Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2015

Open Access 01-12-2015 | Research

Modulation of mu attenuation to social stimuli in children and adults with 16p11.2 deletions and duplications

Authors: Caitlin M. Hudac, Anna Kresse, Benjamin Aaronson, Trent D. DesChamps, Sara Jane Webb, Raphael A. Bernier

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2015

Login to get access

Abstract

Background

Copy number variations (CNV) within the recurrent ~600 kb chromosomal locus of 16p11.2 are associated with a wide range of neurodevelopmental disorders, including autism spectrum disorder (ASD). However, little is known about the social brain phenotype of 16p11.2 CNV and how this phenotype is related to the social impairments associated with CNVs at this locus. The aim of this preliminary study was to use molecular subtyping to establish the social brain phenotype of individuals with 16p11.2 CNV and how these patterns relate to typical development and ASD.

Methods

We evaluated the social brain phenotype as expressed by mu attenuation in 48 children and adults characterized as duplication carriers (n = 12), deletion carriers (n = 12), individuals with idiopathic ASD (n = 8), and neurotypical controls (n = 16). Participants watched videos containing social and nonsocial motion during electroencephalogram (EEG) acquisition.

Results

Overall, only the typical group exhibited predicted patterns of mu modulation to social information (e.g., greater mu attenuation for social than nonsocial motion). Both 16p11.2 CNV groups exhibited more mu attenuation for nonsocial than social motion. The ASD group did not discriminate between conditions and demonstrated less mu attenuation compared to the typical and duplication carriers. Single-trial analysis indicated that mu attenuation decreased over time more rapidly for 16p11.2 CNV groups than the typical group. The duplication group did not diverge from typical patterns of mu attenuation until after initial exposure.

