Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2024

Open Access 01-12-2024 | Review

Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment

Authors: Yuze Hua, Sen Yang, Yalu Zhang, Jiayi Li, Mengyi Wang, Palashate Yeerkenbieke, Quan Liao, Qiaofei Liu

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2024

Login to get access

Abstract

Ferroptosis, a novel form of cell death triggered by iron-dependent phospholipid peroxidation, presents significant therapeutic potential across diverse cancer types. Central to cellular metabolism, the metabolic pathways associated with ferroptosis are discernible in both cancerous and immune cells. This review begins by delving into the intricate reciprocal regulation of ferroptosis between cancer and immune cells. It subsequently details how factors within the tumor microenvironment (TME) such as nutrient scarcity, hypoxia, and cellular density modulate ferroptosis sensitivity. We conclude by offering a comprehensive examination of distinct immunophenotypes and environmental and metabolic targets geared towards enhancing ferroptosis responsiveness within the TME. In sum, tailoring precise ferroptosis interventions and combination strategies to suit the unique TME of specific cancers may herald improved patient outcomes.
Appendix
Available only for authorised users
Literature
1.
3.
go back to reference Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the Tumor microenvironment. Volume 348. New York, N.Y.): Science; 2015. pp. 74–80. 6230. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the Tumor microenvironment. Volume 348. New York, N.Y.): Science; 2015. pp. 74–80. 6230.
4.
go back to reference Salmon H, et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Investig. 2012;122(3):899–910.PubMedPubMedCentralCrossRef Salmon H, et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Investig. 2012;122(3):899–910.PubMedPubMedCentralCrossRef
5.
go back to reference Borst J, et al. CD4 T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18(10):635–47.PubMedCrossRef Borst J, et al. CD4 T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18(10):635–47.PubMedCrossRef
7.
go back to reference Buck MD, et al. Metabolic Instruction of Immunity Cell. 2017;169(4):570–86.PubMed Buck MD, et al. Metabolic Instruction of Immunity Cell. 2017;169(4):570–86.PubMed
8.
go back to reference Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between Metabolism and Cancer Biology. Cell. 2017;168(4):657–69.PubMedCrossRef Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between Metabolism and Cancer Biology. Cell. 2017;168(4):657–69.PubMedCrossRef
9.
go back to reference Kaymak I, et al. Immunometabolic interplay in the Tumor Microenvironment. Cancer Cell. 2021;39(1):28–37.PubMedCrossRef Kaymak I, et al. Immunometabolic interplay in the Tumor Microenvironment. Cancer Cell. 2021;39(1):28–37.PubMedCrossRef
10.
go back to reference Li X, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 2019;16(7):425–41.PubMedCrossRef Li X, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 2019;16(7):425–41.PubMedCrossRef
13.
go back to reference Hadian K, Stockwell BR. SnapShot: Ferroptosis Cell, 2020. 181(5). Hadian K, Stockwell BR. SnapShot: Ferroptosis Cell, 2020. 181(5).
16.
go back to reference Fang X, et al. Loss of Cardiac Ferritin H facilitates Cardiomyopathy via Slc7a11-Mediated ferroptosis. Circ Res. 2020;127(4):486–501.PubMedCrossRef Fang X, et al. Loss of Cardiac Ferritin H facilitates Cardiomyopathy via Slc7a11-Mediated ferroptosis. Circ Res. 2020;127(4):486–501.PubMedCrossRef
17.
go back to reference Li Y, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019;26(11):2284–99.PubMedPubMedCentralCrossRef Li Y, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019;26(11):2284–99.PubMedPubMedCentralCrossRef
18.
go back to reference Tonnus W, Linkermann A. The in vivo evidence for regulated necrosis. Immunol Rev. 2017;277(1):128–49.PubMedCrossRef Tonnus W, Linkermann A. The in vivo evidence for regulated necrosis. Immunol Rev. 2017;277(1):128–49.PubMedCrossRef
21.
go back to reference Guiney SJ, et al. Ferroptosis and cell death mechanisms in Parkinson’s Disease. Neurochem Int. 2017;104:34–48.PubMedCrossRef Guiney SJ, et al. Ferroptosis and cell death mechanisms in Parkinson’s Disease. Neurochem Int. 2017;104:34–48.PubMedCrossRef
23.
go back to reference Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to Iron Out Cancer. Cancer Cell. 2019;35(6):830–49.PubMedCrossRef Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to Iron Out Cancer. Cancer Cell. 2019;35(6):830–49.PubMedCrossRef
24.
go back to reference Gao M et al. Role of Mitochondria in Ferroptosis. Mol Cell, 2019. 73(2). Gao M et al. Role of Mitochondria in Ferroptosis. Mol Cell, 2019. 73(2).
25.
go back to reference Doll S, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91–8.PubMedCrossRef Doll S, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91–8.PubMedCrossRef
26.
28.
29.
go back to reference Zheng J, Conrad M. The metabolic underpinnings of Ferroptosis. Cell Metabol. 2020;32(6):920–37.CrossRef Zheng J, Conrad M. The metabolic underpinnings of Ferroptosis. Cell Metabol. 2020;32(6):920–37.CrossRef
30.
go back to reference Zhang J, et al. Targeting the Thioredoxin System for Cancer Therapy. Trends Pharmacol Sci. 2017;38(9):794–808.PubMedCrossRef Zhang J, et al. Targeting the Thioredoxin System for Cancer Therapy. Trends Pharmacol Sci. 2017;38(9):794–808.PubMedCrossRef
31.
go back to reference Bai L, et al. Thioredoxin-1 rescues MPP/MPTP-Induced ferroptosis by Increasing Glutathione Peroxidase 4. Mol Neurobiol. 2021;58(7):3187–97.PubMedCrossRef Bai L, et al. Thioredoxin-1 rescues MPP/MPTP-Induced ferroptosis by Increasing Glutathione Peroxidase 4. Mol Neurobiol. 2021;58(7):3187–97.PubMedCrossRef
32.
33.
