Skip to main content
Top
Published in: Urolithiasis 6/2008

01-12-2008 | Symposium Paper

Modification of primers for GRHPR genotyping: avoiding allele dropout by single nucleotide polymorphisms and homology sequence

Authors: Naohisa Takaoka, Tatsuya Takayama, Miki Miyazaki, Masao Nagata, Seiichiro Ozono

Published in: Urolithiasis | Issue 6/2008

Login to get access

Abstract

Mutation of primer site for genotyping by polymerase chain reaction (PCR) may cause allele dropout and other genotyping failures. Primary hyperoxaluria type 2 (PH2) is a rare inherited disease caused by overproduction of endogenous oxalate due to mutations in the glyoxylate/hydroxypyruvate reductase (GRHPR) gene. Here, to avoid allele dropout and primer annealing to multiple sites, and given the discrepancy in intron length between GRHPR gene data, we updated the primers used in the sequence assay of the GRHPR gene. These redesigned primers show potential in reducing detection failure of GRHPR mutations. In addition, we performed a single nucleotide polymorphism (SNP) linkage analysis of the GRHPR gene using direct sequencing with PCR amplification of specific alleles (DS-PASA). Using this technique, we sequenced four common SNPs between intron E and exon 6, which show linkage disequilibrium (LD) consisting of three types of haplotypes, similar to data from the HapMap SNP database.
Literature
1.
go back to reference Ellard S, Bulman MP, Frayling TM, Allen LI, Dronsfield MJ, Tack CJ, Hattersley AT (1999) Allelic drop-out in exon 2 of the hepatocyte nuclear factor-1alpha gene hinders the identification of mutations in three families with maturity-onset diabetes of the young. Diabetes 48:921–923. doi:10.2337/diabetes.48.4.921 PubMedCrossRef Ellard S, Bulman MP, Frayling TM, Allen LI, Dronsfield MJ, Tack CJ, Hattersley AT (1999) Allelic drop-out in exon 2 of the hepatocyte nuclear factor-1alpha gene hinders the identification of mutations in three families with maturity-onset diabetes of the young. Diabetes 48:921–923. doi:10.​2337/​diabetes.​48.​4.​921 PubMedCrossRef
3.
go back to reference Ward KJ, Ellard S, Yajnik CS, Frayling TM, Hattersley AT, Venigalla PN, Chandak GR (2006) Allelic drop-out may occur with a primer binding site polymorphism for the commonly used RFLP assay for the -1131T > C polymorphism of the Apolipoprotein AV gene. Lipids Health Dis 5:11. doi:10.1186/1476-511X-5-11 PubMedCrossRef Ward KJ, Ellard S, Yajnik CS, Frayling TM, Hattersley AT, Venigalla PN, Chandak GR (2006) Allelic drop-out may occur with a primer binding site polymorphism for the commonly used RFLP assay for the -1131T > C polymorphism of the Apolipoprotein AV gene. Lipids Health Dis 5:11. doi:10.​1186/​1476-511X-5-11 PubMedCrossRef
5.
go back to reference Mullins FM, Dietz L, Lay M, Zehnder JL, Ford J, Chun N, Schrijver I (2007) Identification of an intronic single nucleotide polymorphism leading to allele dropout during validation of a CDH1 sequencing assay: implications for designing polymerase chain reaction-based assays. Genet Med 9:752–760PubMedCrossRef Mullins FM, Dietz L, Lay M, Zehnder JL, Ford J, Chun N, Schrijver I (2007) Identification of an intronic single nucleotide polymorphism leading to allele dropout during validation of a CDH1 sequencing assay: implications for designing polymerase chain reaction-based assays. Genet Med 9:752–760PubMedCrossRef
6.
go back to reference Sommer SS, Cassady JD, Sobell JL, Bottema CD (1989) A novel method for detecting point mutations or polymorphisms and its application to population screening for carriers of phenylketonuria. Mayo Clin Proc 64:1361–1372PubMed Sommer SS, Cassady JD, Sobell JL, Bottema CD (1989) A novel method for detecting point mutations or polymorphisms and its application to population screening for carriers of phenylketonuria. Mayo Clin Proc 64:1361–1372PubMed
7.
go back to reference Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17:2503–2516. doi:10.1093/nar/17.7.2503 PubMedCrossRef Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17:2503–2516. doi:10.​1093/​nar/​17.​7.​2503 PubMedCrossRef
8.
9.
go back to reference Sarkar G, Sommer SS (1991) Haplotyping by double PCR amplification of specific alleles. Biotechniques 10(436):438–440 Sarkar G, Sommer SS (1991) Haplotyping by double PCR amplification of specific alleles. Biotechniques 10(436):438–440
11.
12.
go back to reference Webster KE, Ferree PM, Holmes RP, Cramer SD (2000) Identification of missense, nonsense, and deletion mutations in the GRHPR gene in patients with primary hyperoxaluria type II (PH2). Hum Genet 107:176–185. doi:10.1007/s004390000351 PubMedCrossRef Webster KE, Ferree PM, Holmes RP, Cramer SD (2000) Identification of missense, nonsense, and deletion mutations in the GRHPR gene in patients with primary hyperoxaluria type II (PH2). Hum Genet 107:176–185. doi:10.​1007/​s004390000351 PubMedCrossRef
13.
go back to reference Lam CW, Yuen YP, Lai CK, Tong SF, Lau LK, Tong KL, Chan YW (2001) Novel mutation in the GRHPR gene in a Chinese patient with primary hyperoxaluria type 2 requiring renal transplantation from a living related donor. Am J Kidney Dis 38:1307–1310. doi:10.1053/ajkd.2001.29229 PubMedCrossRef Lam CW, Yuen YP, Lai CK, Tong SF, Lau LK, Tong KL, Chan YW (2001) Novel mutation in the GRHPR gene in a Chinese patient with primary hyperoxaluria type 2 requiring renal transplantation from a living related donor. Am J Kidney Dis 38:1307–1310. doi:10.​1053/​ajkd.​2001.​29229 PubMedCrossRef
14.
go back to reference Cregeen DP, Williams EL, Hulton S, Rumsby G (2003) Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat 22:497. doi:10.1002/humu.9200 PubMedCrossRef Cregeen DP, Williams EL, Hulton S, Rumsby G (2003) Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat 22:497. doi:10.​1002/​humu.​9200 PubMedCrossRef
15.
go back to reference Takayama T, Nagata M, Ozono S, Nonomura K, Cramer SD (2007) A novel mutation in the GRHPR gene in a Japanese patient with primary hyperoxaluria type 2. Nephrol Dial Transplant 22:2371–2374. doi:10.1093/ndt/gfm271 PubMedCrossRef Takayama T, Nagata M, Ozono S, Nonomura K, Cramer SD (2007) A novel mutation in the GRHPR gene in a Japanese patient with primary hyperoxaluria type 2. Nephrol Dial Transplant 22:2371–2374. doi:10.​1093/​ndt/​gfm271 PubMedCrossRef
20.
go back to reference Giafi CF, Rumsby G (1998) Kinetic analysis and tissue distribution of human d-glycerate dehydrogenase/glyoxylate reductase and its relevance to the diagnosis of primary hyperoxaluria type 2. Ann Clin Biochem 35:104–109PubMed Giafi CF, Rumsby G (1998) Kinetic analysis and tissue distribution of human d-glycerate dehydrogenase/glyoxylate reductase and its relevance to the diagnosis of primary hyperoxaluria type 2. Ann Clin Biochem 35:104–109PubMed
Metadata
Title
Modification of primers for GRHPR genotyping: avoiding allele dropout by single nucleotide polymorphisms and homology sequence
Authors
Naohisa Takaoka
Tatsuya Takayama
Miki Miyazaki
Masao Nagata
Seiichiro Ozono
Publication date
01-12-2008
Publisher
Springer-Verlag
Published in
Urolithiasis / Issue 6/2008
Print ISSN: 2194-7228
Electronic ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-008-0159-z

Other articles of this Issue 6/2008

Urolithiasis 6/2008 Go to the issue