Conclusions

These results indicate atypical but unique patterns of mu attenuation for deletion and duplication carriers, highlighting the need to continue characterizing the social brain phenotype associated with 16p11.2 CNVs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008;358:667–75.PubMedCrossRef Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008;358:667–75.PubMedCrossRef
2.
go back to reference Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82:477–88.PubMedCentralPubMedCrossRef Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82:477–88.PubMedCentralPubMedCrossRef
3.
go back to reference Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C, Badner JA, et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet. 2008;17:628–38.PubMedCrossRef Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C, Badner JA, et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet. 2008;17:628–38.PubMedCrossRef
4.
go back to reference Horev G, Ellegood J, Lerch JP, Son Y-EE, Muthuswamy L, Vogel H, et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci U S A. 2011;108:17076–81.PubMedCentralPubMedCrossRef Horev G, Ellegood J, Lerch JP, Son Y-EE, Muthuswamy L, Vogel H, et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci U S A. 2011;108:17076–81.PubMedCentralPubMedCrossRef
5.
go back to reference Jacquemont S, Reymond A, Zufferey F, Harewood L, Walters RG, Kutalik Z, et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature. 2011;478:97–102.PubMedCentralPubMedCrossRef Jacquemont S, Reymond A, Zufferey F, Harewood L, Walters RG, Kutalik Z, et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature. 2011;478:97–102.PubMedCentralPubMedCrossRef
6.
go back to reference Bardakjian TM, Kwok S, Slavotinek AM, Schneider AS. Clinical report of microphthalmia and optic nerve coloboma associated with a de novo microdeletion of chromosome 16p11.2. Am J Med Genet A. 2010;152A:3120–3.PubMedCrossRef Bardakjian TM, Kwok S, Slavotinek AM, Schneider AS. Clinical report of microphthalmia and optic nerve coloboma associated with a de novo microdeletion of chromosome 16p11.2. Am J Med Genet A. 2010;152A:3120–3.PubMedCrossRef
7.
go back to reference Bijlsma EK, Gijsbers ACJ, Schuurs-Hoeijmakers JHM, van Haeringen A, van de Putte DEF, Anderlid BM, et al. Extending the phenotype of recurrent rearrangements of 16p11.2: deletions in mentally retarded patients without autism and in normal individuals. Eur J Med Genet. 2009;52:77–87.PubMedCrossRef Bijlsma EK, Gijsbers ACJ, Schuurs-Hoeijmakers JHM, van Haeringen A, van de Putte DEF, Anderlid BM, et al. Extending the phenotype of recurrent rearrangements of 16p11.2: deletions in mentally retarded patients without autism and in normal individuals. Eur J Med Genet. 2009;52:77–87.PubMedCrossRef
8.
go back to reference Dale RC, Grattan-Smith P, Fung VSC, Peters GB. Infantile convulsions and paroxysmal kinesigenic dyskinesia with 16p11.2 microdeletion. Neurology. 2011;77:1401–2.PubMedCrossRef Dale RC, Grattan-Smith P, Fung VSC, Peters GB. Infantile convulsions and paroxysmal kinesigenic dyskinesia with 16p11.2 microdeletion. Neurology. 2011;77:1401–2.PubMedCrossRef
9.
go back to reference Fernandez BA, Roberts W, Chung B, Weksberg R, Meyn S, Szatmari P, et al. Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder. J Med Genet. 2010;47:195–203.PubMedCrossRef Fernandez BA, Roberts W, Chung B, Weksberg R, Meyn S, Szatmari P, et al. Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder. J Med Genet. 2010;47:195–203.PubMedCrossRef
10.
go back to reference Hanson E, Nasir RH, Fong A, Lian A, Hundley R, Shen Y, et al. Cognitive and behavioral characterization of 16p11.2 deletion syndrome. J Dev Behav Pediatr. 2010;31:649–57.PubMedCrossRef Hanson E, Nasir RH, Fong A, Lian A, Hundley R, Shen Y, et al. Cognitive and behavioral characterization of 16p11.2 deletion syndrome. J Dev Behav Pediatr. 2010;31:649–57.PubMedCrossRef
11.
go back to reference Puvabanditsin S, Nagar MS, Joshi M, Lambert G, Garrow E, Brandsma E. Microdeletion of 16p11.2 associated with endocardial fibroelastosis. Am J Med Genet A. 2010;152A:2383–6.PubMedCrossRef Puvabanditsin S, Nagar MS, Joshi M, Lambert G, Garrow E, Brandsma E. Microdeletion of 16p11.2 associated with endocardial fibroelastosis. Am J Med Genet A. 2010;152A:2383–6.PubMedCrossRef
12.