34.
go back to reference Doll S, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.PubMedCrossRef Doll S, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.PubMedCrossRef
38.
go back to reference Tang D, et al. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107–25.PubMedCrossRef Tang D, et al. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107–25.PubMedCrossRef
39.
go back to reference MacKenzie KD, et al. Bistable expression of CsgD in Salmonella enterica Serovar Typhimurium connects virulence to persistence. Infect Immun. 2015;83(6):2312–26.PubMedPubMedCentralCrossRef MacKenzie KD, et al. Bistable expression of CsgD in Salmonella enterica Serovar Typhimurium connects virulence to persistence. Infect Immun. 2015;83(6):2312–26.PubMedPubMedCentralCrossRef
40.
go back to reference Suthanthiran M, et al. Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci USA. 1990;87(9):3343–7.PubMedPubMedCentralCrossRef Suthanthiran M, et al. Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci USA. 1990;87(9):3343–7.PubMedPubMedCentralCrossRef
41.
go back to reference Arensman MD, et al. Cystine-glutamate antiporter xCT deficiency suppresses Tumor growth while preserving antitumor immunity. Proc Natl Acad Sci USA. 2019;116(19):9533–42.PubMedPubMedCentralCrossRef Arensman MD, et al. Cystine-glutamate antiporter xCT deficiency suppresses Tumor growth while preserving antitumor immunity. Proc Natl Acad Sci USA. 2019;116(19):9533–42.PubMedPubMedCentralCrossRef
43.
go back to reference Siska PJ, et al. Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes. J Immunol Methods. 2016;438:51–8.PubMedPubMedCentralCrossRef Siska PJ, et al. Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes. J Immunol Methods. 2016;438:51–8.PubMedPubMedCentralCrossRef
44.
go back to reference Garg SK, et al. Differential dependence on cysteine from transsulfuration versus transport during T cell activation. Antioxid Redox Signal. 2011;15(1):39–47.PubMedPubMedCentralCrossRef Garg SK, et al. Differential dependence on cysteine from transsulfuration versus transport during T cell activation. Antioxid Redox Signal. 2011;15(1):39–47.PubMedPubMedCentralCrossRef
45.
go back to reference Angelini G, et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci USA. 2002;99(3):1491–6.PubMedPubMedCentralCrossRef Angelini G, et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci USA. 2002;99(3):1491–6.PubMedPubMedCentralCrossRef
46.
go back to reference Gmünder H, et al. Macrophages regulate intracellular glutathione levels of lymphocytes. Evidence for an immunoregulatory role of cysteine. Cell Immunol. 1990;129(1):32–46.PubMedCrossRef Gmünder H, et al. Macrophages regulate intracellular glutathione levels of lymphocytes. Evidence for an immunoregulatory role of cysteine. Cell Immunol. 1990;129(1):32–46.PubMedCrossRef
47.
go back to reference Srivastava MK, et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68–77.PubMedCrossRef Srivastava MK, et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68–77.PubMedCrossRef
48.
go back to reference van der Windt GJW, et al. Mitochondrial respiratory capacity is a critical regulator of CD8 + T cell memory development. Immunity. 2012;36(1):68–78.PubMedCrossRef van der Windt GJW, et al. Mitochondrial respiratory capacity is a critical regulator of CD8 + T cell memory development. Immunity. 2012;36(1):68–78.PubMedCrossRef
49.
go back to reference Barry M, Bleackley RC. Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol. 2002;2(6):401–9.PubMedCrossRef Barry M, Bleackley RC. Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol. 2002;2(6):401–9.PubMedCrossRef
50.
go back to reference Golstein P, Griffiths GM. An early history of T cell-mediated cytotoxicity. Nat Rev Immunol. 2018;18(8):527–35.PubMedCrossRef Golstein P, Griffiths GM. An early history of T cell-mediated cytotoxicity. Nat Rev Immunol. 2018;18(8):527–35.PubMedCrossRef
52.
go back to reference Kong R, et al. IFNγ-mediated repression of system xc drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. J Leukoc Biol. 2021;110(2):301–14.PubMedCrossRef Kong R, et al. IFNγ-mediated repression of system xc drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. J Leukoc Biol. 2021;110(2):301–14.PubMedCrossRef
53.
go back to reference Habtetsion T et al. Alteration of Tumor metabolism by CD4 + T cells leads to TNF-α-Dependent intensification of oxidative stress and Tumor Cell Death. Cell Metabol, 2018. 28(2). Habtetsion T et al. Alteration of Tumor metabolism by CD4 + T cells leads to TNF-α-Dependent intensification of oxidative stress and Tumor Cell Death. Cell Metabol, 2018. 28(2).
55.
go back to reference Michalek RD, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 + T cell subsets. J Immunol. 2011;186(6):3299–303.PubMedCrossRef Michalek RD, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 + T cell subsets. J Immunol. 2011;186(6):3299–303.PubMedCrossRef
57.
go back to reference Mougiakakos D, et al. Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood. 2011;117(3):857–61.PubMedCrossRef Mougiakakos D, et al. Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood. 2011;117(3):857–61.PubMedCrossRef
58.
go back to reference Drijvers JM, et al. Pharmacologic screening identifies metabolic vulnerabilities of CD8 T cells. Cancer Immunol Res. 2021;9(2):184–99.PubMedCrossRef Drijvers JM, et al. Pharmacologic screening identifies metabolic vulnerabilities of CD8 T cells. Cancer Immunol Res. 2021;9(2):184–99.PubMedCrossRef
59.
go back to reference Curiel TJ, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.PubMedCrossRef Curiel TJ, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.PubMedCrossRef
60.
go back to reference Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6(4):295–307.PubMedCrossRef Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6(4):295–307.PubMedCrossRef
61.
62.
go back to reference Ben-Sasson SZ, et al. IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells. J Exp Med. 2013;210(3):491–502.PubMedPubMedCentralCrossRef Ben-Sasson SZ, et al. IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells. J Exp Med. 2013;210(3):491–502.PubMedPubMedCentralCrossRef
63.
go back to reference Fotaki G, et al. Pro-inflammatory allogeneic DCs promote activation of bystander immune cells and thereby license antigen-specific T-cell responses. Oncoimmunology. 2018;7(3):e1395126.PubMedCrossRef Fotaki G, et al. Pro-inflammatory allogeneic DCs promote activation of bystander immune cells and thereby license antigen-specific T-cell responses. Oncoimmunology. 2018;7(3):e1395126.PubMedCrossRef
64.
go back to reference Zhivaki D, et al. Inflammasomes within hyperactive murine dendritic cells stimulate long-lived T cell-mediated anti-tumor immunity. Cell Rep. 2020;33(7):108381.PubMedPubMedCentralCrossRef Zhivaki D, et al. Inflammasomes within hyperactive murine dendritic cells stimulate long-lived T cell-mediated anti-tumor immunity. Cell Rep. 2020;33(7):108381.PubMedPubMedCentralCrossRef
65.
go back to reference Maj T, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in Tumor. Nat Immunol. 2017;18(12):1332–41.PubMedPubMedCentralCrossRef Maj T, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in Tumor. Nat Immunol. 2017;18(12):1332–41.PubMedPubMedCentralCrossRef
66.
go back to reference Piattini F, et al. Differential sensitivity of inflammatory macrophages and alternatively activated macrophages to ferroptosis. European journal of immunology; 2021. Piattini F, et al. Differential sensitivity of inflammatory macrophages and alternatively activated macrophages to ferroptosis. European journal of immunology; 2021.
