Skip to main content
Top
Published in: BMC Medical Genetics 1/2018

Open Access 01-12-2018 | Research article

Molecular genetic characterization of cblC defects in 126 pedigrees and prenatal genetic diagnosis of pedigrees with combined methylmalonic aciduria and homocystinuria

Authors: Shuang Hu, Shiyue Mei, Ning Liu, Xiangdong Kong

Published in: BMC Medical Genetics | Issue 1/2018

Login to get access

Abstract

Background

We sought to analyse MMACHC variants among 126 pedigrees with cobalamin (cbl) C deficiency and combined methylmalonic aciduria and homocystinuria by Sanger sequencing, characterize the spectrum of MMACHC gene variants, and perform prenatal genetic diagnosis by chorionic villus sampling among these pedigrees.

Methods

Peripheral blood was collected from 126 probands and their parents who visited the Genetic Counseling Clinic at our hospital between January 2014 and December 2017, and DNA was extracted from the blood. Then, we amplified the coding sequence and splicing regions of the MMACHC gene by PCR, and the PCR products were further sequenced to detect the variants in each pedigree. In 62 families, pregnant women were subjected to chorionic villus sampling for prenatal genetic diagnosis.

Results

In total, 31 distinct variants were detected in the 126 pedigrees, and the most frequent variants were c.609G > A (p.Trp203Ter), c.658_660delAAG (p.Lys220del), c.567dupT (p.Ile190Tyrfs*13) and c.80A > G (p.Gln27Arg). Two of these variants have not been previously reported in the literature. One variant [c.463_465delGGG (p.Gly155del)] is a small-scale deletion, and the other variant [c.637G>T(p.Glu213Ter)] is a nonsense mutation. Among the 62 pedigrees who received a prenatal diagnosis, 16 foetuses were normal, 34 foetuses were carriers of heterozygous variants, and the remaining 12 foetuses harboured compound heterozygous variants or homozygous variants. Couples whose foetuses were normal or carriers continued the pregnancy, whereas couples whose foetuses harboured compound heterozygous variants or homozygous variants decided to terminate the pregnancy. The follow-up results were consistent with the prenatal diagnosis.

Conclusions

Two novel MMACHC variants were identified, and prenatal genetic diagnosis is an accurate and convenient method that helps avoid the delivery of combined methylmalonic aciduria and homocystinuria patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen M, Zhuang J, Yang J, Wang D, Yang Q. Atypical hemolytic uremic syndrome induced by CblC subtype of methylmalonic academia: a case report and literature review. Medicine. 2017;96:e8284.CrossRefPubMedPubMedCentral Chen M, Zhuang J, Yang J, Wang D, Yang Q. Atypical hemolytic uremic syndrome induced by CblC subtype of methylmalonic academia: a case report and literature review. Medicine. 2017;96:e8284.CrossRefPubMedPubMedCentral
2.
go back to reference Fowler B, Leonard JV, Baumgartner MR. Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis. 2008;31:350–60.CrossRefPubMed Fowler B, Leonard JV, Baumgartner MR. Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis. 2008;31:350–60.CrossRefPubMed
3.
go back to reference Zong Y, Liu N, Zhao Z, Kong X. Prenatal diagnosis using genetic sequencing and identification of a novel mutation in MMACHC. BMC Med Genet. 2015;16:48.CrossRefPubMedPubMedCentral Zong Y, Liu N, Zhao Z, Kong X. Prenatal diagnosis using genetic sequencing and identification of a novel mutation in MMACHC. BMC Med Genet. 2015;16:48.CrossRefPubMedPubMedCentral
4.
go back to reference Yu HC, Sloan JL, Scharer G, et al. An X-linked cobalamin disorder caused by mutations in transcriptional coregulator HCFC1. Am J Hum Genet. 2013;93:506–14.CrossRefPubMedPubMedCentral Yu HC, Sloan JL, Scharer G, et al. An X-linked cobalamin disorder caused by mutations in transcriptional coregulator HCFC1. Am J Hum Genet. 2013;93:506–14.CrossRefPubMedPubMedCentral
5.
go back to reference Carrillo-Carrasco N, Chandler RJ, Venditti CP. Combined methylmalonic acidemia and homocystinuria, cblC type. I. Clinical presentations, diagnosis and management. J Inherit Metab Dis. 2012;35:91–102.CrossRefPubMed Carrillo-Carrasco N, Chandler RJ, Venditti CP. Combined methylmalonic acidemia and homocystinuria, cblC type. I. Clinical presentations, diagnosis and management. J Inherit Metab Dis. 2012;35:91–102.CrossRefPubMed
6.
go back to reference Carrillo-Carrasco N, Venditti CP. Combined methylmalonic acidemia and homocystinuria, cblC type. II. Complications, pathophysiology, and outcomes. J Inherit Metab Dis. 2012;35:103–14.CrossRefPubMed Carrillo-Carrasco N, Venditti CP. Combined methylmalonic acidemia and homocystinuria, cblC type. II. Complications, pathophysiology, and outcomes. J Inherit Metab Dis. 2012;35:103–14.CrossRefPubMed
7.
go back to reference Liu YP, Ma YY, Wu TF, et al. Abnormal findings during newborn period of 160 patients with early-onset methylmalonic aciduria. Zhonghua er ke za zhi. 2012;50:410–4.PubMed Liu YP, Ma YY, Wu TF, et al. Abnormal findings during newborn period of 160 patients with early-onset methylmalonic aciduria. Zhonghua er ke za zhi. 2012;50:410–4.PubMed
8.
go back to reference Wang F, Han LS, Hu YH, et al. Analysis of gene mutations in Chinese patients with methylmalonic acidemia and homocysteinemia. Zhonghua er ke za zhi. 2009;47:189–93.PubMed Wang F, Han LS, Hu YH, et al. Analysis of gene mutations in Chinese patients with methylmalonic acidemia and homocysteinemia. Zhonghua er ke za zhi. 2009;47:189–93.PubMed
9.
go back to reference Scolamiero E, Cozzolino C, Albano L, et al. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol BioSyst. 2015;11:1525–35.CrossRefPubMed Scolamiero E, Cozzolino C, Albano L, et al. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol BioSyst. 2015;11:1525–35.CrossRefPubMed
10.
go back to reference Zhang Y, Yang YL, Hasegawa Y, et al. Prenatal diagnosis of methylmalonic aciduria by analysis of organic acids and total homocysteine in amniotic fluid. Chin Med J. 2008;121:216–9.PubMed Zhang Y, Yang YL, Hasegawa Y, et al. Prenatal diagnosis of methylmalonic aciduria by analysis of organic acids and total homocysteine in amniotic fluid. Chin Med J. 2008;121:216–9.PubMed
11.
go back to reference Inoue Y, Ohse M. Prenatal diagnosis of methylmalonic aciduria by measuring methylmalonic acid in dried amniotic fluid on filter paper using gas chromatography-mass spectrometry. Anal Bioanal Chem. 2011;400:1953–8.CrossRefPubMed Inoue Y, Ohse M. Prenatal diagnosis of methylmalonic aciduria by measuring methylmalonic acid in dried amniotic fluid on filter paper using gas chromatography-mass spectrometry. Anal Bioanal Chem. 2011;400:1953–8.CrossRefPubMed
12.
go back to reference Lerner-Ellis JP, Tirone JC, Pawelek PD, et al. Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type. Nat Genet. 2006;38:93–100.CrossRefPubMed Lerner-Ellis JP, Tirone JC, Pawelek PD, et al. Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type. Nat Genet. 2006;38:93–100.CrossRefPubMed
13.
go back to reference Weisfeld-Adams JD, Bender HA, Miley-Akerstedt A, et al. Neurologic and neurodevelopmental phenotypes in young children with early-treated combined methylmalonic acidemia and homocystinuria, cobalamin C type. Mol Genet Metab. 2013;110:241–7.CrossRefPubMed Weisfeld-Adams JD, Bender HA, Miley-Akerstedt A, et al. Neurologic and neurodevelopmental phenotypes in young children with early-treated combined methylmalonic acidemia and homocystinuria, cobalamin C type. Mol Genet Metab. 2013;110:241–7.CrossRefPubMed
14.
go back to reference Yu YF, Li F, Ma HW. Relationship of genotypes with clinical phenotypes and outcomes in children with cobalamin C type combined methylmalonic aciduria and homocystinuria. Zhongguo dang dai er ke za zhi. 2015;17:769–74.PubMed Yu YF, Li F, Ma HW. Relationship of genotypes with clinical phenotypes and outcomes in children with cobalamin C type combined methylmalonic aciduria and homocystinuria. Zhongguo dang dai er ke za zhi. 2015;17:769–74.PubMed
15.
go back to reference Han B, Cao Z, Tian L, et al. Clinical presentation, gene analysis and outcomes in young patients with early-treated combined methylmalonic acidemia and homocysteinemia (cblC type) in Shandong province, China. Brain Dev. 2016;38:491–7.CrossRefPubMed Han B, Cao Z, Tian L, et al. Clinical presentation, gene analysis and outcomes in young patients with early-treated combined methylmalonic acidemia and homocysteinemia (cblC type) in Shandong province, China. Brain Dev. 2016;38:491–7.CrossRefPubMed
16.
go back to reference Matos IV, Castejon E, Meavilla S, et al. Clinical and biochemical outcome after hydroxocobalamin dose escalation in a series of patients with cobalamin C deficiency. Mol Genet Metab. 2013;109:360–5.CrossRefPubMed Matos IV, Castejon E, Meavilla S, et al. Clinical and biochemical outcome after hydroxocobalamin dose escalation in a series of patients with cobalamin C deficiency. Mol Genet Metab. 2013;109:360–5.CrossRefPubMed
17.
go back to reference Huang Z, Han LS, Ye J, et al. Outcomes of patients with combined methylmalonic acidemia and homocystinuria after treatment. Zhonghua er ke za zhi. 2013;51:194–8.PubMed Huang Z, Han LS, Ye J, et al. Outcomes of patients with combined methylmalonic acidemia and homocystinuria after treatment. Zhonghua er ke za zhi. 2013;51:194–8.PubMed
18.
go back to reference Chang JT, Chen YY, Liu TT, Liu MY, Chiu PC. Combined methylmalonic aciduria and homocystinuria cblC type of a Taiwanese infant with c.609G>a and C.567dupT mutations in the MMACHC gene. Pediatrics Neonatol. 2011;52:223–6.CrossRef Chang JT, Chen YY, Liu TT, Liu MY, Chiu PC. Combined methylmalonic aciduria and homocystinuria cblC type of a Taiwanese infant with c.609G>a and C.567dupT mutations in the MMACHC gene. Pediatrics Neonatol. 2011;52:223–6.CrossRef
19.
go back to reference Huemer M, Scholl-Burgi S, Hadaya K, et al. Three new cases of late-onset cblC defect and review of the literature illustrating when to consider inborn errors of metabolism beyond infancy. Orphanet J Rare Dis. 2014;9:161.CrossRefPubMedPubMedCentral Huemer M, Scholl-Burgi S, Hadaya K, et al. Three new cases of late-onset cblC defect and review of the literature illustrating when to consider inborn errors of metabolism beyond infancy. Orphanet J Rare Dis. 2014;9:161.CrossRefPubMedPubMedCentral
20.
go back to reference Lerner-Ellis JP, Anastasio N, Liu J, et al. Spectrum of mutations in MMACHC, allelic expression, and evidence for genotype-phenotype correlations. Hum Mutat. 2009;30:1072–81.CrossRefPubMed Lerner-Ellis JP, Anastasio N, Liu J, et al. Spectrum of mutations in MMACHC, allelic expression, and evidence for genotype-phenotype correlations. Hum Mutat. 2009;30:1072–81.CrossRefPubMed
21.
go back to reference Nogueira C, Aiello C, Cerone R, et al. Spectrum of MMACHC mutations in Italian and Portuguese patients with combined methylmalonic aciduria and homocystinuria, cblC type. Mol Genet Metab. 2008;93:475–80.CrossRefPubMed Nogueira C, Aiello C, Cerone R, et al. Spectrum of MMACHC mutations in Italian and Portuguese patients with combined methylmalonic aciduria and homocystinuria, cblC type. Mol Genet Metab. 2008;93:475–80.CrossRefPubMed
22.
go back to reference Wang F, Han L, Yang Y, et al. Clinical, biochemical, and molecular analysis of combined methylmalonic acidemia and hyperhomocysteinemia (cblC type) in China. J Inherit Metab Dis. 2010;33(Suppl 3):S435–42.CrossRefPubMed Wang F, Han L, Yang Y, et al. Clinical, biochemical, and molecular analysis of combined methylmalonic acidemia and hyperhomocysteinemia (cblC type) in China. J Inherit Metab Dis. 2010;33(Suppl 3):S435–42.CrossRefPubMed
23.
go back to reference Komhoff M, Roofthooft MT, Westra D, et al. Combined pulmonary hypertension and renal thrombotic microangiopathy in cobalamin C deficiency. Pediatrics. 2013;132:e540–4.CrossRefPubMed Komhoff M, Roofthooft MT, Westra D, et al. Combined pulmonary hypertension and renal thrombotic microangiopathy in cobalamin C deficiency. Pediatrics. 2013;132:e540–4.CrossRefPubMed
Metadata
Title
Molecular genetic characterization of cblC defects in 126 pedigrees and prenatal genetic diagnosis of pedigrees with combined methylmalonic aciduria and homocystinuria
Authors
Shuang Hu
Shiyue Mei
Ning Liu
Xiangdong Kong
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2018
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-018-0666-x

Other articles of this Issue 1/2018

BMC Medical Genetics 1/2018 Go to the issue