go back to reference Rosenfeld JA, Coe BP, Eichler EE, Cuckle H, Shaffer LG. Estimates of penetrance for recurrent pathogenic copy-number variations. Genet Med. 2012;15:478–81.PubMedCentralPubMedCrossRef Rosenfeld JA, Coe BP, Eichler EE, Cuckle H, Shaffer LG. Estimates of penetrance for recurrent pathogenic copy-number variations. Genet Med. 2012;15:478–81.PubMedCentralPubMedCrossRef
13.
go back to reference Shimojima K, Inoue T, Fujii Y, Ohno K, Yamamoto T. A familial 593-kb microdeletion of 16p11.2 associated with mental retardation and hemivertebrae. Eur J Med Genet. 2009;52:433–5.PubMedCrossRef Shimojima K, Inoue T, Fujii Y, Ohno K, Yamamoto T. A familial 593-kb microdeletion of 16p11.2 associated with mental retardation and hemivertebrae. Eur J Med Genet. 2009;52:433–5.PubMedCrossRef
14.
go back to reference Walsh KM, Bracken MB. Copy number variation in the dosage-sensitive 16p11.2 interval accounts for only a small proportion of autism incidence: a systematic review and meta-analysis. Genet Med. 2011;13:377–84.PubMedCrossRef Walsh KM, Bracken MB. Copy number variation in the dosage-sensitive 16p11.2 interval accounts for only a small proportion of autism incidence: a systematic review and meta-analysis. Genet Med. 2011;13:377–84.PubMedCrossRef
15.
go back to reference Zufferey F, Sherr EH, Beckmann ND, Hanson E, Maillard AM, Hippolyte L, et al. A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders. J Med Genet. 2012;49:660–8.PubMedCentralPubMedCrossRef Zufferey F, Sherr EH, Beckmann ND, Hanson E, Maillard AM, Hippolyte L, et al. A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders. J Med Genet. 2012;49:660–8.PubMedCentralPubMedCrossRef
16.
go back to reference Moreno-De-Luca D, Moreno-De-Luca A, Cubells JF, Sanders SJ. Cross-disorder comparison of four neuropsychiatric CNV loci. Current Genetic Medicine Reports. 2014;2:151–61.CrossRef Moreno-De-Luca D, Moreno-De-Luca A, Cubells JF, Sanders SJ. Cross-disorder comparison of four neuropsychiatric CNV loci. Current Genetic Medicine Reports. 2014;2:151–61.CrossRef
17.
go back to reference Hanson E, Bernier R, Porche K, Jackson FI, Goin-Kochel RP, Green Snyder LA, et al. The cognitive and behavioral phenotype of the 16p11.2 deletion in a clinically ascertained population. Biol Psychiatry. 2014;52:77–87. Hanson E, Bernier R, Porche K, Jackson FI, Goin-Kochel RP, Green Snyder LA, et al. The cognitive and behavioral phenotype of the 16p11.2 deletion in a clinically ascertained population. Biol Psychiatry. 2014;52:77–87.
18.
go back to reference Wing L, Gould J. Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J Autism Dev Disord. 1979;9:11–29.PubMedCrossRef Wing L, Gould J. Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J Autism Dev Disord. 1979;9:11–29.PubMedCrossRef
20.
go back to reference Meltzoff AN, Decety J. What imitation tells us about social cognition: a rapprochement between developmental psychology and cognitive neuroscience. Philos Trans R Soc Lond B Biol Sci. 2003;358:491–500.PubMedCentralPubMedCrossRef Meltzoff AN, Decety J. What imitation tells us about social cognition: a rapprochement between developmental psychology and cognitive neuroscience. Philos Trans R Soc Lond B Biol Sci. 2003;358:491–500.PubMedCentralPubMedCrossRef
21.
go back to reference Allison T, Puce A, McCarthy G. Social perception from visual cues: role of the STS region. Trends Cogn Sci. 2000;4:267–78.PubMedCrossRef Allison T, Puce A, McCarthy G. Social perception from visual cues: role of the STS region. Trends Cogn Sci. 2000;4:267–78.PubMedCrossRef
22.
go back to reference Pelphrey KA, Shultz S, Hudac CM, Vander Wyk BC. Research review: constraining heterogeneity: the social brain and its development in autism spectrum disorder. J Child Psychol Psychiatry. 2011;52:631–44.PubMedCentralPubMedCrossRef Pelphrey KA, Shultz S, Hudac CM, Vander Wyk BC. Research review: constraining heterogeneity: the social brain and its development in autism spectrum disorder. J Child Psychol Psychiatry. 2011;52:631–44.PubMedCentralPubMedCrossRef
23.
go back to reference Freitag CM, Konrad C, Häberlen M, Kleser C, von Gontard A, Reith W, et al. Perception of biological motion in autism spectrum disorders. Neuropsychologia. 2008;46:1480–94.PubMedCrossRef Freitag CM, Konrad C, Häberlen M, Kleser C, von Gontard A, Reith W, et al. Perception of biological motion in autism spectrum disorders. Neuropsychologia. 2008;46:1480–94.PubMedCrossRef
24.
go back to reference Pfurtscheller G, Neuper C, Andrew C, Edlinger G. Foot and hand area mu rhythms. Int J Psychophysiol. 1997;26:121–35.PubMedCrossRef Pfurtscheller G, Neuper C, Andrew C, Edlinger G. Foot and hand area mu rhythms. Int J Psychophysiol. 1997;26:121–35.PubMedCrossRef
25.
go back to reference Arroyo S, Lesser RP, Gordon B, Uematsu S, Jackson D, Webber R. Functional significance of the mu rhythm of human cortex: an electrophysiologic study with subdural electrodes. Electroencephalogr Clin Neurophysiol. 1993;87:76–87.PubMedCrossRef Arroyo S, Lesser RP, Gordon B, Uematsu S, Jackson D, Webber R. Functional significance of the mu rhythm of human cortex: an electrophysiologic study with subdural electrodes. Electroencephalogr Clin Neurophysiol. 1993;87:76–87.PubMedCrossRef
26.
go back to reference Babiloni C, Babiloni F, Carducci F, Cincotti F, Cocozza G, Del Percio C, et al. Human cortical electroencephalography (EEG) rhythms during the observation of simple aimless movements: a high-resolution EEG study. Neuroimage. 2002;17:559–72.PubMedCrossRef Babiloni C, Babiloni F, Carducci F, Cincotti F, Cocozza G, Del Percio C, et al. Human cortical electroencephalography (EEG) rhythms during the observation of simple aimless movements: a high-resolution EEG study. Neuroimage. 2002;17:559–72.PubMedCrossRef
27.
go back to reference Babiloni C, Carducci F, Cincotti F, Rossini PM, Neuper C, Pfurtscheller G, et al. Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage. 1999;10:658–65.PubMedCrossRef Babiloni C, Carducci F, Cincotti F, Rossini PM, Neuper C, Pfurtscheller G, et al. Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage. 1999;10:658–65.PubMedCrossRef
28.
go back to reference Muthukumaraswamy SD, Johnson BW, McNair NA. Mu rhythm modulation during observation of an object-directed grasp. Cogn Brain Res. 2004;19:195–201.CrossRef Muthukumaraswamy SD, Johnson BW, McNair NA. Mu rhythm modulation during observation of an object-directed grasp. Cogn Brain Res. 2004;19:195–201.CrossRef
29.
go back to reference Muthukumaraswamy SD, Johnson BW. Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG. Clin Neurophysiol. 2004;115:1760–6.PubMedCrossRef Muthukumaraswamy SD, Johnson BW. Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG. Clin Neurophysiol. 2004;115:1760–6.PubMedCrossRef
30.
go back to reference Cochin S, Barthelemy C, Roux S, Martineau J. Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur J Neurosci. 1999;11:1839–42.PubMedCrossRef Cochin S, Barthelemy C, Roux S, Martineau J. Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur J Neurosci. 1999;11:1839–42.PubMedCrossRef
31.
go back to reference Pineda JA. The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res Brain Res Rev. 2005;50:57–68.PubMedCrossRef Pineda JA. The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res Brain Res Rev. 2005;50:57–68.PubMedCrossRef
32.
33.
go back to reference Ulloa ER, Pineda JA. Recognition of point-light biological motion: mu rhythms and mirror neuron activity. Behav Brain Res. 2007;183:188–94.PubMedCrossRef Ulloa ER, Pineda JA. Recognition of point-light biological motion: mu rhythms and mirror neuron activity. Behav Brain Res. 2007;183:188–94.PubMedCrossRef
34.
go back to reference Pineda JA, Hecht E. Mirroring and mu rhythm involvement in social cognition: are there dissociable subcomponents of theory of mind? Biol Psychiatry. 2009;1–9. Pineda JA, Hecht E. Mirroring and mu rhythm involvement in social cognition: are there dissociable subcomponents of theory of mind? Biol Psychiatry. 2009;1–9.
35.
go back to reference Bernier R, Dawson G, Webb S, Murias M. EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain Cogn. 2007;64:228–37.PubMedCentralPubMedCrossRef Bernier R, Dawson G, Webb S, Murias M. EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain Cogn. 2007;64:228–37.PubMedCentralPubMedCrossRef
36.
go back to reference Dumas G, Soussignan R, Hugueville L, Martinerie J, Nadel J. Revisiting mu suppression in autism spectrum disorder. Brain Res. 2014;1585:108–19.PubMedCrossRef Dumas G, Soussignan R, Hugueville L, Martinerie J, Nadel J. Revisiting mu suppression in autism spectrum disorder. Brain Res. 2014;1585:108–19.PubMedCrossRef
37.
go back to reference Oberman LM, McCleery JP, Hubbard EM, Bernier R, Wiersema JR, Raymaekers R, et al. Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders. Soc Cogn Affect Neurosci. 2013;8:300–4.PubMedCentralPubMedCrossRef Oberman LM, McCleery JP, Hubbard EM, Bernier R, Wiersema JR, Raymaekers R, et al. Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders. Soc Cogn Affect Neurosci. 2013;8:300–4.PubMedCentralPubMedCrossRef
38.
go back to reference Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cogn Brain Res. 2005;24:190–8.CrossRef Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cogn Brain Res. 2005;24:190–8.CrossRef
39.
go back to reference Tangwiriyasakul C, Verhagen R, van Putten MJAM, Rutten WLC. Importance of baseline in event-related desynchronization during a combination task of motor imagery and motor observation. J Neural Eng. 2013;10:026009.PubMedCrossRef Tangwiriyasakul C, Verhagen R, van Putten MJAM, Rutten WLC. Importance of baseline in event-related desynchronization during a combination task of motor imagery and motor observation. J Neural Eng. 2013;10:026009.PubMedCrossRef
40.
go back to reference Speirs SJ, Rinehart NJ, Robinson SR, Tonge BJ, Yelland GW. Efficacy of cognitive processes in young people with high-functioning autism spectrum disorder using a novel visual information-processing task. J Autism Dev Disord. 2014;44:2809–19.PubMedCrossRef Speirs SJ, Rinehart NJ, Robinson SR, Tonge BJ, Yelland GW. Efficacy of cognitive processes in young people with high-functioning autism spectrum disorder using a novel visual information-processing task. J Autism Dev Disord. 2014;44:2809–19.PubMedCrossRef
41.
go back to reference Minshew NJ, Goldstein G. Autism as a disorder of complex information processing. Ment Retard Dev Disabil Res Rev 1998. Minshew NJ, Goldstein G. Autism as a disorder of complex information processing. Ment Retard Dev Disabil Res Rev 1998.
42.
go back to reference Williams DL, Goldstein G, Minshew NJ. Neuropsychologic functioning in children with autism: further evidence for disordered complex information-processing. Child Neuropsychol. 2006;12:279–98.PubMedCentralPubMedCrossRef Williams DL, Goldstein G, Minshew NJ. Neuropsychologic functioning in children with autism: further evidence for disordered complex information-processing. Child Neuropsychol. 2006;12:279–98.PubMedCentralPubMedCrossRef
43.
go back to reference Kleinhans NM, Richards T, Weaver K, Johnson LC, Greenson J, Dawson G, et al. Association between amygdala response to emotional faces and social anxiety in autism spectrum disorders. Neuropsychologia. 2010;48:3665–70.PubMedCentralPubMedCrossRef Kleinhans NM, Richards T, Weaver K, Johnson LC, Greenson J, Dawson G, et al. Association between amygdala response to emotional faces and social anxiety in autism spectrum disorders. Neuropsychologia. 2010;48:3665–70.PubMedCentralPubMedCrossRef
44.
go back to reference Swartz JR, Wiggins JL, Carrasco M, Lord C, Monk CS. Amygdala habituation and prefrontal functional connectivity in youth with autism spectrum disorders. J Am Acad Child Adolesc Psychiatry. 2013;52:84–93.PubMedCentralPubMedCrossRef Swartz JR, Wiggins JL, Carrasco M, Lord C, Monk CS. Amygdala habituation and prefrontal functional connectivity in youth with autism spectrum disorders. J Am Acad Child Adolesc Psychiatry. 2013;52:84–93.PubMedCentralPubMedCrossRef
45.
go back to reference The Simons VIP Consortium. Simons Variation in Individuals Project (Simons VIP): a genetics-first approach to studying autism spectrum and related neurodevelopmental disorders. Neuron. 2012;73:1063–7.CrossRef The Simons VIP Consortium. Simons Variation in Individuals Project (Simons VIP): a genetics-first approach to studying autism spectrum and related neurodevelopmental disorders. Neuron. 2012;73:1063–7.CrossRef
46.
go back to reference Qureshi AY, Mueller S, Snyder AZ, Mukherjee P, Berman JI, Roberts TPL, et al. Opposing brain differences in 16p11.2 deletion and duplication carriers. J Neurosci. 2014;34:11199–211.PubMedCentralPubMedCrossRef Qureshi AY, Mueller S, Snyder AZ, Mukherjee P, Berman JI, Roberts TPL, et al. Opposing brain differences in 16p11.2 deletion and duplication carriers. J Neurosci. 2014;34:11199–211.PubMedCentralPubMedCrossRef
47.
go back to reference Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.PubMedCrossRef Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.PubMedCrossRef
48.
go back to reference Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, et al. Austism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord. 1989;19:185–212.PubMedCrossRef Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, et al. Austism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord. 1989;19:185–212.PubMedCrossRef
49.
go back to reference Wechsler D. Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio, TX: The Psychological Corporation; 1999. Wechsler D. Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio, TX: The Psychological Corporation; 1999.
50.
go back to reference Elliott CD. Differential ability scales-Ll. Pearson: San Antonio, TX; 2007. Elliott CD. Differential ability scales-Ll. Pearson: San Antonio, TX; 2007.
51.
go back to reference Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.PubMedCrossRef Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.PubMedCrossRef
52.
go back to reference Happé FGE, Booth RDL. The power of the positive: revisiting weak coherence in autism spectrum disorders. Q J Exp Psychol. 2008;61:50–63.CrossRef Happé FGE, Booth RDL. The power of the positive: revisiting weak coherence in autism spectrum disorders. Q J Exp Psychol. 2008;61:50–63.CrossRef
53.
go back to reference Dawson G, Webb SJ, Carver L, Panagiotides H, McPartland J. Young children with autism show atypical brain responses to fearful versus neutral facial expressions of emotion. Dev Sci. 2004;7:340–59.PubMedCrossRef Dawson G, Webb SJ, Carver L, Panagiotides H, McPartland J. Young children with autism show atypical brain responses to fearful versus neutral facial expressions of emotion. Dev Sci. 2004;7:340–59.PubMedCrossRef
54.
go back to reference Lerner MD, McPartland JC, Morris JP. Multimodal emotion processing in autism spectrum disorders: an event-related potential study. Accid Anal Prev. 2012;1–11. Lerner MD, McPartland JC, Morris JP. Multimodal emotion processing in autism spectrum disorders: an event-related potential study. Accid Anal Prev. 2012;1–11.
55.
go back to reference Kylliäinen A, Wallace S, Coutanche MN, Leppänen JM, Cusack J, Bailey AJ, et al. Affective-motivational brain responses to direct gaze in children with autism spectrum disorder. J Child Psychol Psychiatry. 2012;53:790–7.PubMedCrossRef Kylliäinen A, Wallace S, Coutanche MN, Leppänen JM, Cusack J, Bailey AJ, et al. Affective-motivational brain responses to direct gaze in children with autism spectrum disorder. J Child Psychol Psychiatry. 2012;53:790–7.PubMedCrossRef
56.
go back to reference Bellebaum C, Brodmann K, Thoma P. Active and observational reward learning in adults with autism spectrum disorder: relationship with empathy in an atypical sample. Cogn Neuropsychiatry. 2014;19:205–25.PubMedCrossRef Bellebaum C, Brodmann K, Thoma P. Active and observational reward learning in adults with autism spectrum disorder: relationship with empathy in an atypical sample. Cogn Neuropsychiatry. 2014;19:205–25.PubMedCrossRef
57.
go back to reference Girirajan S, Brkanac Z, Coe BP, Baker C, Vives L, Vu TH, et al. Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLoS Genet. 2011;7, e1002334.PubMedCentralPubMedCrossRef Girirajan S, Brkanac Z, Coe BP, Baker C, Vives L, Vu TH, et al. Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLoS Genet. 2011;7, e1002334.PubMedCentralPubMedCrossRef
58.
go back to reference Girirajan S, Dennis MY, Baker C, Malig M, Coe BP, Campbell CD, et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am J Hum Genet. 2013;92:221–37.PubMedCentralPubMedCrossRef Girirajan S, Dennis MY, Baker C, Malig M, Coe BP, Campbell CD, et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am J Hum Genet. 2013;92:221–37.PubMedCentralPubMedCrossRef
60.
go back to reference Bernier R, Aaronson B, McPartland J. The role of imitation in the observed heterogeneity in EEG mu rhythm in autism and typical development. Brain Cogn. 2013;82:69–75.PubMedCrossRef Bernier R, Aaronson B, McPartland J. The role of imitation in the observed heterogeneity in EEG mu rhythm in autism and typical development. Brain Cogn. 2013;82:69–75.PubMedCrossRef
Metadata
Title
Modulation of mu attenuation to social stimuli in children and adults with 16p11.2 deletions and duplications
Authors
Caitlin M. Hudac
Anna Kresse
Benjamin Aaronson
Trent D. DesChamps
Sara Jane Webb
Raphael A. Bernier
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2015
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-015-9118-5

Other articles of this Issue 1/2015

Journal of Neurodevelopmental Disorders 1/2015 Go to the issue