67.
go back to reference Kapralov AA, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16(3):278–90.PubMedPubMedCentralCrossRef Kapralov AA, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16(3):278–90.PubMedPubMedCentralCrossRef
68.
go back to reference Mikulska-Ruminska K et al. NO represses the oxygenation of Arachidonoyl PE by 15LOX/PEBP1: mechanism and role in Ferroptosis. Int J Mol Sci, 2021. 22(10). Mikulska-Ruminska K et al. NO represses the oxygenation of Arachidonoyl PE by 15LOX/PEBP1: mechanism and role in Ferroptosis. Int J Mol Sci, 2021. 22(10).
69.
go back to reference Zhu H, et al. Asah2 represses the p53-Hmox1 Axis to protect myeloid-derived suppressor cells from Ferroptosis. J Immunol (Baltimore Md: 1950). 2021;206(6):1395–404.CrossRef Zhu H, et al. Asah2 represses the p53-Hmox1 Axis to protect myeloid-derived suppressor cells from Ferroptosis. J Immunol (Baltimore Md: 1950). 2021;206(6):1395–404.CrossRef
70.
go back to reference Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol. 2019;16(10):601–20.PubMedCrossRef Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol. 2019;16(10):601–20.PubMedCrossRef
72.
go back to reference Sagiv JY, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562–73.PubMedCrossRef Sagiv JY, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562–73.PubMedCrossRef
73.
go back to reference Christofides A, Kosmopoulos M, Piperi C. Pathophysiological Mech Regulated Cytokines Gliomas Cytokine. 2015;71(2):377–84. Christofides A, Kosmopoulos M, Piperi C. Pathophysiological Mech Regulated Cytokines Gliomas Cytokine. 2015;71(2):377–84.
76.
79.
81.
82.
go back to reference Al-Huseini LMA, et al. Nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2) modulates dendritic cell immune function through regulation of p38 MAPK-cAMP-responsive element binding protein/activating transcription factor 1 signaling. J Biol Chem. 2013;288(31):22281–8.PubMedPubMedCentralCrossRef Al-Huseini LMA, et al. Nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2) modulates dendritic cell immune function through regulation of p38 MAPK-cAMP-responsive element binding protein/activating transcription factor 1 signaling. J Biol Chem. 2013;288(31):22281–8.PubMedPubMedCentralCrossRef
83.
go back to reference Williams MA et al. Disruption of the transcription factor Nrf2 promotes pro-oxidative dendritic cells that stimulate Th2-like immunoresponsiveness upon activation by ambient particulate matter Journal of immunology (Baltimore, Md.: 1950), 2008. 181(7): p. 4545–4559. Williams MA et al. Disruption of the transcription factor Nrf2 promotes pro-oxidative dendritic cells that stimulate Th2-like immunoresponsiveness upon activation by ambient particulate matter Journal of immunology (Baltimore, Md.: 1950), 2008. 181(7): p. 4545–4559.
84.
go back to reference Stamenkovic A, et al. Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2021;320(3):H1170–h1184.PubMedCrossRef Stamenkovic A, et al. Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2021;320(3):H1170–h1184.PubMedCrossRef
85.
go back to reference Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19(3):200–18.PubMedCrossRef Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19(3):200–18.PubMedCrossRef
86.
go back to reference Poznanski SM et al. Metabolic flexibility determines human NK cell functional fate in the Tumor microenvironment. Cell Metabol, 2021. 33(6). Poznanski SM et al. Metabolic flexibility determines human NK cell functional fate in the Tumor microenvironment. Cell Metabol, 2021. 33(6).
87.
go back to reference Wu L, et al. The establishment of polypeptide PSMA-targeted chimeric antigen receptor-engineered natural killer cells for castration-resistant Prostate cancer and the induction of ferroptosis-related cell death. Cancer Commun (Lond). 2022;42(8):768–83.PubMedCrossRef Wu L, et al. The establishment of polypeptide PSMA-targeted chimeric antigen receptor-engineered natural killer cells for castration-resistant Prostate cancer and the induction of ferroptosis-related cell death. Cancer Commun (Lond). 2022;42(8):768–83.PubMedCrossRef
88.
go back to reference Efimova I et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer, 2020. 8(2). Efimova I et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer, 2020. 8(2).
89.
go back to reference Galluzzi L et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer, 2020. 8(1). Galluzzi L et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer, 2020. 8(1).
90.
go back to reference Krysko DV, et al. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860–75.PubMedCrossRef Krysko DV, et al. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860–75.PubMedCrossRef
91.
92.
go back to reference López-Janeiro Á et al. Proteomic analysis of Low-Grade, Early-Stage Endometrial Carcinoma Reveals New Dysregulated Pathways Associated with Cell Death and Cell Signaling. Cancers, 2021. 13(4). López-Janeiro Á et al. Proteomic analysis of Low-Grade, Early-Stage Endometrial Carcinoma Reveals New Dysregulated Pathways Associated with Cell Death and Cell Signaling. Cancers, 2021. 13(4).
93.
go back to reference Obeid M, et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 2007;14(10):1848–50.PubMedCrossRef Obeid M, et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 2007;14(10):1848–50.PubMedCrossRef
94.
go back to reference Luo X, et al. Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ. 2021;28(6):1971–89.PubMedPubMedCentralCrossRef Luo X, et al. Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ. 2021;28(6):1971–89.PubMedPubMedCentralCrossRef
95.
go back to reference Zhou B et al. Ferroptosis is a type of autophagy-dependent cell death. Sem Cancer Biol, 2020. 66. Zhou B et al. Ferroptosis is a type of autophagy-dependent cell death. Sem Cancer Biol, 2020. 66.
96.
98.
go back to reference Dai E, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020;16(11):2069–83.PubMedPubMedCentralCrossRef Dai E, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020;16(11):2069–83.PubMedPubMedCentralCrossRef
101.
go back to reference Zhao E, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17(1):95–103.PubMedCrossRef Zhao E, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17(1):95–103.PubMedCrossRef
102.
go back to reference Rivadeneira DB, Delgoffe GM. Antitumor T-cell reconditioning: improving metabolic fitness for Optimal Cancer Immunotherapy. Clin Cancer Res. 2018;24(11):2473–81.PubMedPubMedCentralCrossRef Rivadeneira DB, Delgoffe GM. Antitumor T-cell reconditioning: improving metabolic fitness for Optimal Cancer Immunotherapy. Clin Cancer Res. 2018;24(11):2473–81.PubMedPubMedCentralCrossRef
103.
go back to reference Warburg O. On the origin of cancer cells. Volume 123. New York, N.Y.): Science; 1956. pp. 309–14. 3191. Warburg O. On the origin of cancer cells. Volume 123. New York, N.Y.): Science; 1956. pp. 309–14. 3191.
106.
go back to reference Song X, et al. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep. 2021;34(8):108767.PubMedCrossRef Song X, et al. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep. 2021;34(8):108767.PubMedCrossRef
107.
go back to reference Cham CM, et al. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8 + T cells. Eur J Immunol. 2008;38(9):2438–50.PubMedPubMedCentralCrossRef Cham CM, et al. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8 + T cells. Eur J Immunol. 2008;38(9):2438–50.PubMedPubMedCentralCrossRef
109.
go back to reference Koppula P, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (London England). 2018;38(1):12. Koppula P, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (London England). 2018;38(1):12.
110.
go back to reference Kamphorst JJ, et al. Human Pancreatic cancer tumors are nutrient poor and Tumor cells actively scavenge extracellular protein. Cancer Res. 2015;75(3):544–53.PubMedPubMedCentralCrossRef Kamphorst JJ, et al. Human Pancreatic cancer tumors are nutrient poor and Tumor cells actively scavenge extracellular protein. Cancer Res. 2015;75(3):544–53.PubMedPubMedCentralCrossRef
111.
go back to reference Pan M, et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat Cell Biol. 2016;18(10):1090–101.PubMedPubMedCentralCrossRef Pan M, et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat Cell Biol. 2016;18(10):1090–101.PubMedPubMedCentralCrossRef
112.
114.
go back to reference Cramer SL, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses Tumor growth. Nat Med. 2017;23(1):120–7.PubMedCrossRef Cramer SL, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses Tumor growth. Nat Med. 2017;23(1):120–7.PubMedCrossRef
115.
go back to reference Daher B, et al. Genetic ablation of the Cystine Transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and Tumor formation via nutrient and oxidative stresses. Cancer Res. 2019;79(15):3877–90.PubMedCrossRef Daher B, et al. Genetic ablation of the Cystine Transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and Tumor formation via nutrient and oxidative stresses. Cancer Res. 2019;79(15):3877–90.PubMedCrossRef
116.
go back to reference Meira W et al. A cystine-cysteine intercellular shuttle prevents ferroptosis in xCT pancreatic ductal adenocarcinoma cells. Cancers, 2021. 13(6). Meira W et al. A cystine-cysteine intercellular shuttle prevents ferroptosis in xCT pancreatic ductal adenocarcinoma cells. Cancers, 2021. 13(6).
117.
go back to reference Zhang W, et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic Leukaemia. Nat Cell Biol. 2012;14(3):276–86.PubMedPubMedCentralCrossRef Zhang W, et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic Leukaemia. Nat Cell Biol. 2012;14(3):276–86.PubMedPubMedCentralCrossRef
121.
go back to reference Muir A et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. eLife, 2017. 6. Muir A et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. eLife, 2017. 6.
122.
go back to reference Cassago A, et al. Mitochondrial localization and structure-based phosphate activation mechanism of glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci USA. 2012;109(4):1092–7.PubMedPubMedCentralCrossRef Cassago A, et al. Mitochondrial localization and structure-based phosphate activation mechanism of glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci USA. 2012;109(4):1092–7.PubMedPubMedCentralCrossRef
123.
go back to reference Jennis M, et al. An african-specific polymorphism in the TP53 gene impairs p53 Tumor suppressor function in a mouse model. Genes Dev. 2016;30(8):918–30.PubMedPubMedCentralCrossRef Jennis M, et al. An african-specific polymorphism in the TP53 gene impairs p53 Tumor suppressor function in a mouse model. Genes Dev. 2016;30(8):918–30.PubMedPubMedCentralCrossRef
124.
go back to reference Bannai S, Ishii T. A novel function of glutamine in cell culture: utilization of glutamine for the uptake of cystine in human fibroblasts. J Cell Physiol. 1988;137(2):360–6.PubMedCrossRef Bannai S, Ishii T. A novel function of glutamine in cell culture: utilization of glutamine for the uptake of cystine in human fibroblasts. J Cell Physiol. 1988;137(2):360–6.PubMedCrossRef
126.
go back to reference CD36 Activity Causes Ferroptosis in Tumor-Infiltrating CD8 T Cells. Cancer discovery., 2021. 11(5): p. OF24. CD36 Activity Causes Ferroptosis in Tumor-Infiltrating CD8 T Cells. Cancer discovery., 2021. 11(5): p. OF24.
127.
128.
go back to reference Ippolito L, et al. Lactate: a metabolic driver in the Tumour Landscape. Trends Biochem Sci. 2019;44(2):153–66.PubMedCrossRef Ippolito L, et al. Lactate: a metabolic driver in the Tumour Landscape. Trends Biochem Sci. 2019;44(2):153–66.PubMedCrossRef
129.
go back to reference Manzo T et al. Accumulation of long-chain fatty acids in the Tumor microenvironment drives dysfunction in intrapancreatic CD8 + T cells. J Exp Med, 2020. 217(8). Manzo T et al. Accumulation of long-chain fatty acids in the Tumor microenvironment drives dysfunction in intrapancreatic CD8 + T cells. J Exp Med, 2020. 217(8).
130.
go back to reference Ma X et al. CD36-mediated ferroptosis dampens intratumoral CD8 T cell effector function and impairs their antitumor ability. Cell Metabol, 2021. Ma X et al. CD36-mediated ferroptosis dampens intratumoral CD8 T cell effector function and impairs their antitumor ability. Cell Metabol, 2021.
131.
go back to reference Zhang Y et al. Enhancing CD8 T cell fatty acid catabolism within a metabolically challenging Tumor Microenvironment increases the efficacy of Melanoma Immunotherapy. Cancer Cell, 2017. 32(3). Zhang Y et al. Enhancing CD8 T cell fatty acid catabolism within a metabolically challenging Tumor Microenvironment increases the efficacy of Melanoma Immunotherapy. Cancer Cell, 2017. 32(3).
132.
133.
go back to reference Gurusamy D et al. Multi-phenotype CRISPR-Cas9 screen identifies p38 kinase as a target for adoptive immunotherapies. Cancer Cell, 2020. 37(6). Gurusamy D et al. Multi-phenotype CRISPR-Cas9 screen identifies p38 kinase as a target for adoptive immunotherapies. Cancer Cell, 2020. 37(6).
134.
go back to reference Xu S et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8 T cells in tumors. Immunity, 2021. 54(7). Xu S et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8 T cells in tumors. Immunity, 2021. 54(7).
135.
go back to reference Luo X, et al. The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis. 2021;12(4):328.PubMedPubMedCentralCrossRef Luo X, et al. The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis. 2021;12(4):328.PubMedPubMedCentralCrossRef
136.
go back to reference Liu W, et al. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and Metastasis in cancer. Nat Commun. 2021;12(1):5103.PubMedPubMedCentralCrossRef Liu W, et al. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and Metastasis in cancer. Nat Commun. 2021;12(1):5103.PubMedPubMedCentralCrossRef
138.
go back to reference Zhao Y, et al. HCAR1/MCT1 regulates Tumor Ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep. 2020;33(10):108487.PubMedCrossRef Zhao Y, et al. HCAR1/MCT1 regulates Tumor Ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep. 2020;33(10):108487.PubMedCrossRef
139.
go back to reference Pereira ER, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Volume 359. Science (New York, N.Y.),; 2018. pp. 1403–7. 6382. Pereira ER, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Volume 359. Science (New York, N.Y.),; 2018. pp. 1403–7. 6382.
140.
go back to reference Brown M, et al. Lymph node blood vessels provide exit routes for metastatic Tumor cell dissemination in mice. Volume 359. New York, N.Y.: Science; 2018. pp. 1408–11. 6382. Brown M, et al. Lymph node blood vessels provide exit routes for metastatic Tumor cell dissemination in mice. Volume 359. New York, N.Y.: Science; 2018. pp. 1408–11. 6382.
141.
go back to reference Tang Y, et al. Fatty acid activation in carcinogenesis and cancer development: essential roles of long-chain acyl-CoA synthetases. Oncol Lett. 2018;16(2):1390–6.PubMedPubMedCentral Tang Y, et al. Fatty acid activation in carcinogenesis and cancer development: essential roles of long-chain acyl-CoA synthetases. Oncol Lett. 2018;16(2):1390–6.PubMedPubMedCentral
144.
go back to reference Le Gal K, et al. Antioxidants can increase Melanoma Metastasis in mice. Sci Transl Med. 2015;7(308):308re8.PubMed Le Gal K, et al. Antioxidants can increase Melanoma Metastasis in mice. Sci Transl Med. 2015;7(308):308re8.PubMed
145.
146.
go back to reference Fan Z, et al. Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med. 2021;25(21):10197–212.PubMedPubMedCentralCrossRef Fan Z, et al. Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med. 2021;25(21):10197–212.PubMedPubMedCentralCrossRef
147.
go back to reference Xiong J et al. Hypoxia Enhances HIF1α Transcription Activity by Upregulating KDM4A and Mediating H3K9me3, Thus Inducing Ferroptosis Resistance in Cervical Cancer Cells Stem Cells Int, 2022. 2022: p. 1608806. Xiong J et al. Hypoxia Enhances HIF1α Transcription Activity by Upregulating KDM4A and Mediating H3K9me3, Thus Inducing Ferroptosis Resistance in Cervical Cancer Cells Stem Cells Int, 2022. 2022: p. 1608806.
148.
go back to reference Lin Z, et al. Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer. Redox Biol. 2022;52:102312.PubMedPubMedCentralCrossRef Lin Z, et al. Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer. Redox Biol. 2022;52:102312.PubMedPubMedCentralCrossRef
149.
go back to reference Zou Y, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 2019;10(1):1617.PubMedPubMedCentralCrossRef Zou Y, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 2019;10(1):1617.PubMedPubMedCentralCrossRef
150.
152.
154.
go back to reference Soares MP, Hamza I. Macrophages and Iron Metabolism Immunity. 2016;44(3):492–504.PubMed Soares MP, Hamza I. Macrophages and Iron Metabolism Immunity. 2016;44(3):492–504.PubMed
155.
156.
go back to reference Gryzik M et al. Expression and characterization of the ferritin binding domain of Nuclear Receptor Coactivator-4 (NCOA4) Biochimica et biophysica acta. General subjects, 2017. 1861(11 Pt A): p. 2710–2716. Gryzik M et al. Expression and characterization of the ferritin binding domain of Nuclear Receptor Coactivator-4 (NCOA4) Biochimica et biophysica acta. General subjects, 2017. 1861(11 Pt A): p. 2710–2716.
157.
go back to reference Ajoolabady A, et al. Ferritinophagy and ferroptosis in the management of metabolic Diseases. Trends Endocrinol Metab. 2021;32(7):444–62.PubMedCrossRef Ajoolabady A, et al. Ferritinophagy and ferroptosis in the management of metabolic Diseases. Trends Endocrinol Metab. 2021;32(7):444–62.PubMedCrossRef
158.
go back to reference Ni S, et al. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic Biol Med. 2021;169:271–82.PubMedCrossRef Ni S, et al. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic Biol Med. 2021;169:271–82.PubMedCrossRef
159.
go back to reference Taylor M, et al. Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron Deficiency in mice. Gastroenterology. 2011;140(7):2044–55.PubMedCrossRef Taylor M, et al. Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron Deficiency in mice. Gastroenterology. 2011;140(7):2044–55.PubMedCrossRef
161.
go back to reference Poursaitidis I, et al. Oncogene-Selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine. Cell Rep. 2017;18(11):2547–56.PubMedPubMedCentralCrossRef Poursaitidis I, et al. Oncogene-Selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine. Cell Rep. 2017;18(11):2547–56.PubMedPubMedCentralCrossRef
162.
go back to reference Yang W-H et al. The Hippo Pathway Effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep, 2019. 28(10). Yang W-H et al. The Hippo Pathway Effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep, 2019. 28(10).
163.
go back to reference Yang W-H, et al. A TAZ-ANGPTL4-NOX2 Axis regulates ferroptotic cell death and Chemoresistance in epithelial Ovarian Cancer. Mol cancer Research: MCR. 2020;18(1):79–90.PubMedCrossRef Yang W-H, et al. A TAZ-ANGPTL4-NOX2 Axis regulates ferroptotic cell death and Chemoresistance in epithelial Ovarian Cancer. Mol cancer Research: MCR. 2020;18(1):79–90.PubMedCrossRef
165.
go back to reference McGranahan N, Swanton C. Clonal heterogeneity and Tumor Evolution: past, Present, and the future. Cell. 2017;168(4):613–28.PubMedCrossRef McGranahan N, Swanton C. Clonal heterogeneity and Tumor Evolution: past, Present, and the future. Cell. 2017;168(4):613–28.PubMedCrossRef
166.
go back to reference Quezada SA, et al. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Investig. 2006;116(7):1935–45.PubMedPubMedCentralCrossRef Quezada SA, et al. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Investig. 2006;116(7):1935–45.PubMedPubMedCentralCrossRef
167.
go back to reference Galon J, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Volume 313. New York, N.Y.): Science; 2006. pp. 1960–4. 5795. Galon J, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Volume 313. New York, N.Y.): Science; 2006. pp. 1960–4. 5795.
168.
go back to reference Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218.PubMedCrossRef Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218.PubMedCrossRef
170.
171.
172.
go back to reference Tsoi J et al. Multi-stage differentiation defines Melanoma subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent oxidative stress. Cancer Cell, 2018. 33(5). Tsoi J et al. Multi-stage differentiation defines Melanoma subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent oxidative stress. Cancer Cell, 2018. 33(5).
173.
174.
175.
176.
go back to reference Duan Q, et al. Turning Cold into Hot: firing up the Tumor Microenvironment. Trends in cancer. 2020;6(7):605–18.PubMedCrossRef Duan Q, et al. Turning Cold into Hot: firing up the Tumor Microenvironment. Trends in cancer. 2020;6(7):605–18.PubMedCrossRef
177.
go back to reference Yang L, et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun. 2014;5:4436.PubMedCrossRef Yang L, et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun. 2014;5:4436.PubMedCrossRef
178.
go back to reference Camus M, et al. Coordination of intratumoral immune reaction and human Colorectal cancer recurrence. Cancer Res. 2009;69(6):2685–93.PubMedCrossRef Camus M, et al. Coordination of intratumoral immune reaction and human Colorectal cancer recurrence. Cancer Res. 2009;69(6):2685–93.PubMedCrossRef
179.
go back to reference Mlecnik B, et al. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci Transl Med. 2014;6(228):228ra37.PubMedCrossRef Mlecnik B, et al. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci Transl Med. 2014;6(228):228ra37.PubMedCrossRef
180.
go back to reference Spranger S et al. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell, 2017. 31(5). Spranger S et al. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell, 2017. 31(5).
181.
182.
go back to reference van der Woude LL, et al. Migrating into the Tumor: a Roadmap for T cells. Trends Cancer. 2017;3(11):797–808.PubMedCrossRef van der Woude LL, et al. Migrating into the Tumor: a Roadmap for T cells. Trends Cancer. 2017;3(11):797–808.PubMedCrossRef
183.
go back to reference Tan SK, et al. Obesity-dependent adipokine chemerin suppresses fatty acid oxidation to Confer Ferroptosis Resistance. Cancer Discov. 2021;11(8):2072–93.PubMedPubMedCentralCrossRef Tan SK, et al. Obesity-dependent adipokine chemerin suppresses fatty acid oxidation to Confer Ferroptosis Resistance. Cancer Discov. 2021;11(8):2072–93.PubMedPubMedCentralCrossRef
184.
go back to reference Zhu J et al. Transsulfuration Activity Can Support Cell Growth upon Extracellular Cysteine Limitation Cell Metabolism, 2019. 30(5). Zhu J et al. Transsulfuration Activity Can Support Cell Growth upon Extracellular Cysteine Limitation Cell Metabolism, 2019. 30(5).
185.
go back to reference Erdélyi K et al. Reprogrammed transsulfuration promotes basal-like breast tumor progression via realigning cellular cysteine persulfidation Proc Natl Acad Sci U S A, 2021. 118(45). Erdélyi K et al. Reprogrammed transsulfuration promotes basal-like breast tumor progression via realigning cellular cysteine persulfidation Proc Natl Acad Sci U S A, 2021. 118(45).
186.
go back to reference Yang F, et al. Ferroptosis heterogeneity in triple-negative Breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab. 2023;35(1):84–100e8.PubMedCrossRef Yang F, et al. Ferroptosis heterogeneity in triple-negative Breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab. 2023;35(1):84–100e8.PubMedCrossRef
187.
go back to reference Bebber CM et al. Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes Nat Commun, 2021. 12(1): p. 2048. Bebber CM et al. Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes Nat Commun, 2021. 12(1): p. 2048.
188.
go back to reference Goji T, et al. Cystine uptake through the cystine/glutamate antiporter xCT triggers Glioblastoma cell death under glucose deprivation. J Biol Chem. 2017;292(48):19721–32.PubMedPubMedCentralCrossRef Goji T, et al. Cystine uptake through the cystine/glutamate antiporter xCT triggers Glioblastoma cell death under glucose deprivation. J Biol Chem. 2017;292(48):19721–32.PubMedPubMedCentralCrossRef
189.
190.
go back to reference Leone RD, et al. Glutamine blockade induces divergent metabolic programs to overcome Tumor immune evasion. Volume 366. New York, N.Y.): Science; 2019. pp. 1013–21. 6468. Leone RD, et al. Glutamine blockade induces divergent metabolic programs to overcome Tumor immune evasion. Volume 366. New York, N.Y.): Science; 2019. pp. 1013–21. 6468.
191.
go back to reference Jones S, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Volume 321. New York, N.Y.): Science; 2008. pp. 1801–6. 5897. Jones S, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Volume 321. New York, N.Y.): Science; 2008. pp. 1801–6. 5897.
193.
go back to reference Wise DR, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008;105(48):18782–7.PubMedPubMedCentralCrossRef Wise DR, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008;105(48):18782–7.PubMedPubMedCentralCrossRef
194.
go back to reference Corbet C, Feron O. Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer. 2017;17(10):577–93.PubMedCrossRef Corbet C, Feron O. Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer. 2017;17(10):577–93.PubMedCrossRef
195.
196.
go back to reference Mwaikambo BR, et al. Hypoxia up-regulates CD36 expression and function via hypoxia-inducible factor-1- and phosphatidylinositol 3-kinase-dependent mechanisms. J Biol Chem. 2009;284(39):26695–707.PubMedPubMedCentralCrossRef Mwaikambo BR, et al. Hypoxia up-regulates CD36 expression and function via hypoxia-inducible factor-1- and phosphatidylinositol 3-kinase-dependent mechanisms. J Biol Chem. 2009;284(39):26695–707.PubMedPubMedCentralCrossRef
197.
198.
go back to reference Liu T, et al. Ferroptosis, as the most enriched programmed cell death process in glioma, induces immunosuppression and immunotherapy resistance. Neuro Oncol. 2022;24(7):1113–25.PubMedPubMedCentralCrossRef Liu T, et al. Ferroptosis, as the most enriched programmed cell death process in glioma, induces immunosuppression and immunotherapy resistance. Neuro Oncol. 2022;24(7):1113–25.PubMedPubMedCentralCrossRef
199.
go back to reference Fan F, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to Potentiate Cancer Immune Checkpoint Therapy. Cancer Res. 2021;81(24):6233–45.PubMedCrossRef Fan F, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to Potentiate Cancer Immune Checkpoint Therapy. Cancer Res. 2021;81(24):6233–45.PubMedCrossRef
200.
go back to reference Mao W et al. Statin shapes inflamed Tumor microenvironment and enhances immune checkpoint blockade in non-small cell Lung cancer. JCI Insight, 2022. 7(18). Mao W et al. Statin shapes inflamed Tumor microenvironment and enhances immune checkpoint blockade in non-small cell Lung cancer. JCI Insight, 2022. 7(18).
201.
go back to reference Cheu JW, et al. Ferroptosis Suppressor Protein 1 inhibition promotes Tumor Ferroptosis and Anti-tumor Immune responses in Liver Cancer. Cell Mol Gastroenterol Hepatol. 2023;16(1):133–59.PubMedPubMedCentralCrossRef Cheu JW, et al. Ferroptosis Suppressor Protein 1 inhibition promotes Tumor Ferroptosis and Anti-tumor Immune responses in Liver Cancer. Cell Mol Gastroenterol Hepatol. 2023;16(1):133–59.PubMedPubMedCentralCrossRef
202.
go back to reference Ruan WY, et al. An inflammation-associated ferroptosis signature optimizes the diagnosis, prognosis evaluation and immunotherapy options in hepatocellular carcinoma. J Cell Mol Med. 2023;27(13):1820–35.PubMedPubMedCentralCrossRef Ruan WY, et al. An inflammation-associated ferroptosis signature optimizes the diagnosis, prognosis evaluation and immunotherapy options in hepatocellular carcinoma. J Cell Mol Med. 2023;27(13):1820–35.PubMedPubMedCentralCrossRef
203.
go back to reference Xue Y, et al. Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade. Nat Commun. 2023;14(1):4758.PubMedPubMedCentralCrossRef Xue Y, et al. Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade. Nat Commun. 2023;14(1):4758.PubMedPubMedCentralCrossRef
204.
go back to reference Li H, et al. Ferritin light chain promotes the reprogramming of glioma immune microenvironment and facilitates glioma progression. Theranostics. 2023;13(11):3794–813.PubMedPubMedCentralCrossRef Li H, et al. Ferritin light chain promotes the reprogramming of glioma immune microenvironment and facilitates glioma progression. Theranostics. 2023;13(11):3794–813.PubMedPubMedCentralCrossRef
205.
go back to reference Siegel RL et al. Cancer Statistics, 2021. CA: a cancer journal for clinicians, 2021. 71(1). Siegel RL et al. Cancer Statistics, 2021. CA: a cancer journal for clinicians, 2021. 71(1).
206.
go back to reference Yu W et al. Acquisition of Cisplatin Resistance shifts Head and Neck squamous cell Carcinoma Metabolism toward neutralization of oxidative stress. Cancers, 2020. 12(6). Yu W et al. Acquisition of Cisplatin Resistance shifts Head and Neck squamous cell Carcinoma Metabolism toward neutralization of oxidative stress. Cancers, 2020. 12(6).
207.
209.
go back to reference Wang GX, et al. ∆Np63 inhibits oxidative stress-Induced Cell Death, including ferroptosis, and cooperates with the BCL-2 family to promote Clonogenic Survival. Cell Rep. 2017;21(10):2926–39.PubMedPubMedCentralCrossRef Wang GX, et al. ∆Np63 inhibits oxidative stress-Induced Cell Death, including ferroptosis, and cooperates with the BCL-2 family to promote Clonogenic Survival. Cell Rep. 2017;21(10):2926–39.PubMedPubMedCentralCrossRef
210.
go back to reference Wang Y, et al. Frizzled-7 identifies platinum-tolerant Ovarian Cancer cells susceptible to Ferroptosis. Cancer Res. 2021;81(2):384–99.PubMedCrossRef Wang Y, et al. Frizzled-7 identifies platinum-tolerant Ovarian Cancer cells susceptible to Ferroptosis. Cancer Res. 2021;81(2):384–99.PubMedCrossRef
211.
go back to reference Okuno S, et al. Role of cystine transport in intracellular glutathione level and cisplatin resistance in human Ovarian cancer cell lines. Br J Cancer. 2003;88(6):951–6.PubMedPubMedCentralCrossRef Okuno S, et al. Role of cystine transport in intracellular glutathione level and cisplatin resistance in human Ovarian cancer cell lines. Br J Cancer. 2003;88(6):951–6.PubMedPubMedCentralCrossRef
212.
go back to reference Huang Y, et al. Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res. 2005;65(16):7446–54.PubMedCrossRef Huang Y, et al. Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res. 2005;65(16):7446–54.PubMedCrossRef
213.
go back to reference Chen HHW, Kuo MT. Role of glutathione in the regulation of Cisplatin resistance in cancer chemotherapy Metal-based drugs, 2010. 2010. Chen HHW, Kuo MT. Role of glutathione in the regulation of Cisplatin resistance in cancer chemotherapy Metal-based drugs, 2010. 2010.
214.
go back to reference Guo J, et al. Ferroptosis: a Novel Anti-tumor Action for Cisplatin. Cancer Res Treat. 2018;50(2):445–60.PubMedCrossRef Guo J, et al. Ferroptosis: a Novel Anti-tumor Action for Cisplatin. Cancer Res Treat. 2018;50(2):445–60.PubMedCrossRef
215.
go back to reference Song Z, et al. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci. 2021;276:119399.PubMedCrossRef Song Z, et al. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci. 2021;276:119399.PubMedCrossRef
216.
go back to reference Sato M, et al. The ferroptosis inducer erastin irreversibly inhibits system x- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci Rep. 2018;8(1):968.PubMedPubMedCentralCrossRef Sato M, et al. The ferroptosis inducer erastin irreversibly inhibits system x- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci Rep. 2018;8(1):968.PubMedPubMedCentralCrossRef
217.
go back to reference Roh J-L et al. Induction of ferroptotic cell death for overcoming cisplatin resistance of Head and Neck cancer. Cancer Lett, 2016. 381(1). Roh J-L et al. Induction of ferroptotic cell death for overcoming cisplatin resistance of Head and Neck cancer. Cancer Lett, 2016. 381(1).
219.
go back to reference Chen L, et al. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol Rep. 2015;33(3):1465–74.PubMedCrossRef Chen L, et al. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol Rep. 2015;33(3):1465–74.PubMedCrossRef
220.
go back to reference Chaudhary N, et al. Lipocalin 2 expression promotes Tumor progression and therapy resistance by inhibiting ferroptosis in Colorectal cancer. Int J Cancer. 2021;149(7):1495–511.PubMedCrossRef Chaudhary N, et al. Lipocalin 2 expression promotes Tumor progression and therapy resistance by inhibiting ferroptosis in Colorectal cancer. Int J Cancer. 2021;149(7):1495–511.PubMedCrossRef
222.
go back to reference Strobel O, et al. Optimizing the outcomes of Pancreatic cancer Surgery. Nat Rev Clin Oncol. 2019;16(1):11–26.PubMedCrossRef Strobel O, et al. Optimizing the outcomes of Pancreatic cancer Surgery. Nat Rev Clin Oncol. 2019;16(1):11–26.PubMedCrossRef
223.
go back to reference Tang R, et al. The role of ferroptosis regulators in the prognosis, immune activity and gemcitabine resistance of Pancreatic cancer. Annals of Translational Medicine. 2020;8(21):1347.PubMedPubMedCentralCrossRef Tang R, et al. The role of ferroptosis regulators in the prognosis, immune activity and gemcitabine resistance of Pancreatic cancer. Annals of Translational Medicine. 2020;8(21):1347.PubMedPubMedCentralCrossRef
224.
go back to reference Lo M, et al. The xc- cystine/glutamate antiporter: a mediator of Pancreatic cancer growth with a role in drug resistance. Br J Cancer. 2008;99(3):464–72.PubMedPubMedCentralCrossRef Lo M, et al. The xc- cystine/glutamate antiporter: a mediator of Pancreatic cancer growth with a role in drug resistance. Br J Cancer. 2008;99(3):464–72.PubMedPubMedCentralCrossRef
225.
227.
228.
go back to reference Tomita K et al. MiR-7-5p is involved in Ferroptosis Signaling and Radioresistance thru the Generation of ROS in Radioresistant HeLa and SAS cell lines. Int J Mol Sci, 2021. 22(15). Tomita K et al. MiR-7-5p is involved in Ferroptosis Signaling and Radioresistance thru the Generation of ROS in Radioresistant HeLa and SAS cell lines. Int J Mol Sci, 2021. 22(15).
229.
231.
go back to reference Wan C, et al. Irradiated Tumor cell-derived microparticles mediate Tumor eradication via cell killing and immune reprogramming. Sci Adv. 2020;6(13):eaay9789.PubMedPubMedCentralCrossRef Wan C, et al. Irradiated Tumor cell-derived microparticles mediate Tumor eradication via cell killing and immune reprogramming. Sci Adv. 2020;6(13):eaay9789.PubMedPubMedCentralCrossRef
232.
go back to reference Lang X, et al. Radiotherapy and Immunotherapy Promote Tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019;9(12):1673–85.PubMedPubMedCentralCrossRef Lang X, et al. Radiotherapy and Immunotherapy Promote Tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019;9(12):1673–85.PubMedPubMedCentralCrossRef
233.
go back to reference Chen P-H, et al. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ. 2020;27(3):1008–22.PubMedCrossRef Chen P-H, et al. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ. 2020;27(3):1008–22.PubMedCrossRef
234.
go back to reference Shibata Y, et al. Erastin, a ferroptosis-inducing agent, sensitized cancer cells to X-ray irradiation via glutathione Starvation in vitro and in vivo. PLoS ONE. 2019;14(12):e0225931.PubMedPubMedCentralCrossRef Shibata Y, et al. Erastin, a ferroptosis-inducing agent, sensitized cancer cells to X-ray irradiation via glutathione Starvation in vitro and in vivo. PLoS ONE. 2019;14(12):e0225931.PubMedPubMedCentralCrossRef
236.
go back to reference Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–14.PubMedCrossRef Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–14.PubMedCrossRef
237.
go back to reference Brown CW et al. Prominin2 drives ferroptosis resistance by stimulating Iron Export. Dev Cell, 2019. 51(5). Brown CW et al. Prominin2 drives ferroptosis resistance by stimulating Iron Export. Dev Cell, 2019. 51(5).
239.
go back to reference Louandre C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer. 2013;133(7):1732–42.PubMedCrossRef Louandre C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer. 2013;133(7):1732–42.PubMedCrossRef
240.
go back to reference Min Y, et al. Combating the drug resistance of cisplatin using a platinum prodrug based delivery system. Angew Chem Int Ed Engl. 2012;51(27):6742–7.PubMedCrossRef Min Y, et al. Combating the drug resistance of cisplatin using a platinum prodrug based delivery system. Angew Chem Int Ed Engl. 2012;51(27):6742–7.PubMedCrossRef
241.
242.
go back to reference Xu H, et al. Ferroptosis in the Tumor microenvironment: perspectives for immunotherapy. Trends Mol Med. 2021;27(9):856–67.PubMedCrossRef Xu H, et al. Ferroptosis in the Tumor microenvironment: perspectives for immunotherapy. Trends Mol Med. 2021;27(9):856–67.PubMedCrossRef
244.
go back to reference McLaughlin M, et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat Rev Cancer. 2020;20(4):203–17.PubMedCrossRef McLaughlin M, et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat Rev Cancer. 2020;20(4):203–17.PubMedCrossRef
245.
Metadata
Title
Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment
Authors
Yuze Hua
Sen Yang
Yalu Zhang
Jiayi Li
Mengyi Wang
Palashate Yeerkenbieke
Quan Liao
Qiaofei Liu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2024
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-023-02925-5

Other articles of this Issue 1/2024

Journal of Experimental & Clinical Cancer Research 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine