Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2013

Open Access 01-12-2013 | Research article

Modelling heterogeneity variances in multiple treatment comparison meta-analysis – Are informative priors the better solution?

Authors: Kristian Thorlund, Lehana Thabane, Edward J Mills

Published in: BMC Medical Research Methodology | Issue 1/2013

Login to get access

Abstract

Background

Multiple treatment comparison (MTC) meta-analyses are commonly modeled in a Bayesian framework, and weakly informative priors are typically preferred to mirror familiar data driven frequentist approaches. Random-effects MTCs have commonly modeled heterogeneity under the assumption that the between-trial variance for all involved treatment comparisons are equal (i.e., the ‘common variance’ assumption). This approach ‘borrows strength’ for heterogeneity estimation across treatment comparisons, and thus, ads valuable precision when data is sparse. The homogeneous variance assumption, however, is unrealistic and can severely bias variance estimates. Consequently 95% credible intervals may not retain nominal coverage, and treatment rank probabilities may become distorted. Relaxing the homogeneous variance assumption may be equally problematic due to reduced precision. To regain good precision, moderately informative variance priors or additional mathematical assumptions may be necessary.

Methods

In this paper we describe four novel approaches to modeling heterogeneity variance - two novel model structures, and two approaches for use of moderately informative variance priors. We examine the relative performance of all approaches in two illustrative MTC data sets. We particularly compare between-study heterogeneity estimates and model fits, treatment effect estimates and 95% credible intervals, and treatment rank probabilities.

Results

In both data sets, use of moderately informative variance priors constructed from the pair wise meta-analysis data yielded the best model fit and narrower credible intervals. Imposing consistency equations on variance estimates, assuming variances to be exchangeable, or using empirically informed variance priors also yielded good model fits and narrow credible intervals. The homogeneous variance model yielded high precision at all times, but overall inadequate estimates of between-trial variances. Lastly, treatment rankings were similar among the novel approaches, but considerably different when compared with the homogenous variance approach.

Conclusions

MTC models using a homogenous variance structure appear to perform sub-optimally when between-trial variances vary between comparisons. Using informative variance priors, assuming exchangeability or imposing consistency between heterogeneity variances can all ensure sufficiently reliable and realistic heterogeneity estimation, and thus more reliable MTC inferences. All four approaches should be viable candidates for replacing or supplementing the conventional homogeneous variance MTC model, which is currently the most widely used in practice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Coleman C, Phung O, Cappelleri J, Baker W, Kluger J, White M, et al: Use of network meta-analysis in systematic reviews. 2012, Under review: AHRQ Coleman C, Phung O, Cappelleri J, Baker W, Kluger J, White M, et al: Use of network meta-analysis in systematic reviews. 2012, Under review: AHRQ
2.
go back to reference Gelman A: Prior distributions for variance parameters in hiearchical models. Bayesian Anal. 2006, 1 (3): 515- Gelman A: Prior distributions for variance parameters in hiearchical models. Bayesian Anal. 2006, 1 (3): 515-
3.
go back to reference Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR: How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Stat Med. 2005, 24 (15): 2401-2428. 10.1002/sim.2112.CrossRefPubMed Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR: How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Stat Med. 2005, 24 (15): 2401-2428. 10.1002/sim.2112.CrossRefPubMed
4.
go back to reference Thorlund K, Steele R, Platt R, Shrier I: Rapid response to Methodological problems in the use of indirect comparisons for evaluating healthcare interventions: survey of published systematic reviews’ by Song F et al. BMJ. 2009 Thorlund K, Steele R, Platt R, Shrier I: Rapid response to Methodological problems in the use of indirect comparisons for evaluating healthcare interventions: survey of published systematic reviews’ by Song F et al. BMJ. 2009
5.
go back to reference Pullenayegum E: An informed reference prior for between-study heterogeneity in meta-analysis of binary outcomes. Stat Med. 2011, 30: 13-CrossRef Pullenayegum E: An informed reference prior for between-study heterogeneity in meta-analysis of binary outcomes. Stat Med. 2011, 30: 13-CrossRef
6.
go back to reference Turner RM, Davey J, Clarke M, Thompson S, Higgins JP: Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol. 2012 Turner RM, Davey J, Clarke M, Thompson S, Higgins JP: Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol. 2012
7.
go back to reference Sanchez-Meca J, Marin-Martinez F: Confidence intervals for the overall effect size in random-effects meta-analysis. Psychol Methods. 2008, 13 (1): 31-48.CrossRefPubMed Sanchez-Meca J, Marin-Martinez F: Confidence intervals for the overall effect size in random-effects meta-analysis. Psychol Methods. 2008, 13 (1): 31-48.CrossRefPubMed
8.
go back to reference Sidik K, Jonkman JN: A comparison of heterogeneity variance estimators in combining results of studies. Stat Med. 2007, 26 (9): 1964-81. 10.1002/sim.2688.CrossRefPubMed Sidik K, Jonkman JN: A comparison of heterogeneity variance estimators in combining results of studies. Stat Med. 2007, 26 (9): 1964-81. 10.1002/sim.2688.CrossRefPubMed
9.
go back to reference Thorlund K, Wetterslev J, Awad T, Thabane L, Gluud G: Comparison of statistical inferences from the DerSimonian-Laird and alternative random-effects model meta-analyses - ana empirical assessment of 920 Cochrane primary outcome meta-analyses. Res Synth Meth. 2011, 2: 14- Thorlund K, Wetterslev J, Awad T, Thabane L, Gluud G: Comparison of statistical inferences from the DerSimonian-Laird and alternative random-effects model meta-analyses - ana empirical assessment of 920 Cochrane primary outcome meta-analyses. Res Synth Meth. 2011, 2: 14-
10.
go back to reference Lu G, Ades A: Modeling between-trial variance structure in mixed treatment comparisons. Biostatistics. 2009, 10 (4): 792-805. 10.1093/biostatistics/kxp032.CrossRefPubMed Lu G, Ades A: Modeling between-trial variance structure in mixed treatment comparisons. Biostatistics. 2009, 10 (4): 792-805. 10.1093/biostatistics/kxp032.CrossRefPubMed
11.
go back to reference Lu G, Welton N, Higgins JP, White IR, Ades A: Linear inference for mixed treatment comparison meta-analysis: A two-stage approach. Res Synth Meth. 2011, 2: 18-CrossRef Lu G, Welton N, Higgins JP, White IR, Ades A: Linear inference for mixed treatment comparison meta-analysis: A two-stage approach. Res Synth Meth. 2011, 2: 18-CrossRef
12.
go back to reference Higgins JP, Whitehead A: Borrowing strength from external trials in a meta-analysis. Stat Med. 1996, 15 (24): 2733-49. 10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0.CrossRefPubMed Higgins JP, Whitehead A: Borrowing strength from external trials in a meta-analysis. Stat Med. 1996, 15 (24): 2733-49. 10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0.CrossRefPubMed
13.
go back to reference Lu G, Ades AE: Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004, 23 (20): 3105-24. 10.1002/sim.1875.CrossRefPubMed Lu G, Ades AE: Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004, 23 (20): 3105-24. 10.1002/sim.1875.CrossRefPubMed
14.
go back to reference Lumley T: Network meta-analysis for indirect treatment comparisons. Stat Med. 2002, 21 (16): 2313-24. 10.1002/sim.1201.CrossRefPubMed Lumley T: Network meta-analysis for indirect treatment comparisons. Stat Med. 2002, 21 (16): 2313-24. 10.1002/sim.1201.CrossRefPubMed
15.
go back to reference Mills E, Wu P, Ebert J, Thorlund K, Puhan MA: Comparisons of High Dose and Combination Nicotine Replacement Therapy, Varenicline and Bupropion for Smoking Cessation: A Systematic Review and Multiple Treatment Meta-analysis. Ann Med. 2012, 44 (6): 10-CrossRef Mills E, Wu P, Ebert J, Thorlund K, Puhan MA: Comparisons of High Dose and Combination Nicotine Replacement Therapy, Varenicline and Bupropion for Smoking Cessation: A Systematic Review and Multiple Treatment Meta-analysis. Ann Med. 2012, 44 (6): 10-CrossRef
16.
go back to reference Dias S, Welton N, Sutton A, Ades A: NICE DSU Technical Support Document 2. 2011, A generalised linear modelling framework fro pairwise and network meta-analysis of randomised controlled trial Dias S, Welton N, Sutton A, Ades A: NICE DSU Technical Support Document 2. 2011, A generalised linear modelling framework fro pairwise and network meta-analysis of randomised controlled trial
17.
go back to reference Thorlund K, Imberger G, Johnston B, Walsh M, Awad T, Thabane L, et al: Evolution of heterogeneity (I^2) estimates and their 95% confidence intervals in large meta-analyses. PLoS One. 2012, 7: 7-CrossRef Thorlund K, Imberger G, Johnston B, Walsh M, Awad T, Thabane L, et al: Evolution of heterogeneity (I^2) estimates and their 95% confidence intervals in large meta-analyses. PLoS One. 2012, 7: 7-CrossRef
18.
go back to reference Jackson D: The implications of publication bias for meta-analysis’ other parameter. Stat Med. 2006, 25 (17): 2911-21. 10.1002/sim.2293.CrossRefPubMed Jackson D: The implications of publication bias for meta-analysis’ other parameter. Stat Med. 2006, 25 (17): 2911-21. 10.1002/sim.2293.CrossRefPubMed
19.
go back to reference Rucker G, Schwarzer G, Carpenter JR, Schumacher M: Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Methodol. 2008, 8: 79-10.1186/1471-2288-8-79.CrossRefPubMedPubMedCentral Rucker G, Schwarzer G, Carpenter JR, Schumacher M: Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Methodol. 2008, 8: 79-10.1186/1471-2288-8-79.CrossRefPubMedPubMedCentral
20.
go back to reference Biggerstaff BJ, Tweedie RL: Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Stat Med. 1997, 16 (7): 753-68. 10.1002/(SICI)1097-0258(19970415)16:7<753::AID-SIM494>3.0.CO;2-G.CrossRefPubMed Biggerstaff BJ, Tweedie RL: Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Stat Med. 1997, 16 (7): 753-68. 10.1002/(SICI)1097-0258(19970415)16:7<753::AID-SIM494>3.0.CO;2-G.CrossRefPubMed
21.
go back to reference DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7 (3): 177-88. 10.1016/0197-2456(86)90046-2.CrossRefPubMed DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7 (3): 177-88. 10.1016/0197-2456(86)90046-2.CrossRefPubMed
22.
go back to reference Brockwell SE, Gordon IR: A comparison of statistical methods for meta-analysis. Stat Med. 2001, 20 (6): 825-40. 10.1002/sim.650.CrossRefPubMed Brockwell SE, Gordon IR: A comparison of statistical methods for meta-analysis. Stat Med. 2001, 20 (6): 825-40. 10.1002/sim.650.CrossRefPubMed
23.
go back to reference Hartung J, Makambi K: Reducing the Number of Unjustified Significant Results in Meta-analysis. Comm Stat. 2003, 32 (4): 12- Hartung J, Makambi K: Reducing the Number of Unjustified Significant Results in Meta-analysis. Comm Stat. 2003, 32 (4): 12-
24.
go back to reference Spiegelhalter D, Best N, Carlin C, van der Linde A: Bayesian measures of model fit and complexity. J Roy Stat Soc Ser B. 2002, 64 (4): 57-CrossRef Spiegelhalter D, Best N, Carlin C, van der Linde A: Bayesian measures of model fit and complexity. J Roy Stat Soc Ser B. 2002, 64 (4): 57-CrossRef
25.
go back to reference Lunn D, Spiegelhalter D, Thomas A, Best N: The BUGS project: Evolution, critique and future directions. Stat Med. 2009, 28 (25): 3049-67. 10.1002/sim.3680.CrossRefPubMed Lunn D, Spiegelhalter D, Thomas A, Best N: The BUGS project: Evolution, critique and future directions. Stat Med. 2009, 28 (25): 3049-67. 10.1002/sim.3680.CrossRefPubMed
26.
go back to reference The R, Core T: R: A Language and Environment for Statistical Computing. 2005, Vienna, Austria: R Foundation for Statistical Computing The R, Core T: R: A Language and Environment for Statistical Computing. 2005, Vienna, Austria: R Foundation for Statistical Computing
27.
go back to reference Awad T, Brok J, Thorlund K, Hauser G, Mabrouk M, Stimac D, et al: Pegylated interferon versus non-pegylated interferon for chronic hepatitis C. 2009, protocols: Cochrane database of systematic reviews Awad T, Brok J, Thorlund K, Hauser G, Mabrouk M, Stimac D, et al: Pegylated interferon versus non-pegylated interferon for chronic hepatitis C. 2009, protocols: Cochrane database of systematic reviews
28.
go back to reference Awad T, Thorlund K, Hauser G, Stimac D, Mabrouk M, Gluud C: Peginterferon alpha-2a is associated with higher sustained virological response than peginterferon alfa-2b in chronic hepatitis C: systematic review of randomized trials. Hepatology. 2010, 51 (4): 1176-84. 10.1002/hep.23504.CrossRefPubMed Awad T, Thorlund K, Hauser G, Stimac D, Mabrouk M, Gluud C: Peginterferon alpha-2a is associated with higher sustained virological response than peginterferon alfa-2b in chronic hepatitis C: systematic review of randomized trials. Hepatology. 2010, 51 (4): 1176-84. 10.1002/hep.23504.CrossRefPubMed
Metadata
Title
Modelling heterogeneity variances in multiple treatment comparison meta-analysis – Are informative priors the better solution?
Authors
Kristian Thorlund
Lehana Thabane
Edward J Mills
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2013
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-13-2

Other articles of this Issue 1/2013

BMC Medical Research Methodology 1/2013 Go to the issue