework for ion therapy at the Heidelberg Ion-Beam Therapy Center. Poster Abstract of the ESTRO Conference 2010, Radiother Oncol 2010;96 (S1):481. Radiother Oncol. 2010, 96: 482- Sommerer S, Unholtz D, Brons S, et al: An easy-to-use Monte Carlo framework for ion therapy at the Heidelberg Ion-Beam Therapy Center. Poster Abstract of the ESTRO Conference 2010, Radiother Oncol 2010;96 (S1):481. Radiother Oncol. 2010, 96: 482-
15.
go back to reference Parodi K: On the feasibility of dose quantification with in-beam PET data in radiotherapy with12C and proton beams. Ph.D. Thesis, Dresden University of Technology; 2004, in Forschungszentrum Rossendorf Wiss-Techn-Ber FZR-415. 2004 Parodi K: On the feasibility of dose quantification with in-beam PET data in radiotherapy with12C and proton beams. Ph.D. Thesis, Dresden University of Technology; 2004, in Forschungszentrum Rossendorf Wiss-Techn-Ber FZR-415. 2004
16.
go back to reference Haberer T, Debus J, Eickhoff H, Jakel O, Schulz-Ertner D, Weber U: The Heidelberg Ion Therapy Center. Radiother Oncol. 2004, 73 (2): S186-S190.CrossRefPubMed Haberer T, Debus J, Eickhoff H, Jakel O, Schulz-Ertner D, Weber U: The Heidelberg Ion Therapy Center. Radiother Oncol. 2004, 73 (2): S186-S190.CrossRefPubMed
17.
go back to reference Shakirin G, Braess H, Fiedler F, Kunath D, Laube K, Parodi K, et al: Implementation and workflow for PET monitoring of therapeutic ion irradiation: a comparison of in-beam, in-room, and off-line techniques. Phys Med Biol. 2011, 56: 1281-1298. 10.1088/0031-9155/56/5/004.CrossRefPubMed Shakirin G, Braess H, Fiedler F, Kunath D, Laube K, Parodi K, et al: Implementation and workflow for PET monitoring of therapeutic ion irradiation: a comparison of in-beam, in-room, and off-line techniques. Phys Med Biol. 2011, 56: 1281-1298. 10.1088/0031-9155/56/5/004.CrossRefPubMed
18.
go back to reference Jäkel O, Reiss P: The influence of metal artefacts on the range of ion beams. Phys Med Biol. 2007, 52: 635-644. 10.1088/0031-9155/52/3/007.CrossRefPubMed Jäkel O, Reiss P: The influence of metal artefacts on the range of ion beams. Phys Med Biol. 2007, 52: 635-644. 10.1088/0031-9155/52/3/007.CrossRefPubMed
19.
go back to reference Unholtz D, Sommerer S, Bauer J, et al: Post-therapeutical β + ?-activity measurements in comparison to simulations towards in-vivo verification of ion beam therapy. Conference Record of the IEEE Nuclear Science Symposium and Medical Imaging Conference in Valencia, Spain. 2011 Unholtz D, Sommerer S, Bauer J, et al: Post-therapeutical β + ?-activity measurements in comparison to simulations towards in-vivo verification of ion beam therapy. Conference Record of the IEEE Nuclear Science Symposium and Medical Imaging Conference in Valencia, Spain. 2011
20.
go back to reference Combs SE, Kieser M, Rieken S, Habermehl D, Jäkel O, Haberer T, et al: Randomized phase II study evaluating a carbon ion boost applied after combined radiochemotherapy with temozolomide versus a proton boost after radiochemotherapy with temozolomide in patients with primary glioblastoma: the CLEOPATRA trial. BMC Cancer. 2010, 10: 478-10.1186/1471-2407-10-478.CrossRefPubMedPubMedCentral Combs SE, Kieser M, Rieken S, Habermehl D, Jäkel O, Haberer T, et al: Randomized phase II study evaluating a carbon ion boost applied after combined radiochemotherapy with temozolomide versus a proton boost after radiochemotherapy with temozolomide in patients with primary glioblastoma: the CLEOPATRA trial. BMC Cancer. 2010, 10: 478-10.1186/1471-2407-10-478.CrossRefPubMedPubMedCentral
21.
go back to reference Bauer J, et al: Implementation and first clinical experience of offline PET/CT-based verification of scanned carbon ion treatment at the Heidelberg Ion Beam Therapy Centre. Preparation. 2012 Bauer J, et al: Implementation and first clinical experience of offline PET/CT-based verification of scanned carbon ion treatment at the Heidelberg Ion Beam Therapy Centre. Preparation. 2012
Metadata
Title
Monitoring of patients treated with particle therapy using positron-emission-tomography (PET): the MIRANDA study
Authors
Stephanie E Combs
Julia Bauer
Daniel Unholtz
Christopher Kurz
Thomas Welzel
Daniel Habermehl
Thomas Haberer
Jürgen Debus
Katia Parodi
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2012
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-133

Other articles of this Issue 1/2012

BMC Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine