Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells

Authors: Mathangi Ravi, Shilpa Tentu, Ganga Baskar, Surabhi Rohan Prasad, Swetha Raghavan, Prajisha Jayaprakash, Jeyaraman Jeyakanthan, Suresh K Rayala, Ganesh Venkatraman

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Triple-negative breast cancers represent an important clinical challenge, as these cancers do not respond to conventional endocrine therapies or other available targeted agents. Phycocyanin (PC), a natural, water soluble and non-toxic molecule is shown to have potent anti-cancer property.

Methods

In this study, we determined the efficacy of PC as an anti-neoplastic agent in vitro on a series of breast cancer cell lines. We studied effects of PC in inducing DNA damage and apoptosis through western blot and qPCR. Also, anti-metastatic and anti-angiogenic properties were studied by classic wound healing and vasculogenic mimicry assays.

Results

We found that triple negative MDA-MB-231 cells were most sensitive to PC (IC50 : 5.98 ± 0.95 μM) as compared to other cells. They also showed decreased cell proliferation and reduced colony formation ability upon treatment with PC. Profile of Cell cycle analysis showed that PC caused G1 arrest which could be attributed to decreased mRNA levels of Cyclin E and CDK-2 and increased p21 levels. Mechanistic studies revealed that PC induced apoptosis as evident by increase in percentage of annexin positive cells, increase in γ-H2AX levels, and by changing the Bcl-2/Bax ratio followed by release of cytochrome C and increased Caspase 9 levels. MDA MB 231 cells treated with PC resulted in decreased cell migration and increased cell adhesive property and also showed anti-angiogenic effects. We also observed that PC suppressed cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) production. All these biological effects of phycocyanin on MDA MB 231 cells could be attributed to decreased MAPK signaling pathway. We also observed that PC is non-toxic to non-malignant cells, platelets and RBC’s.

Conclusion

Taken together, these findings demonstrate, for the first time, that PC may be a promising anti-neoplastic agent for treatment of triple negative breast cancers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang S, Liu Q, Zhang Y, Liu K, Yu P, Liu K, et al. Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Mol Cancer. 2009;8:81.CrossRefPubMedPubMedCentral Wang S, Liu Q, Zhang Y, Liu K, Yu P, Liu K, et al. Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Mol Cancer. 2009;8:81.CrossRefPubMedPubMedCentral
2.
go back to reference Kamath R, Mahajan KS, Ashok L, Sanal TS. A study on risk factors of breast cancer among patients attending the tertiary care hospital, in Udipi district. Indian J Community Med. 2013;38:95–9.CrossRefPubMedPubMedCentral Kamath R, Mahajan KS, Ashok L, Sanal TS. A study on risk factors of breast cancer among patients attending the tertiary care hospital, in Udipi district. Indian J Community Med. 2013;38:95–9.CrossRefPubMedPubMedCentral
3.
go back to reference Podo F, Buydens LM, Degani H, Hilhorst R, Klipp E, Gribbestad IS, et al. Triple-negative breast cancer: present challenges and new perspectives. Mol Oncol. 2010;4:209–29.CrossRefPubMed Podo F, Buydens LM, Degani H, Hilhorst R, Klipp E, Gribbestad IS, et al. Triple-negative breast cancer: present challenges and new perspectives. Mol Oncol. 2010;4:209–29.CrossRefPubMed
4.
go back to reference Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist. 2011;16:1–11.CrossRefPubMed Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist. 2011;16:1–11.CrossRefPubMed
5.
go back to reference Venugopal R, Liu RH. Phytochemicals in diets for breast cancer prevention: the importance of resveratrol and ursolic acid. Food Science and Human Wellness. 2012;1:1–13.CrossRef Venugopal R, Liu RH. Phytochemicals in diets for breast cancer prevention: the importance of resveratrol and ursolic acid. Food Science and Human Wellness. 2012;1:1–13.CrossRef
6.
go back to reference Tarapore RS, Siddiqui IA, Mukhtar H. Modulation of Wnt/β-catenin signaling pathway by bioactive food components. Carcinogenesis. 2012;33:483–91.CrossRefPubMed Tarapore RS, Siddiqui IA, Mukhtar H. Modulation of Wnt/β-catenin signaling pathway by bioactive food components. Carcinogenesis. 2012;33:483–91.CrossRefPubMed
7.
go back to reference Sung B, Pandey MK, Aggarwal BB. Fisetin, an inhibitor of cyclin—dependent kinase 6, downregulates nuclear factor kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol Pharmacol. 2007;71:1703–14.CrossRefPubMed Sung B, Pandey MK, Aggarwal BB. Fisetin, an inhibitor of cyclin—dependent kinase 6, downregulates nuclear factor kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol Pharmacol. 2007;71:1703–14.CrossRefPubMed
8.
go back to reference Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci. 2003;4:207–16.CrossRefPubMed Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci. 2003;4:207–16.CrossRefPubMed
9.
go back to reference Pardhasaradhi BV, Ali AM, Kumari AL, Reddanna P, Khar A. Phycocyanin-mediated apoptosis in AK-5 tumor cells involves down-regulation of Bcl-2 and generation of ROS. Mol Cancer Ther. 2003;2:1165–70.PubMed Pardhasaradhi BV, Ali AM, Kumari AL, Reddanna P, Khar A. Phycocyanin-mediated apoptosis in AK-5 tumor cells involves down-regulation of Bcl-2 and generation of ROS. Mol Cancer Ther. 2003;2:1165–70.PubMed
10.
go back to reference Saini MK, Vaiphei K, Sanyal SN. Chemoprevention of DMH-induced rat colon carcinoma initiation by combination administration of piroxicam and c-phycocyanin. Mol Cell Biochem. 2012;361:217–28.CrossRefPubMed Saini MK, Vaiphei K, Sanyal SN. Chemoprevention of DMH-induced rat colon carcinoma initiation by combination administration of piroxicam and c-phycocyanin. Mol Cell Biochem. 2012;361:217–28.CrossRefPubMed
11.
go back to reference Basha OM, Hafez RA, El-Ayouty YM, Mahrous KF, Bareedy MH, Salama AM. C-phycocyanin inhibits cell proliferation and may induce apoptosis in human HepG2 cells. Egypt J Immunol. 2008;15:161–7.PubMed Basha OM, Hafez RA, El-Ayouty YM, Mahrous KF, Bareedy MH, Salama AM. C-phycocyanin inhibits cell proliferation and may induce apoptosis in human HepG2 cells. Egypt J Immunol. 2008;15:161–7.PubMed
12.
go back to reference Li B, Gao MH, Zhang XC, Chu XM. Molecular immune mechanism of C-phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol Appl Biochem. 2006;43:155–64.CrossRefPubMed Li B, Gao MH, Zhang XC, Chu XM. Molecular immune mechanism of C-phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol Appl Biochem. 2006;43:155–64.CrossRefPubMed
13.
go back to reference Subhashini J, Mahipal SV, Reddy MC, Mallikarjuna Reddy M, Rachamallu A, Reddanna P. Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol. 2004;68:453–62.CrossRefPubMed Subhashini J, Mahipal SV, Reddy MC, Mallikarjuna Reddy M, Rachamallu A, Reddanna P. Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol. 2004;68:453–62.CrossRefPubMed
15.
go back to reference Adeyinka A, Nui Y, Cherlet T, Snell L, Watson PH, Murphy LC. Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin Cancer Res. 2002;8:1747–53.PubMed Adeyinka A, Nui Y, Cherlet T, Snell L, Watson PH, Murphy LC. Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin Cancer Res. 2002;8:1747–53.PubMed
16.
go back to reference Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signaling pathways in cancer. Oncogene. 2007;26:3279–90.CrossRefPubMed Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signaling pathways in cancer. Oncogene. 2007;26:3279–90.CrossRefPubMed
17.
go back to reference Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838–49.CrossRefPubMed Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838–49.CrossRefPubMed
18.
go back to reference Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3:1125–31.CrossRefPubMed Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3:1125–31.CrossRefPubMed
19.
go back to reference David D, Jagadeeshan S, Hariharan R, Nair AS, Pillai RM. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner. Cell Div. 2014;9:2.CrossRefPubMedPubMedCentral David D, Jagadeeshan S, Hariharan R, Nair AS, Pillai RM. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner. Cell Div. 2014;9:2.CrossRefPubMedPubMedCentral
20.
go back to reference Pandey VD, Pandey A, Sharma V. Biotechnological applications of cyanobacterial phycobiliproteins. Int J Curr Microbiol App Sci. 2013;2:89–97. Pandey VD, Pandey A, Sharma V. Biotechnological applications of cyanobacterial phycobiliproteins. Int J Curr Microbiol App Sci. 2013;2:89–97.
21.
go back to reference Ossovskaya V, Wang Y, Budoff A, Xu Q, Lituev A, Potapova O, et al. Exploring molecular pathways of triple-negative breast cancer. Genes Cancer. 2011;2:870–9.CrossRefPubMedPubMedCentral Ossovskaya V, Wang Y, Budoff A, Xu Q, Lituev A, Potapova O, et al. Exploring molecular pathways of triple-negative breast cancer. Genes Cancer. 2011;2:870–9.CrossRefPubMedPubMedCentral
22.
go back to reference Kern MA, Haugg AM, Koch AF, Schilling T, Breuhahn K, Walczak H, et al. Cylooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res. 2005;66:7059–66.CrossRef Kern MA, Haugg AM, Koch AF, Schilling T, Breuhahn K, Walczak H, et al. Cylooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res. 2005;66:7059–66.CrossRef
23.
go back to reference Basu GD, Liang WS, Stephan DA, Wegener LT, Conley CR, Pockaj BA, et al. A novel role for Cyclooxygenase-2 in regulating vascular channel formation by human breast cancer cells. Breast Cancer Res. 2006;8:R69.CrossRefPubMedPubMedCentral Basu GD, Liang WS, Stephan DA, Wegener LT, Conley CR, Pockaj BA, et al. A novel role for Cyclooxygenase-2 in regulating vascular channel formation by human breast cancer cells. Breast Cancer Res. 2006;8:R69.CrossRefPubMedPubMedCentral
24.
go back to reference Ferraro DA, Gaborit N, Maron R, Cohen-Dvashi H, Porat Z, Pareia F, et al. Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR. Proc Natl Acad Sci U S A. 2013;110:1815–20.CrossRefPubMedPubMedCentral Ferraro DA, Gaborit N, Maron R, Cohen-Dvashi H, Porat Z, Pareia F, et al. Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR. Proc Natl Acad Sci U S A. 2013;110:1815–20.CrossRefPubMedPubMedCentral
25.
go back to reference Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis. 2010;32:35–48.CrossRefPubMedPubMedCentral Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis. 2010;32:35–48.CrossRefPubMedPubMedCentral
26.
go back to reference Manna A, Saha P, Sarkar A, Mukhopadhyay D, Bauri AK, Kumar D, et al. Malabaricone- A induces a redox imbalance that mediates apoptosis in U937 cell line. PLoS One. 2012;7. Manna A, Saha P, Sarkar A, Mukhopadhyay D, Bauri AK, Kumar D, et al. Malabaricone- A induces a redox imbalance that mediates apoptosis in U937 cell line. PLoS One. 2012;7.
28.
go back to reference Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, et al. Induction of apoptosis through oxidative stress-related pathways in MCF-7, human breast cancer cells, by ethyl acetate extract of Dillenia suffruticosa. BMC Complement Altern Med. 2014;14:55.CrossRefPubMedPubMedCentral Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, et al. Induction of apoptosis through oxidative stress-related pathways in MCF-7, human breast cancer cells, by ethyl acetate extract of Dillenia suffruticosa. BMC Complement Altern Med. 2014;14:55.CrossRefPubMedPubMedCentral
29.
go back to reference Bechelli J, Coppage M, Rosell K, Liesveld J. Cytotoxicity of algae extracts on normal and malignant cells. Leuk Res Treatment. 2011;2011:373519.PubMedPubMedCentral Bechelli J, Coppage M, Rosell K, Liesveld J. Cytotoxicity of algae extracts on normal and malignant cells. Leuk Res Treatment. 2011;2011:373519.PubMedPubMedCentral
30.
go back to reference Liu Y, Cao W, Zhang B, Liu YQ, Wang ZY, Wu YP, et al. The natural compound magnolol inhibits invasion and exhibits potential in human breast cancer therapy. Sci Rep. 2013;3:3098.PubMedPubMedCentral Liu Y, Cao W, Zhang B, Liu YQ, Wang ZY, Wu YP, et al. The natural compound magnolol inhibits invasion and exhibits potential in human breast cancer therapy. Sci Rep. 2013;3:3098.PubMedPubMedCentral
31.
go back to reference Peyressatre M, Prevel C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers (Basel). 2015;7:179–237.CrossRef Peyressatre M, Prevel C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers (Basel). 2015;7:179–237.CrossRef
32.
go back to reference Schmitt E, Paquet C, Beauchemin M, Bertrand R. DNA-damge response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B. 2007;8:377–97.CrossRefPubMedPubMedCentral Schmitt E, Paquet C, Beauchemin M, Bertrand R. DNA-damge response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B. 2007;8:377–97.CrossRefPubMedPubMedCentral
33.
go back to reference Berrada N, Delaloge S, Andre F. Treatment of triple –negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization? Ann Oncol. 2010;21:30–5.CrossRef Berrada N, Delaloge S, Andre F. Treatment of triple –negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization? Ann Oncol. 2010;21:30–5.CrossRef
34.
go back to reference Timms KM, Abkevich V, Hughes E, Neff C, Reid J, Morris B, et al. Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res. 2014;16:475.CrossRefPubMedPubMedCentral Timms KM, Abkevich V, Hughes E, Neff C, Reid J, Morris B, et al. Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res. 2014;16:475.CrossRefPubMedPubMedCentral
35.
go back to reference Santarpia L, Iwamoto T, Di Leo A, Hayashi N, Bottai G, Stampfer M, et al. DNA repair gene patterns as prognostic and predictive factors in molecular breast cancer subtypes. Oncologist. 2013;18:1063–73.CrossRefPubMedPubMedCentral Santarpia L, Iwamoto T, Di Leo A, Hayashi N, Bottai G, Stampfer M, et al. DNA repair gene patterns as prognostic and predictive factors in molecular breast cancer subtypes. Oncologist. 2013;18:1063–73.CrossRefPubMedPubMedCentral
36.
go back to reference Al Dhaheri Y, Eid A, AbuQamar S, Attoub S, Khasawneh M, Aiche G, et al. Mitotic arrest and apoptosis in breast cancer cells induced by Origanum majorana extract: upregulation of TNF-α and downregulation of surviving and mutant p53. PLoS One. 2013;8:e56649.CrossRefPubMedPubMedCentral Al Dhaheri Y, Eid A, AbuQamar S, Attoub S, Khasawneh M, Aiche G, et al. Mitotic arrest and apoptosis in breast cancer cells induced by Origanum majorana extract: upregulation of TNF-α and downregulation of surviving and mutant p53. PLoS One. 2013;8:e56649.CrossRefPubMedPubMedCentral
38.
go back to reference Kayaselcuk F, Nursal TZ, Polat A, Noyan T, Yildirim S, Tarim A, et al. Expression of survivin, bcl-2, P53 and Bax in breast carcinoma and ductal intraepithelial neoplasia (DIN 1a). J Exp Clin Cancer Res. 2004;23:105–12.PubMed Kayaselcuk F, Nursal TZ, Polat A, Noyan T, Yildirim S, Tarim A, et al. Expression of survivin, bcl-2, P53 and Bax in breast carcinoma and ductal intraepithelial neoplasia (DIN 1a). J Exp Clin Cancer Res. 2004;23:105–12.PubMed
39.
go back to reference Ryan BM, Konecny GE, Kahlert S, Wang HJ, Untch M, Meng G, et al. Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. Ann Oncol. 2006;17:597–604.CrossRefPubMed Ryan BM, Konecny GE, Kahlert S, Wang HJ, Untch M, Meng G, et al. Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. Ann Oncol. 2006;17:597–604.CrossRefPubMed
40.
go back to reference Yamanaka K, Nakata M, Kaneko N, Fushiki H, Kita A, Nakahara T, et al. YM155, a selective survivin suppressant, inhibits tumor spread and prolongs survival in a spontaneous metastatic model of human triple negative breast cancer. Int J Oncol. 2011;39:569–75.PubMed Yamanaka K, Nakata M, Kaneko N, Fushiki H, Kita A, Nakahara T, et al. YM155, a selective survivin suppressant, inhibits tumor spread and prolongs survival in a spontaneous metastatic model of human triple negative breast cancer. Int J Oncol. 2011;39:569–75.PubMed
41.
go back to reference Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 2004;64:7183–90.CrossRefPubMed Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 2004;64:7183–90.CrossRefPubMed
42.
go back to reference Reddy MC, Subhashini J, Mahipal SV, Bhat VB, Srinivas Reddy P, Kiranmai G, et al. C-phycocyanin, a selective COX-2 inhibitor, induces apoptosis in lipopolysaccaride-stimulated RAW 264.7 macrophages. Biochem Biophys Res Commun. 2003;304:385–92.CrossRefPubMed Reddy MC, Subhashini J, Mahipal SV, Bhat VB, Srinivas Reddy P, Kiranmai G, et al. C-phycocyanin, a selective COX-2 inhibitor, induces apoptosis in lipopolysaccaride-stimulated RAW 264.7 macrophages. Biochem Biophys Res Commun. 2003;304:385–92.CrossRefPubMed
43.
go back to reference Jang JH, Woo SM, Um HJ, Park EJ, Min KJ, Lee TJ, et al. RU, a glucocorticoid receptor antagonist, induces apoptosis in U937 human lymphoma cells through reduction in mitochondrial membrane potential and activation of p38 MAPK. Oncol Rep. 2013;30:506–12.PubMed Jang JH, Woo SM, Um HJ, Park EJ, Min KJ, Lee TJ, et al. RU, a glucocorticoid receptor antagonist, induces apoptosis in U937 human lymphoma cells through reduction in mitochondrial membrane potential and activation of p38 MAPK. Oncol Rep. 2013;30:506–12.PubMed
44.
go back to reference Telliez A, Furman C, Pommery N, Henichart JP. Mechanisms leading to COX-2 induced tumorigenesis: topical therapeutic strategies targeting COX-2 expression and activity. Ant cancer Agents Med Chem. 2006;6:187–208.CrossRef Telliez A, Furman C, Pommery N, Henichart JP. Mechanisms leading to COX-2 induced tumorigenesis: topical therapeutic strategies targeting COX-2 expression and activity. Ant cancer Agents Med Chem. 2006;6:187–208.CrossRef
45.
go back to reference Davies G, Martin LA, Sacks N, Dowsett M. Cyclooxygenase-2 (COX-2), aromatase and breast cancer: a possible role for COX-2 inhibitors in breast cancer chemoprevention. Ann Oncol. 2002;13:669–78.CrossRefPubMed Davies G, Martin LA, Sacks N, Dowsett M. Cyclooxygenase-2 (COX-2), aromatase and breast cancer: a possible role for COX-2 inhibitors in breast cancer chemoprevention. Ann Oncol. 2002;13:669–78.CrossRefPubMed
46.
go back to reference Brandao RD, Veeck J, Van de Vijver KK, Lindsey P, de Vries B, van Elssen CH, et al. A randomised controlled phase II trial of preoperative celecoxib treatment reveals anti-tumour transcriptional response in primary breast cancer. Breast Cancer Res. 2013;15:R29.CrossRefPubMedPubMedCentral Brandao RD, Veeck J, Van de Vijver KK, Lindsey P, de Vries B, van Elssen CH, et al. A randomised controlled phase II trial of preoperative celecoxib treatment reveals anti-tumour transcriptional response in primary breast cancer. Breast Cancer Res. 2013;15:R29.CrossRefPubMedPubMedCentral
47.
go back to reference Kern MA, Haugg AM, Koch AF, Schilling T, Breuhahn K, Walczak H, et al. Cyclooxygenase-2 Inhibition Induces Apoptosis Signaling via Death Receptors and Mitochondria in Hepatocellular Carcinoma. Cancer Res. 2006;66:7059–66.CrossRefPubMed Kern MA, Haugg AM, Koch AF, Schilling T, Breuhahn K, Walczak H, et al. Cyclooxygenase-2 Inhibition Induces Apoptosis Signaling via Death Receptors and Mitochondria in Hepatocellular Carcinoma. Cancer Res. 2006;66:7059–66.CrossRefPubMed
48.
go back to reference von Rahden BH, Stein HJ, Puhringer F, Koch I, Langer R, Piontek G, et al. Coexpression of cyclooxygenases (COX-1, COX-2) and vascular endothelial growth factors (VEGF-A, VEGF-C) in esophageal adenocarcinoma. Cancer Res. 2005;65:5038–44.CrossRef von Rahden BH, Stein HJ, Puhringer F, Koch I, Langer R, Piontek G, et al. Coexpression of cyclooxygenases (COX-1, COX-2) and vascular endothelial growth factors (VEGF-A, VEGF-C) in esophageal adenocarcinoma. Cancer Res. 2005;65:5038–44.CrossRef
Metadata
Title
Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells
Authors
Mathangi Ravi
Shilpa Tentu
Ganga Baskar
Surabhi Rohan Prasad
Swetha Raghavan
Prajisha Jayaprakash
Jeyaraman Jeyakanthan
Suresh K Rayala
Ganesh Venkatraman
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1784-x

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine